
Fengyu Cong · Andrew Leung
Qinglai Wei (Eds.)

 123

LN
CS

 1
02

61

14th International Symposium, ISNN 2017
Sapporo, Hakodate, and Muroran, Hokkaido, Japan, June 21–26, 2017
Proceedings, Part I

Advances in
Neural Networks – ISNN 2017

Lecture Notes in Computer Science 10261

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Fengyu Cong • Andrew Leung
Qinglai Wei (Eds.)

Advances in
Neural Networks – ISNN 2017
14th International Symposium, ISNN 2017
Sapporo, Hakodate, and Muroran, Hokkaido, Japan, June 21–26, 2017
Proceedings, Part I

123

Editors
Fengyu Cong
Dalian University of Technology
Dalian
China

Andrew Leung
City University of Hong Kong
Kowloon Tong
Hong Kong

Qinglai Wei
Chinese Academy of Sciences
Beijing
China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-59071-4 ISBN 978-3-319-59072-1 (eBook)
DOI 10.1007/978-3-319-59072-1

Library of Congress Control Number: 2017941494

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The twin volumes of Lecture Notes in Computer Science constitute the proceedings
of the 14th International Symposium on Neural Networks (ISNN 2017) held during
June 21–26, 2017, in Sapporo, Hakodate, and Muroran, Hokkaido, Japan. Building on
the success of the previous events, ISNN has become a well-established series of
popular and high-quality conferences on the theory and methodology of neural net-
works and their applications. This year’s symposium was held for the third time outside
China, in Hokkaido, a beautiful island in Japan. As usual, it achieved great success.
ISNN aims at providing a high-level international forum for scientists, engineers,
educators, and students to gather so as to present and discuss the latest progress in
neural network research and applications in diverse areas. It encouraged open dis-
cussion, disagreement, criticism, and debate, and we think this is the right way to push
the field forward.

Based on the rigorous peer-reviews by the Program Committee members and
reviewers, 135 high-quality papers from 25 countries and regions were selected for
publication in the LNCS proceedings. These papers cover many topics of neural
network-related research including intelligent control, neurodynamic analysis, mem-
ristive neurodynamics, computer vision, signal processing, machine learning, opti-
mization etc. Many organizations and volunteers made great contributions toward the
success of this symposium. We would like to express our sincere gratitude to City
University of Hong Kong and Hokkaido University for their sponsorship, the IEEE
Computational Intelligence Society, the International Neural Network Society, and the
Japanese Neural Network Society for their technical co-sponsorship. We would also
like to sincerely thank all the committee members for all their great efforts in orga-
nizing the symposium. Special thanks go to the Program Committee members and
reviewers whose insightful reviews and timely feedback ensured the high quality of the
accepted papers and the smooth flow of the symposium. We would also like to thank
Springer for their cooperation in publishing the proceedings in the prestigious Lecture
Notes in Computer Science series. Finally, we would like to thank all the speakers,
authors, and participants for their support.

April 2017 Fengyu Cong
Andrew C.-S. Leung

Qinglai Wei

Organization

Honorary Chair

Shun’ichi Amari RIKEN Brain Science Institute, Japan

General Chairs

Hidenori Kawamura Hokkaido University, Japan
Jun Wang City University of Hong Kong, SAR China

Advisory Chairs

Kunihiko Fukushima Fuzzy Logic Systems Institute, Japan
Takeshi Yamakawa Fuzzy Logic Systems Institute, Japan

Steering Chairs

Haibo He University of Rhode Island, USA
Derong Liu University of Illinois, Chicago, USA
Jun Wang City University of Hong Kong, SAR China

Organizing Committee Chairs

Andrzej Cichocki RIKEN Brain Science Institute, Japan
Min Han Dalian University of Technology, China
Bao-Liang Lu Shanghai Jiao Tong University, China
Masahito Yamamoto Hokkaido University, Japan

Program Chairs

Fengyu Cong Dalian University of Technology, China
Andrew C.-S. Leung City University of Hong Kong, SAR China
Qinglai Wei CAS Institute of Automation, China

Special Sessions Chairs

Long Cheng CAS Institute of Automation, China
Satoshi Kurihara University of Electro-Communications, Japan
Qingshan Liu Huazhong University of Science and Technology, China
Tomohisa Yamashita National Institute of Advanced Industrial Science

and Technology, Japan
Nian Zhang University of District of Columbia, USA

Tutorial Chairs

Hitoshi Matsubara Future University Hakodate, Japan
Keiji Suzuki Future University Hakodate, Japan

Workshop Chairs

Mianxiong Dong Muroran Institute of Technology, Japan
Jay Kishigami Muroran Institute of Technology, Japan
Yasuo Kudo Muroran Institute of Technology, Japan

Publicity Chairs

Jinde Cao Southeast University, China
Hisao Ishibuchi Osaka Prefecture University, Japan
Zhigang Zeng Huazhong University of Science and Technology, China
Huaguang Zhang Northeastern University, China
Jun Zhang South China University of Technology, China

Publications Chairs

Jin Hu Chongqing Jiaotong University, China
He Huang Soochow University, China
Xinyi Le Shanghai Jiao Tong University, China
Yongming Li Liaoning University of Technology, China

Registration Chairs

Shenshen Gu Shanghai University, China
Hiroyuki Iizuka Hokkaido University, Japan
Ka Chun Wong City University of Hong Kong, SAR China

Local Arrangements Chairs

Takashi Kawakami Hokkaido University of Science, Japan
Koji Nishikawa Hokkaido University of Science, Japan

Secretaries

Miki Kamata Hokkaido University, Japan
Ying Qu Dalian University of Technology, China

Program Committee

Xuhui Bu Henan Polytechnic University, China
Long Cheng Chinese Academy of Sciences, China

VIII Organization

Fengyu Cong Dalian University of Technology, China
Ruxandra Liana Costea Polytechnic University of Bucharest, Romania
Jisheng Dai Jiangsu University, China
Wai-Keung Fung Robert Gordon University, UK
Shenshen Gu Shanghai University, China
Zhishan Guo Missouri University of Science and Technology, USA
Zhenyuan Guo Hunan University, China
Chengan Guo Dalian University of Technology, China
Wei He Beijing University of Science and Technology, China
Sanqing Hu Hangzhou Dianzi University, China
Long-Ting Huang Wuhan University of Technology, China
Min Jiang Xiamen University, China
Danchi Jiang University of Tasmania, Australia
Shunshoku Kanae Fukui University of Technology, Japan
Rhee Man Kil Korean Advanced Institute of Science and Technology,

South Korea
Chiman Kwan Signal Processing, Inc., Singapore
Chi-Sing Leung City University of Hong Kong, SAR China
Michael Li Central Queensland University, Australia
Shoutao Li Jilin University, China
Cheng Dong Li Shandong Jianzhu University, China
Jie Lian Dalian University of Technology, China
Jinling Liang Southeast University, China
Meiqin Liu Zhejiang University, China
Ju Liu Shandong University, China
Wenlian Lu Fudan University, China
Biao Luo Chinese Academy of Sciences, China
Dazhong Ma Northeastern University, China
Tiedong Ma Chongqing University, China
Jinwen Ma Peking University, China
Kim Fung Man City University of Hong Kong, SAR China
Seiichi Ozawa Kobe University, Japan
Sitian Qin Harbin Institute of Technology at Weihai, China
Ruizhuo Song Beijing University of Science and Technology, China
Qiankun Song Chongqing Jiaotong University, China
John Sum National Chung Hsing University, China
Weize Sun Shenzhen University, China
Norikazu Takahashi Okayama University, Japan
Christos Tjortjis International Hellenic University, Greece
Kim-Fung Tsang City University of Hong Kong, SAR China
Jun Wang City University of Hong Kong, SAR China
Jian Wang China University of Petroleum, China
Zhanshan Wang Northeastern University, China
Jing Wang Beijing University of chemical Technology, China
Shenquan Wang Changchun University of technology, China
Dianhui Wang La Trobe University, Australia

Organization IX

Xinzhe Wang Dalian University of Technology, China
Zhuo Wang Beihang University, China
Ding Wang Chinese Academy of Sciences, China
Zhiliang Wang Northeastern University, China
Qinglai Wei Chinese Academy of Sciences, China
Xin Xu National University of Defense Technology, China
Qinmin Yang Zhejiang University, China
Xiong Yang Tianjin University, China
Xu Yang Beijing University of Science and Technology, China
Mao Ye University of Electronic Science and Technology of China,

China
Nian Zhang University of the District of Columbia, USA
Chi Zhang Dalian University of Technology, China
Jie Zhang Chinese Academy of Sciences, China
Xiumei Zhang Changchun University of Technology, China
Jie Zhang Newcastle University, UK
Bo Zhao Chinese Academy of Sciences, China
Dongbin Zhao Chinese Academy of Sciences, China

X Organization

Contents – Part I

Clustering, Classification, Modeling, and Forecasting

Online Multi-threshold Learning with Imbalanced Data Stream 3
Xufen Cai, Min Yang, Rong Zhu, Xiaoyan Li, Long Ye, and Qin Zhang

A Comparative Study of Machine Learning Techniques for Automatic
Product Categorisation . 10

Chanawee Chavaltada, Kitsuchart Pasupa, and David R. Hardoon

Bootstrap Based on Generalized Regression Neural Network
for Landslide Displacement for Interval Prediction 18

Jiejie Chen, Zhigang Zeng, and Ping Jiang

Multi-task Learning with Cartesian Product-Based Multi-objective
Combination for Dangerous Object Detection . 28

Yaran Chen and Dongbin Zhao

Collaborative Response Content Recommendation for Customer
Service Agents . 36

Cuihua Ma, Ping Guo, Xin Xin, Xiaoyu Ma, Yanjie Liang,
Shaomin Xing, Li Li, and Shaozhuang Liu

Text Classification Based on ReLU Activation Function
of SAE Algorithm. 44

Jia-le Cui, Shuang Qiu, Ming-yang Jiang, Zhi-li Pei, and Yi-nan Lu

On Designing New Structures with Emergent Computing Properties 51
Daniela Danciu and Vladimir Răsvan

Fast Sparse Least Squares Support Vector Machines by Block Addition 60
Fumito Ebuchi and Takuya Kitamura

Construction and Analysis of Meteorological Elements
Correlation Network . 71

Cui-juan Fang, Feng-jing Shao, Wen-peng Zhou, Chun-xiao Xing,
and Yi Sui

Classifying Helmeted and Non-helmeted Motorcyclists 81
Atsushi Hirota, Nguyen Huy Tiep, Le Van Khanh, and Natsuki Oka

Dominant Set Based Density Kernel and Clustering 87
Jian Hou and Shen Yin

http://dx.doi.org/10.1007/978-3-319-59072-1_1
http://dx.doi.org/10.1007/978-3-319-59072-1_2
http://dx.doi.org/10.1007/978-3-319-59072-1_2
http://dx.doi.org/10.1007/978-3-319-59072-1_3
http://dx.doi.org/10.1007/978-3-319-59072-1_3
http://dx.doi.org/10.1007/978-3-319-59072-1_4
http://dx.doi.org/10.1007/978-3-319-59072-1_4
http://dx.doi.org/10.1007/978-3-319-59072-1_5
http://dx.doi.org/10.1007/978-3-319-59072-1_5
http://dx.doi.org/10.1007/978-3-319-59072-1_6
http://dx.doi.org/10.1007/978-3-319-59072-1_6
http://dx.doi.org/10.1007/978-3-319-59072-1_7
http://dx.doi.org/10.1007/978-3-319-59072-1_8
http://dx.doi.org/10.1007/978-3-319-59072-1_9
http://dx.doi.org/10.1007/978-3-319-59072-1_9
http://dx.doi.org/10.1007/978-3-319-59072-1_10
http://dx.doi.org/10.1007/978-3-319-59072-1_11

Web Content Extraction Using Clustering with Web Structure 95
Xiaotao Huang, Yan Gao, Liqun Huang, Zhizhao Zhang, Yuhua Li,
Fen Wang, and Ling Kang

Optimal KD-Partitioning for the Local Outlier Detection
in Geo-Social Points . 104

Teerawat Kumrai, Kyoung-Sook Kim, Mianxiong Dong,
and Hirotaka Ogawa

V2G Demand Prediction Based on Daily Pattern Clustering
and Artificial Neural Networks . 113

Junghoon Lee and Gyung-Leen Park

An Arctan-Activated WASD Neural Network Approach to the Prediction
of Dow Jones Industrial Average . 120

Bolin Liao, Chuan Ma, Lin Xiao, Rongbo Lu, and Lei Ding

State Estimation for Autonomous Surface Vehicles Based
on Echo State Networks. 127

Zhouhua Peng, Jun Wang, and Dan Wang

Using Neural Network Formalism to Solve Multiple-Instance Problems 135
Tomáš Pevný and Petr Somol

Many-Objective Optimisation of Trusses Through Meta-Heuristics 143
Nantiwat Pholdee, Sujin Bureerat, Papot Jaroenapibal,
and Thana Radpukdee

Clustering with Multidimensional Mixture Models: Analysis
on World Development Indicators . 153

Leonard K.M. Poon

Logic Calculation Based on Two-Domain DNA Strand Displacement 161
Xiaobiao Wang, Changjun Zhou, Xuedong Zheng, and Qiang Zhang

Several Logic Gates Extended from MAGIC-Memristor-Aided Logic 170
Lin Chen, Zhong He, Xiaoping Wang, and Zhigang Zeng

Static Hand Gesture Recognition Based on RGB-D Image
and Arm Removal. 180

Bingyuan Xu, Zhiheng Zhou, Junchu Huang, and Yu Huang

Real-Time Classification Through a Spiking Deep Belief Network
with Intrinsic Plasticity . 188

Fangzheng Xue, Xuyang Chen, and Xiumin Li

XII Contents – Part I

http://dx.doi.org/10.1007/978-3-319-59072-1_12
http://dx.doi.org/10.1007/978-3-319-59072-1_13
http://dx.doi.org/10.1007/978-3-319-59072-1_13
http://dx.doi.org/10.1007/978-3-319-59072-1_14
http://dx.doi.org/10.1007/978-3-319-59072-1_14
http://dx.doi.org/10.1007/978-3-319-59072-1_15
http://dx.doi.org/10.1007/978-3-319-59072-1_15
http://dx.doi.org/10.1007/978-3-319-59072-1_16
http://dx.doi.org/10.1007/978-3-319-59072-1_16
http://dx.doi.org/10.1007/978-3-319-59072-1_17
http://dx.doi.org/10.1007/978-3-319-59072-1_18
http://dx.doi.org/10.1007/978-3-319-59072-1_19
http://dx.doi.org/10.1007/978-3-319-59072-1_19
http://dx.doi.org/10.1007/978-3-319-59072-1_20
http://dx.doi.org/10.1007/978-3-319-59072-1_21
http://dx.doi.org/10.1007/978-3-319-59072-1_22
http://dx.doi.org/10.1007/978-3-319-59072-1_22
http://dx.doi.org/10.1007/978-3-319-59072-1_23
http://dx.doi.org/10.1007/978-3-319-59072-1_23

Hamiltonian-Driven Adaptive Dynamic Programming Based on Extreme
Learning Machine . 197

Yongliang Yang, Donald Wunsch, Zhishan Guo, and Yixin Yin

An Enhanced K-Nearest Neighbor Classification Method Based on
Maximal Coherence and Validity Ratings. 206

Nian Zhang, Jiang Xiong, Jing Zhong, Lara Thompson, and Hong Ying

Credit Risk Assessment Based on Flexible Neural Tree Model 215
Yishen Zhang, Dong Wang, Yuehui Chen, Yaou Zhao, Peng Shao,
and Qingfang Meng

A Portable Prognostic System for Bearing Monitoring 223
Bulent Ayhan, Chiman Kwan, and Steven Liang

Parameter Estimation of Linear Systems with Quantized Innovations 234
Changchang Hu

LSTM with Matrix Factorization for Road Speed Prediction 242
Jian Hu, Xin Xin, and Ping Guo

Cognition Computation and Neural Networks

Adaptive Control Strategy for Projective Synchronization
of Neural Networks . 253

Abdujelil Abdurahman, Cheng Hu, Ahmadjan Muhammadhaji,
and Haijun Jiang

Real-Time Decoding of Arm Kinematics During Grasping Based on F5
Neural Spike Data. 261

Narges Ashena, Vassilis Papadourakis, Vassilis Raos, and Erhan Oztop

Application of Deep Belief Network to Land Cover Classification
Using Hyperspectral Images . 269

Bulent Ayhan and Chiman Kwan

Reservoir Computing with a Small-World Network for Discriminating
Two Sequential Stimuli . 277

Ke Bai, Fangzhou Liao, and Xiaolin Hu

Single Channel Speech Separation Using Deep Neural Network 285
Linlin Chen, Xiaohong Ma, and Shuxue Ding

Sparse Direct Convolutional Neural Network . 293
Vijay Daultani, Yoshiyuki Ohno, and Kazuhisa Ishizaka

Contents – Part I XIII

http://dx.doi.org/10.1007/978-3-319-59072-1_24
http://dx.doi.org/10.1007/978-3-319-59072-1_24
http://dx.doi.org/10.1007/978-3-319-59072-1_25
http://dx.doi.org/10.1007/978-3-319-59072-1_25
http://dx.doi.org/10.1007/978-3-319-59072-1_26
http://dx.doi.org/10.1007/978-3-319-59072-1_27
http://dx.doi.org/10.1007/978-3-319-59072-1_28
http://dx.doi.org/10.1007/978-3-319-59072-1_29
http://dx.doi.org/10.1007/978-3-319-59072-1_30
http://dx.doi.org/10.1007/978-3-319-59072-1_30
http://dx.doi.org/10.1007/978-3-319-59072-1_31
http://dx.doi.org/10.1007/978-3-319-59072-1_31
http://dx.doi.org/10.1007/978-3-319-59072-1_32
http://dx.doi.org/10.1007/978-3-319-59072-1_32
http://dx.doi.org/10.1007/978-3-319-59072-1_33
http://dx.doi.org/10.1007/978-3-319-59072-1_33
http://dx.doi.org/10.1007/978-3-319-59072-1_34
http://dx.doi.org/10.1007/978-3-319-59072-1_35

Fuzzy Modeling from Black-Box Data with Deep Learning Techniques. 304
Erick de la Rosa, Wen Yu, and Humberto Sossa

Matrix Neural Networks. 313
Junbin Gao, Yi Guo, and Zhiyong Wang

Simplified Particle Swarm Optimization Algorithm Based on Improved
Learning Factors . 321

Wei Gao, Chuyi Song, Jingqing Jiang, and Chenggang Zhang

Synchronization Analysis for Complex Networks with Interval
Coupling Delay. 329

Dawei Gong, Xiaolin Dai, Jinliang Song, and Bonan Huang

FPGA Implementation of the L Smallest k-Subsets Sum Problem Based
on the Finite-Time Convergent Recurrent Neural Network 337

Shenshen Gu and Xiaowen Wang

Accelerating Stochastic Variance Reduced Gradient Using Mini-Batch
Samples on Estimation of Average Gradient . 346

Junchu Huang, Zhiheng Zhou, Bingyuan Xu, and Yu Huang

Coexistence and Local Exponential Stability of Multiple Equilibria
in Memristive Neural Networks with a Class of General Nonmonotonic
Activation Functions . 354

Yujiao Huang, Shijun Chen, Jie Xiao, and Pengyi Hao

A Reinforcement Learning Method with Implicit Critics from a Bystander . . . 363
Kao-Shing Hwang, Chi-Wei Hsieh, Wei-Cheng Jiang, and Jin-Ling Lin

The Mixed States of Associative Memories Realize Unimodal Distribution
of Dominance Durations in Multistable Perception 371

Takashi Kanamaru

Possibilities of Neural Networks for Personalization Approaches
for Prevention of Complications After Endovascular Interventions. 379

Tatiana V. Lazovskaya, Dmitriy A. Tarkhov, Gelena A. Berezovskaya,
Nikolay N. Petrischev, and Ildar U. Zulkarnay

Relief R-CNN: Utilizing Convolutional Features for Fast Object Detection. . . 386
Guiying Li, Junlong Liu, Chunhui Jiang, Liangpeng Zhang,
Minlong Lin, and Ke Tang

The Critical Dynamics in Neural Network Improve the Computational
Capability of Liquid State Machines . 395

Xiumin Li, Qing Chen, Fangzheng Xue, and Hongjun Zhou

XIV Contents – Part I

http://dx.doi.org/10.1007/978-3-319-59072-1_36
http://dx.doi.org/10.1007/978-3-319-59072-1_37
http://dx.doi.org/10.1007/978-3-319-59072-1_38
http://dx.doi.org/10.1007/978-3-319-59072-1_38
http://dx.doi.org/10.1007/978-3-319-59072-1_39
http://dx.doi.org/10.1007/978-3-319-59072-1_39
http://dx.doi.org/10.1007/978-3-319-59072-1_40
http://dx.doi.org/10.1007/978-3-319-59072-1_40
http://dx.doi.org/10.1007/978-3-319-59072-1_41
http://dx.doi.org/10.1007/978-3-319-59072-1_41
http://dx.doi.org/10.1007/978-3-319-59072-1_42
http://dx.doi.org/10.1007/978-3-319-59072-1_42
http://dx.doi.org/10.1007/978-3-319-59072-1_42
http://dx.doi.org/10.1007/978-3-319-59072-1_43
http://dx.doi.org/10.1007/978-3-319-59072-1_44
http://dx.doi.org/10.1007/978-3-319-59072-1_44
http://dx.doi.org/10.1007/978-3-319-59072-1_45
http://dx.doi.org/10.1007/978-3-319-59072-1_45
http://dx.doi.org/10.1007/978-3-319-59072-1_46
http://dx.doi.org/10.1007/978-3-319-59072-1_47
http://dx.doi.org/10.1007/978-3-319-59072-1_47

Exponential Stability of the Coupled Neural Networks with Different
State Dimensions . 404

Jieyin Mai, Manchun Tan, Yunfeng Liu, and Desheng Xu

Critical Echo State Networks that Anticipate Input Using Morphable
Transfer Functions . 413

Norbert Michael Mayer

INFERNO: A Novel Architecture for Generating Long Neuronal Sequences
with Spikes . 421

Alex Pitti, Philippe Gaussier, and Mathias Quoy

Global Exponential Stability for Matrix-Valued Neural Networks
with Time Delay . 429

Călin-Adrian Popa

Global Asymptotic Stability for Octonion-Valued Neural Networks
with Delay . 439

Călin-Adrian Popa

Convolutional Neural Networks for Thai Poem Classification 449
Nuttachot Promrit and Sajjaporn Waijanya

A Quaternionic Rate-Based Synaptic Learning Rule Derived
from Spike-Timing Dependent Plasticity . 457

Guang Qiao, Hongyue Du, and Yi Zeng

Cognitive Load Recognition Using Multi-channel Complex
Network Method. 466

Jian Shang, Wei Zhang, Jiang Xiong, and Qingshan Liu

Event-Triggering Sampling Based Synchronization of Delayed Complex
Dynamical Networks: An M-matrix Approach . 475

Yang Tang

Learning Human-Understandable Description of Dynamical Systems
from Feed-Forward Neural Networks. 483

Sophie Tourret, Enguerrand Gentet, and Katsumi Inoue

Stability and Stabilization of Time-Delayed Fractional Order Neural
Networks via Matrix Measure. 493

Fei Wang, Yongqing Yang, Jianquan Lu, and Jinde Cao

Metrics and the Cooperative Process of the Self-organizing
Map Algorithm . 502

William H. Wilson

Contents – Part I XV

http://dx.doi.org/10.1007/978-3-319-59072-1_48
http://dx.doi.org/10.1007/978-3-319-59072-1_48
http://dx.doi.org/10.1007/978-3-319-59072-1_49
http://dx.doi.org/10.1007/978-3-319-59072-1_49
http://dx.doi.org/10.1007/978-3-319-59072-1_50
http://dx.doi.org/10.1007/978-3-319-59072-1_50
http://dx.doi.org/10.1007/978-3-319-59072-1_51
http://dx.doi.org/10.1007/978-3-319-59072-1_51
http://dx.doi.org/10.1007/978-3-319-59072-1_52
http://dx.doi.org/10.1007/978-3-319-59072-1_52
http://dx.doi.org/10.1007/978-3-319-59072-1_53
http://dx.doi.org/10.1007/978-3-319-59072-1_54
http://dx.doi.org/10.1007/978-3-319-59072-1_54
http://dx.doi.org/10.1007/978-3-319-59072-1_55
http://dx.doi.org/10.1007/978-3-319-59072-1_55
http://dx.doi.org/10.1007/978-3-319-59072-1_56
http://dx.doi.org/10.1007/978-3-319-59072-1_56
http://dx.doi.org/10.1007/978-3-319-59072-1_57
http://dx.doi.org/10.1007/978-3-319-59072-1_57
http://dx.doi.org/10.1007/978-3-319-59072-1_58
http://dx.doi.org/10.1007/978-3-319-59072-1_58
http://dx.doi.org/10.1007/978-3-319-59072-1_59
http://dx.doi.org/10.1007/978-3-319-59072-1_59

A Cooperative Projection Neural Network for Fast Solving Linear
Reconstruction Problems . 511

Youshen Xia

A Complex Gradient Neural Dynamics for Fast Complex
Matrix Inversion . 521

Lin Xiao, Bolin Liao, Qinli Zeng, Lei Ding, and Rongbo Lu

Burst and Correlated Firing in Spiking Neural Network
with Global Inhibitory Feedback . 529

Jinli Xie, Qinjun Zhao, and Jianyu Zhao

A Soft Computing Prefetcher to Mitigate Cache Degradation
by Web Robots. 536

Ning Xie, Kyle Brown, Nathan Rude, and Derek Doran

A Caputo-Type Fractional-Order Gradient Descent Learning
of BP Neural Networks . 547

Guoling Yang, Bingjie Zhang, Zhaoyang Sang, Jian Wang,
and Hua Chen

Attracting Sets of Non-autonomous Complex-Valued Neural Networks
with both Distributed and Time-Varying Delays . 555

Zhao Yang and Xiaofeng Liao

Stability of Complex-Valued Neural Networks with Two Additive
Time-Varying Delay Components . 564

Zhenjiang Zhao, Qiankun Song, and Yuchen Zhao

Alpine Plants Recognition with Deep Convolutional Neural Network 572
Tomoaki Negishi and Motonobu Hattori

Author Index . 579

XVI Contents – Part I

http://dx.doi.org/10.1007/978-3-319-59072-1_60
http://dx.doi.org/10.1007/978-3-319-59072-1_60
http://dx.doi.org/10.1007/978-3-319-59072-1_61
http://dx.doi.org/10.1007/978-3-319-59072-1_61
http://dx.doi.org/10.1007/978-3-319-59072-1_62
http://dx.doi.org/10.1007/978-3-319-59072-1_62
http://dx.doi.org/10.1007/978-3-319-59072-1_63
http://dx.doi.org/10.1007/978-3-319-59072-1_63
http://dx.doi.org/10.1007/978-3-319-59072-1_64
http://dx.doi.org/10.1007/978-3-319-59072-1_64
http://dx.doi.org/10.1007/978-3-319-59072-1_65
http://dx.doi.org/10.1007/978-3-319-59072-1_65
http://dx.doi.org/10.1007/978-3-319-59072-1_66
http://dx.doi.org/10.1007/978-3-319-59072-1_66
http://dx.doi.org/10.1007/978-3-319-59072-1_67

Contents – Part II

Intelligent Control

Human-Like Robot Arm Robust Nonlinear Control Using a Bio-inspired
Controller with Uncertain Properties . 3

Yiping Chang, Aihui Wang, Shengjun Wen, and Wudai Liao

Adaptive NNs Fault-Tolerant Control for Nonstrict-Feedback
Nonlinear Systems . 11

Guowei Dong, Yongming Li, Duo Meng, Fuming Sun, and Rui Bai

Neural Adaptive Dynamic Surface Control of Nonlinear Systems
with Partially Constrained Tracking Errors and Input Saturation 20

Hairong Dong, Xiaoyu Wang, Shigen Gao, and Yubing Wang

An Application of Master-Slave ADALINE for State Estimation
of Power System. 28

Zhanshan Wang, Haoyuan Gao, and Huaguang Zhang

Motion and Visual Control for an Upper-Limb Exoskeleton
Robot via Learning . 36

Jian-Bin Huang, I-Yu Lin, Kuu-Young Young, and Chun-Hsu Ko

Approximation-Based Adaptive Neural Tracking Control of an Uncertain
Robot with Output Constraint and Unknown Time-Varying Delays 44

Da-Peng Li, Yan-Jun Liu, Dong-Juan Li, Shaocheng Tong, Duo Meng,
and Guo-Xing Wen

Neural Network Based Power Tracking Control of Wind Farm 52
Liyuan Liang, Yongduan Song, and Mi Tan

A Generalized Policy Iteration Adaptive Dynamic Programming Algorithm
for Optimal Control of Discrete-Time Nonlinear Systems
with Actuator Saturation . 60

Qiao Lin, Qinglai Wei, and Bo Zhao

Exponential Stability of Neutral T-S Fuzzy Neural Networks
with Impulses . 66

Shujun Long and Bing Li

Robust NN Control of the Manipulator in the Underwater
Vehicle-Manipulator System. 75

Weilin Luo and Hongchao Cong

http://dx.doi.org/10.1007/978-3-319-59081-3_1
http://dx.doi.org/10.1007/978-3-319-59081-3_1
http://dx.doi.org/10.1007/978-3-319-59081-3_2
http://dx.doi.org/10.1007/978-3-319-59081-3_2
http://dx.doi.org/10.1007/978-3-319-59081-3_3
http://dx.doi.org/10.1007/978-3-319-59081-3_3
http://dx.doi.org/10.1007/978-3-319-59081-3_4
http://dx.doi.org/10.1007/978-3-319-59081-3_4
http://dx.doi.org/10.1007/978-3-319-59081-3_5
http://dx.doi.org/10.1007/978-3-319-59081-3_5
http://dx.doi.org/10.1007/978-3-319-59081-3_6
http://dx.doi.org/10.1007/978-3-319-59081-3_6
http://dx.doi.org/10.1007/978-3-319-59081-3_7
http://dx.doi.org/10.1007/978-3-319-59081-3_8
http://dx.doi.org/10.1007/978-3-319-59081-3_8
http://dx.doi.org/10.1007/978-3-319-59081-3_8
http://dx.doi.org/10.1007/978-3-319-59081-3_9
http://dx.doi.org/10.1007/978-3-319-59081-3_9
http://dx.doi.org/10.1007/978-3-319-59081-3_10
http://dx.doi.org/10.1007/978-3-319-59081-3_10

Nonsingular Terminal Sliding Mode Based Trajectory Tracking Control
of an Autonomous Surface Vehicle with Finite-Time Convergence 83

Shuailin Lv, Ning Wang, Yong Wang, Jianchuan Yin, and Meng Joo Er

Saturated Kinetic Control of Autonomous Surface Vehicles Based
on Neural Networks . 93

Zhouhua Peng, Jun Wang, and Dan Wang

Virtual Structure Formation Control via Sliding Mode Control
and Neural Networks . 101

Qi Qin, Tie-Shan Li, Cheng Liu, C.L. Philip Chen, and Min Han

Neuro Adaptive Control of Asymmetrically Driven Mobile Robots
with Uncertainties . 109

Zhixi Shen, Yaping Ma, and Yongduan Song

Adaptive Neural Network Control for Constrained Robot Manipulators 118
Gang Wang, Tairen Sun, Yongping Pan, and Haoyong Yu

How the Prior Information Shapes Neural Networks for Optimal
Multisensory Integration. 128

He Wang, Wen-Hao Zhang, K.Y. Michael Wong, and Si Wu

Fuzzy Uncertainty Observer Based Filtered Sliding Mode Trajectory
Tracking Control of the Quadrotor . 137

Yong Wang, Ning Wang, Shuailin Lv, Jianchuan Yin, and Meng Joo Er

Local Policy Iteration Adaptive Dynamic Programming for Discrete-Time
Nonlinear Systems . 148

Qinglai Wei, Yancai Xu, Qiao Lin, Derong Liu, and Ruizhuo Song

A Method Using the Lempel-Ziv Complexity to Detect Ventricular
Tachycardia and Fibrillation . 154

Deling Xia, Yuetian Li, Qingfang Meng, and Jie He

Finite-Time Synchronization of Uncertain Complex Networks
with Nonidentical Nodes Based on a Special Unilateral Coupling Control . . . 161

Meng Zhang and Min Han

A Multiple-objective Neurodynamic Optimization to Electric
Load Management Under Demand-Response Program 169

Xinyi Le, Sijie Chen, Yu Zheng, and Juntong Xi

Neuro-Adaptive Containment Seeking of Multiple Networking Agents
with Unknown Dynamics . 178

Guanghui Wen, Peijun Wang, Tingwen Huang, Long Cheng,
and Junyong Sun

XVIII Contents – Part II

http://dx.doi.org/10.1007/978-3-319-59081-3_11
http://dx.doi.org/10.1007/978-3-319-59081-3_11
http://dx.doi.org/10.1007/978-3-319-59081-3_12
http://dx.doi.org/10.1007/978-3-319-59081-3_12
http://dx.doi.org/10.1007/978-3-319-59081-3_13
http://dx.doi.org/10.1007/978-3-319-59081-3_13
http://dx.doi.org/10.1007/978-3-319-59081-3_14
http://dx.doi.org/10.1007/978-3-319-59081-3_14
http://dx.doi.org/10.1007/978-3-319-59081-3_15
http://dx.doi.org/10.1007/978-3-319-59081-3_16
http://dx.doi.org/10.1007/978-3-319-59081-3_16
http://dx.doi.org/10.1007/978-3-319-59081-3_17
http://dx.doi.org/10.1007/978-3-319-59081-3_17
http://dx.doi.org/10.1007/978-3-319-59081-3_18
http://dx.doi.org/10.1007/978-3-319-59081-3_18
http://dx.doi.org/10.1007/978-3-319-59081-3_19
http://dx.doi.org/10.1007/978-3-319-59081-3_19
http://dx.doi.org/10.1007/978-3-319-59081-3_20
http://dx.doi.org/10.1007/978-3-319-59081-3_20
http://dx.doi.org/10.1007/978-3-319-59081-3_21
http://dx.doi.org/10.1007/978-3-319-59081-3_21
http://dx.doi.org/10.1007/978-3-319-59081-3_22
http://dx.doi.org/10.1007/978-3-319-59081-3_22

Signal, Image and Video Processing

Abnormal Event Detection in Videos Using Spatiotemporal Autoencoder. . . . 189
Yong Shean Chong and Yong Haur Tay

Enhancing Mastcam Images for Mars Rover Mission. 197
Minh Dao, Chiman Kwan, Bulent Ayhan, and James F. Bell

A Collective Neurodynamic Optimization Approach to Nonnegative
Tensor Decomposition . 207

Jianchao Fan and Jun Wang

A Novel Spatial Information Model for Saliency Detection 214
Hang Gao, Bo Li, and Han Liu

Sparse Representation with Global and Nonlocal Self-similarity
Prior for Single Image Super-Resolution . 222

Weiguo Gong, Xi Chen, Jinming Li, Yongliang Tang, and Weihong Li

EMR: Extended Manifold Ranking for Saliency Detection 231
Bo Li, Hang Gao, and Han Liu

Hybrid Order l0-Regularized Blur Kernel Estimation Model for Image
Blind Deblurring . 239

Weihong Li, Yangqing Chen, Rui Chen, Weiguo Gong,
and Bingxin Zhao

Saliency Detection Optimization via Modified Secondary Manifold
Ranking and Blurring Depression . 248

Han Liu, Bo Li, and Hang Gao

Noise Resistant Training for Extreme Learning Machine 257
Yik Lam Lui, Hiu Tung Wong, Chi-Sing Leung, and Sam Kwong

Phase Constraint and Deep Neural Network for Speech Separation 266
Zhuangguo Miao, Xiaohong Ma, and Shuxue Ding

A Neural Autoregressive Framework for Collaborative Filtering 274
Zhen Ouyang, Chen Sun, and Chunping Li

Deep Semantics-Preserving Hashing Based Skin Lesion Image Retrieval 282
Xiaorong Pu, Yan Li, Hang Qiu, and Yinhui Sun

Fast Conceptor Classifier in Pre-trained Neural Networks
for Visual Recognition. 290

Guangwu Qian, Lei Zhang, and Qianjun Zhang

Contents – Part II XIX

http://dx.doi.org/10.1007/978-3-319-59081-3_23
http://dx.doi.org/10.1007/978-3-319-59081-3_24
http://dx.doi.org/10.1007/978-3-319-59081-3_25
http://dx.doi.org/10.1007/978-3-319-59081-3_25
http://dx.doi.org/10.1007/978-3-319-59081-3_26
http://dx.doi.org/10.1007/978-3-319-59081-3_27
http://dx.doi.org/10.1007/978-3-319-59081-3_27
http://dx.doi.org/10.1007/978-3-319-59081-3_28
http://dx.doi.org/10.1007/978-3-319-59081-3_29
http://dx.doi.org/10.1007/978-3-319-59081-3_29
http://dx.doi.org/10.1007/978-3-319-59081-3_29
http://dx.doi.org/10.1007/978-3-319-59081-3_30
http://dx.doi.org/10.1007/978-3-319-59081-3_30
http://dx.doi.org/10.1007/978-3-319-59081-3_31
http://dx.doi.org/10.1007/978-3-319-59081-3_32
http://dx.doi.org/10.1007/978-3-319-59081-3_33
http://dx.doi.org/10.1007/978-3-319-59081-3_34
http://dx.doi.org/10.1007/978-3-319-59081-3_35
http://dx.doi.org/10.1007/978-3-319-59081-3_35

Video-Based Fire Detection with Saliency Detection and Convolutional
Neural Networks . 299

Lifeng Shi, Fei Long, ChenHan Lin, and Yihan Zhao

Leveraging Convolutions in Recurrent Neural Networks
for Doppler Weather Radar Echo Prediction . 310

Sonam Singh, Sudeshna Sarkar, and Pabitra Mitra

Neuroadaptive PID-like Fault-Tolerant Control of High Speed Trains
with Uncertain Model and Unknown Tracking/Braking
Actuation Characteristics . 318

Q. Song and T. Sun

A Programmable Memristor Potentiometer and Its Application
in the Filter Circuit . 326

Jinpei Tan, Shukai Duan, Ting Yang, and Hangtao Zhu

Rapid Triangle Matching Based on Binary Descriptors 336
Min Tian and Qiu-Hua Lin

An Improved Symbol Entropy Algorithm Based on EMD
for Detecting VT and VF . 345

Yingda Wei, Qingfang Meng, Haihong Liu, Jin Zhou, and Dong Wang

A Selective Transfer Learning Method for Concept Drift Adaptation 353
Ge Xie, Yu Sun, Minlong Lin, and Ke Tang

On the Co-absence of Input Terms in Higher Order Neuron Representation
of Boolean Functions. 362

Oytun Yapar and Erhan Oztop

A Genetic Approach to Fusion of Algorithms for Compressive Sensing 371
Hanxu You and Jie Zhu

Industrial Oil Pipeline Leakage Detection Based on Extreme Learning
Machine Method. 380

Honglue Zhang, Qi Li, Xiaoping Zhang, and Wei Ba

Audio Source Separation from a Monaural Mixture Using Convolutional
Neural Network in the Time Domain. 388

Peng Zhang, Xiaohong Ma, and Shuxue Ding

Input Dimension Determination of Linear Feedback Neural Network
Applied for System Identification of Linear Systems 396

Wenle Zhang

XX Contents – Part II

http://dx.doi.org/10.1007/978-3-319-59081-3_36
http://dx.doi.org/10.1007/978-3-319-59081-3_36
http://dx.doi.org/10.1007/978-3-319-59081-3_37
http://dx.doi.org/10.1007/978-3-319-59081-3_37
http://dx.doi.org/10.1007/978-3-319-59081-3_38
http://dx.doi.org/10.1007/978-3-319-59081-3_38
http://dx.doi.org/10.1007/978-3-319-59081-3_38
http://dx.doi.org/10.1007/978-3-319-59081-3_39
http://dx.doi.org/10.1007/978-3-319-59081-3_39
http://dx.doi.org/10.1007/978-3-319-59081-3_40
http://dx.doi.org/10.1007/978-3-319-59081-3_41
http://dx.doi.org/10.1007/978-3-319-59081-3_41
http://dx.doi.org/10.1007/978-3-319-59081-3_42
http://dx.doi.org/10.1007/978-3-319-59081-3_43
http://dx.doi.org/10.1007/978-3-319-59081-3_43
http://dx.doi.org/10.1007/978-3-319-59081-3_44
http://dx.doi.org/10.1007/978-3-319-59081-3_45
http://dx.doi.org/10.1007/978-3-319-59081-3_45
http://dx.doi.org/10.1007/978-3-319-59081-3_46
http://dx.doi.org/10.1007/978-3-319-59081-3_46
http://dx.doi.org/10.1007/978-3-319-59081-3_47
http://dx.doi.org/10.1007/978-3-319-59081-3_47

Joining External Context Characters to Improve Chinese
Word Embedding . 405

Xianchao Zhang, Shike Liu, Yuangang Li, and Wenxin Liang

Enhancing Auscultation Capability in Spacecraft . 416
Jin Zhou and Chiman Kwan

Underwater Moving Target Detection Based on Image Enhancement 427
Yan Zhou, Qingwu Li, and Guanying Huo

Bio-signal and Medical Image Analysis

A New Epileptic Seizure Detection Method Based on Degree Centrality
and Linear Features . 439

Haihong Liu, Qingfang Meng, Yingda Wei, Qiang Zhang, Mingmin Liu,
and Jin Zhou

A Comparison Between Two Motion-Onset Visual BCI Patterns:
Diffusion vs Contraction . 447

Minqiang Huang, Hanhan Zhang, Jing Jin, Yu Zhang, and Xingyu Wang

Detecting Community Structure Based on Optimized Modularity
by Genetic Algorithm in Resting-State fMRI . 457

Xing Hao Huang, Yu Qing Song, Ding An Liao, and Hu Lu

Pin Defect Inspection with X-ray Images . 465
Hsien-Pei Kao, Tzu-Chia Tung, Hong-Yi Chen, Cheng-Shih Wong,
and Chiou-Shann Fuh

A Study on the Effects of Lesions on CA3b in Hippocampus 474
Babak Keshavarz-Hedayati, Nikitas Dimopoulos, and Arif Babul

Enhancement of Neuronal Activity by GABAb Receptor-Mediated
Gliotransmission . 483

Taira Kobayashi, Asahi Ishiyama, and Osamu Hoshino

The Feature Extraction Method of EEG Signals Based
on Transition Network . 491

Mingmin Liu, Qingfang Meng, Qiang Zhang, Dong Wang,
and Hanyong Zhang

Deep Belief Networks for EEG-Based Concealed Information Test 498
Qi Liu, Xiao-Guang Zhao, Zeng-Guang Hou, and Hong-Guang Liu

Cluster Aggregation for Analyzing Event-Related Potentials 507
Reza Mahini, Tianyi Zhou, Peng Li, Asoke K. Nandi, Huanjie Li,
Hong Li, and Fengyu Cong

Contents – Part II XXI

http://dx.doi.org/10.1007/978-3-319-59081-3_48
http://dx.doi.org/10.1007/978-3-319-59081-3_48
http://dx.doi.org/10.1007/978-3-319-59081-3_49
http://dx.doi.org/10.1007/978-3-319-59081-3_50
http://dx.doi.org/10.1007/978-3-319-59081-3_51
http://dx.doi.org/10.1007/978-3-319-59081-3_51
http://dx.doi.org/10.1007/978-3-319-59081-3_52
http://dx.doi.org/10.1007/978-3-319-59081-3_52
http://dx.doi.org/10.1007/978-3-319-59081-3_53
http://dx.doi.org/10.1007/978-3-319-59081-3_53
http://dx.doi.org/10.1007/978-3-319-59081-3_54
http://dx.doi.org/10.1007/978-3-319-59081-3_55
http://dx.doi.org/10.1007/978-3-319-59081-3_56
http://dx.doi.org/10.1007/978-3-319-59081-3_56
http://dx.doi.org/10.1007/978-3-319-59081-3_56
http://dx.doi.org/10.1007/978-3-319-59081-3_57
http://dx.doi.org/10.1007/978-3-319-59081-3_57
http://dx.doi.org/10.1007/978-3-319-59081-3_58
http://dx.doi.org/10.1007/978-3-319-59081-3_59

Detection of Epileptic Seizure in EEG Using Sparse
Representation and EMD . 516

Qingfang Meng, Shanshan Chen, Haihong Liu, Yunxia Liu,
and Dong Wang

Scaling of Texture in Training Autoencoders for Classification
of Histological Images of Colorectal Cancer . 524

Tuan D. Pham

Multi-channel EEG Classification Based on Fast Convolutional
Feature Extraction . 533

Qian Wang, Yongjun Hu, and He Chen

Hearing Loss Detection in Medical Multimedia Data by Discrete Wavelet
Packet Entropy and Single-Hidden Layer Neural Network Trained
by Adaptive Learning-Rate Back Propagation . 541

Shuihua Wang, Sidan Du, Yang Li, Huimin Lu, Ming Yang, Bin Liu,
and Yudong Zhang

Study on Differences of Early-Mid ERPs Induced by Emotional Face
and Scene Images . 550

Xin Wang, Jingna Jin, Zhipeng Liu, and Tao Yin

Comparison of Functional Network Connectivity and Granger Causality
for Resting State fMRI Data . 559

Ce Zhang, Qiu-Hua Lin, Chao-Ying Zhang, Ying-Guang Hao,
Xiao-Feng Gong, Fengyu Cong, and Vince D. Calhoun

Neural Oscillations as a Bridge Between GABAergic System
and Emotional Behaviors . 567

Tao Zhang, Qun Li, and Zhuo Yang

Impacts of Working Memory Training on Brain Network Topology 575
Dongping Zhao, Qiushi Zhang, Li Yao, and Xiaojie Zhao

A Novel Biologically Inspired Hierarchical Model
for Image Recommendation . 583

Yan-Feng Lu, Hong Qiao, Yi Li, Li-Hao Jia, and Ai-Xuan Zhang

Author Index . 591

XXII Contents – Part II

http://dx.doi.org/10.1007/978-3-319-59081-3_60
http://dx.doi.org/10.1007/978-3-319-59081-3_60
http://dx.doi.org/10.1007/978-3-319-59081-3_61
http://dx.doi.org/10.1007/978-3-319-59081-3_61
http://dx.doi.org/10.1007/978-3-319-59081-3_62
http://dx.doi.org/10.1007/978-3-319-59081-3_62
http://dx.doi.org/10.1007/978-3-319-59081-3_63
http://dx.doi.org/10.1007/978-3-319-59081-3_63
http://dx.doi.org/10.1007/978-3-319-59081-3_63
http://dx.doi.org/10.1007/978-3-319-59081-3_64
http://dx.doi.org/10.1007/978-3-319-59081-3_64
http://dx.doi.org/10.1007/978-3-319-59081-3_65
http://dx.doi.org/10.1007/978-3-319-59081-3_65
http://dx.doi.org/10.1007/978-3-319-59081-3_66
http://dx.doi.org/10.1007/978-3-319-59081-3_66
http://dx.doi.org/10.1007/978-3-319-59081-3_67
http://dx.doi.org/10.1007/978-3-319-59081-3_68
http://dx.doi.org/10.1007/978-3-319-59081-3_68

Clustering, Classification, Modeling, and
Forecasting

Online Multi-threshold Learning
with Imbalanced Data Stream

Xufen Cai1,3(B), Min Yang2, Rong Zhu2(B), Xiaoyan Li3, Long Ye1(B),
and Qin Zhang1

1 Department of Information Engineering,
Communication University of China, Beijing, China

{yelong,zhangqin}@cuc.edu.cn
2 State Key Laboratory of Software Engineering, Computer School,

Wuhan University, Hubei, China
{yangmin,zhurong}@whu.edu.cn

3 Institute of Computer Technology, CAS, Beijing, China
{xufen.cai,xiaoyan.li}@vipl.ict.ac.cn

Abstract. This paper addresses the imbalanced data problem in an
online fashion based on multi-threshold learning. The majority of exist-
ing works on processing large-scale imbalanced data stream assume a
prior distribution of data based on a training dataset, while we consider
a more challenging setting without any assumption of the prior, and
propose an online multi-threshold learning (OMTL) method by simulta-
neously learning multiple classifiers with different threshold based on F-
measure incremental updating. The proposed approach shows its poten-
tials on recent benchmark datasets compared to previous cost-sensitive
and threshold fine-tuning based online learning algorithms.

Keywords: Online learning · Imbalanced data · Multi-threshold ·
F-measure

1 Introduction

Classification problems of imbalanced data are prevalent in real world, such as
medical fatal diseases diagnoses, finance fraud detection, security detection and
information retrieval, etc. Imbalanced training data probably lead to poor perfor-
mance on the minority classes without a proper treatment [7]. The situation gets
even worsen when the loss of the minority is large [11], for example missing detec-
tion of cancer cells and failure in recognizing prohibited items. These real-life
machine learning problems can be more naturally viewed as online rather than
batch/offline learning, and online learning for imbalanced data pose a greater
challenge for data usually arrive sequentially and continuously in real-time, it is
impossible to store the whole subsequent large- scale data stream. In addition, as
the inherent complex characteristics of imbalanced sequential training data, it is
difficult to model the class distributions and achieving high classification accu-
racies for the minority classes without significantly jeopardizing the accuracies
of the minority on the fly.
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 3–9, 2017.
DOI: 10.1007/978-3-319-59072-1 1

4 X. Cai et al.

Despite the great effort and achievements on imbalanced data learning, online
learning for imbalanced data is still at its early stage especially when compared
with offline learning in this field.

A sampling based approach [12] was proposed to consider the properties
of dataset as a whole and sample the instances to balance the data distribu-
tion. Subsequently various sampling methods have been developed [1,5,6,10]
to specifically tackle the imbalanced learning problem. However, the embedded
down-sampling step select a subset from all training data and then only the
local properties of this subset is exploited. Obviously, a subset is not an ideal
representation of the whole dataset and probably wastes valuable training data.

After that cost-sensitive based online classification techniques have been pro-
posed and applied in various application domains [4]. Many studies cast the
problem into cost-sensitive learning that assigns different costs to mistakes of
different classes [3,9], these studies assume a given cost vector (or matrix) and
modify conventional loss functions to incorporate the given cost vector/matrix.
The issue with this approach is that Under the online learning scenario, the prior
distribution of labels is unknown resulting in the uncertainty of reasonable cost
vector/matrix and subsequently provide unfavorable classification perfomance.

Alternatively, in this paper, we proposes a threshold based online learning
method for imbalanced data stream. The proposed framework simultaneously
learns multiple classifiers with various thresholds. In particular, at each iteration,
the prediction is made by a classifier which is selected according to the highest
updated F-measure, which is a popular performance measure for imbalanced
problem. The selection of the optimal classifier is adaptive and evolving according
to the data stream. We emphasize that the proposed approach does not require
any prior knowledge. Empirical studies demonstrate that the proposed algorithm
is effective and outperform previous online learning algorithms for imbalanced
data stream.

The rest of this paper is organized as follows. Section 2 proposes the Online
Multi-threshold learning method for solving the online classification problem of
imbalanced data. Section 3 demonstrates experiments to validate the proposed
approach, fallowed by a detailed discussion of the results. Finally, a conclusion
is provided in Sect. 4.

2 Online Multi-threshold Learning

In this section, we provide a multi-threshold based solution to the online classifi-
cation for imbalanced data stream. We simultaneously maintain several classifiers
with different threshold and briefly present how to update F-measure incremen-
tally in an online fashion, the classifier with the highest F-measure is selected as
the promising optimal classifier for the next incoming instance.

2.1 Notations and Problem

For clear description in the following, we first define some notations. Typically,
for online learning, there are samples T in d dimension arriving in a sequence,

Online Multi-threshold Learning with Imbalanced Data Stream 5

denoted as X = [x1, x2, · · · xT] ∈ R
d×T with their class labels Y = [y1, y2, · · · yT],

yt ∈ γ, where xt ∈ R
d×1 is the feature representation of the t - th sample

with t ∈ [1, T]. yt is its class label, and γ is the space of classes. For online
binary classification γ ∈ {−1,+1}; similarly, for online multi-class classification
γ ∈ {1, 2, · · ·k} , which k is the number of classes. The problem to deal with in
this paper is how to learn the optimal models Φ for online binary classification
with imbalanced data stream X.

2.2 Online Binary Classification

Originally, for online binary classification, the learner processes an incoming
instance xt ∈ X by a linear function f as follows:

f(x) = wTxt + b (1)

where w ∈ R
1×ds called a weight vector, b ∈ R

1×1 is a bias, the negative of the
bias is sometimes called a threshold.

Then predicting its label ŷt at each step t by

ŷt = sgn(f(xt;wt)) ∈ γ, γ ∈ {−1,+1} (2)

After the prediction, the true label yt ∈ γ is revealed and then the suffered loss
lt(yt, ŷt) between the predicted label ŷt and the true label yt is calculated by the
corresponding loss function. When lt > 0, the learner will update the learner:
wt+1 ← ∇(wt; (xt, yt)). The learning objective is to minimize the cumulative
mistake over the entire sequence of data examples.

2.3 Online Multi-threshold Learning

The typical online binary classification learner tries to train a good model with
optimal weight vector w and bias/threshold b. Nevertheless, under the online
learning scenario, it is impossible to select the optimal threshold for the classifier
suitable for every imbalanced datasets without any prior knowledge. In this case,
our proposed multi-threshold learning method attempts to train several models
with different threshold instead, every single sample could find a promising opti-
mal classifier with a particular threshold adaptively. First we map samples into
a feature representation space with limited variation scale through non-linear
transformation, like tanh function (ranges from −1 to 1) or sigmoid function
(ranges from 0 to 1). In this paper, we utilize tanh function projecting samples
into [−1, 1] as follows:

f(x) = s(wTxt + b) (3)

where s(·) is non-linear transformation and s(x) = ex−e−x

ex+e−x . After projection, we
set a series of threshold τ∗ ∈ (−1, 1), empirically, we set 19 thresholds as τ∗ =
{−0.9, −0.8,−0.7, · · · − 0.1, 0, 0.1 · · · 0.6, 0.7, 0.8, 0.9}. Then we have a series of
models Φ as follows:

Φ(f∗) = s(wTxt + b) + τ∗ (4)

6 X. Cai et al.

Accordingly, predicting its label ŷt at each step t by

ŷt = sgn(f∗(xt;wt)) ∈ γ, γ ∈ {−1,+1} (5)

The rest problem lies to how to choose a suitable classifier with promising
performance among all the models for every incoming instance. Intuitionally, we
could utilize online criteria to measure the performance in terms of all models.
But directly calculating the online measure by going through all examples is
rather costly meanwhile requiring to store all predictions, which is not permit-
ted in an online fashion. Thanks to the development of online measure metric
optimization [2,14], the online F-measure can be calculated incrementally. We
utilize F measure optimization method to select the promising optimal classi-
fier with certain a threshold for the next incoming instance. More specifically,
we could maintain several classifiers with different threshold simultaneously and
calculate the F score online for each sample before selecting the classifier with
the highest F score to produce the final prediction.

We calculate the online incrementally updating F-measure by

F (t) =
2at

ct
(6)

where at =
T∑

t
ytŷt and ct =

T∑

t
yt+

T∑

t
ŷt, which at and ct are updated by

at+1 =
{

at + 1, if yt+1 = 1 and ŷt+1 > 0,
at, otherwise;

ct+1 =

⎧
⎨

⎩

ct + 2, if yt+1 = 1 and ŷt+1 > 0,
ct + 1, if yt+1 = 1 or ŷt+1 > 0,
ct, if yt+1 = −1 and ŷt+1 < 0;

(7)

3 Experiments and Discussion

In this section, we carry out extensive experiments to evaluate the performance of
the proposed algorithm OMTL on various benchmark datasets from the LIBSVM
repository of binary classification tasks1.

3.1 The Datasets

To evaluate the performance, we used 3 imbalanced datasets with various imbal-
ance ratios (the proportion of positive and negative samples) and significantly
different dimension, as listed in Table 1. We construct imbalanced data for binary
classification from multiclass datasets mnist, setting instances of the first class
as positive and instances of the rest 9 classes as negative, denoted by mnist1all.

1 http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Online Multi-threshold Learning with Imbalanced Data Stream 7

Table 1. The discription of datasets

Datasets size dimension Neg:Pos

codrna 59535 9 5.24

w8a 64700 300 32.5

mnist1all 64997 785 33.2

3.2 Experimental Design and Implementation

We compare the proposed OMTL algorithm with several state-of-the art online
learning algorithms, namely the baseline OGD [15], the threshold fine-tuning
method OFO [2], and two online cost-sensitive algorithms, which are PAUM [8]
and CSOGD (the first type) [13]. To ensure a fair comparison, all algorithms
adopt the same experimental setup to implement in MatLab R2015b and run
in a Linux machine with 64 bit, Intel Core i7 − 6700 CPU@3.40GHz × 8 We
run the proposed algorithm and all the competitors trained on 80% of each
dataset and the rest 20% as the testing set. We conducting each experiment
on 20 random permutations for each dataset. The final results are reported by
averaging over these 20 runs. To examine the performance of using different
loss functions, we investigate both the hinge loss and the logistic loss in the
experiment and denote these two loss functions by suffixing -h and -l to the
corresponding methods respectively.

3.3 Results

We compare testing performance on testing data to demonstrate the generaliza-
tion ability of different online learning algorithms. Table 2 show the experimental
results for each dataset. The classification results obtained using OMTL algo-
rithm appear quite promising. For all datasets, the proposed OMTL method
performs the best in terms of both hinge loss and logistic loss.

As can be observed from the testing performance, the OGD method shows
the worst performance with the lowest F measure because it ignores imbal-
anced problem totally; Given the prior knowledge, cost-sensitive based online
algorithms, CSOGD and PAUM, take imbalance ratio into account and outper-
form the baseline OGD method; The threshold fine-tuning based OFO method
achieves better performance than online cost-sensitive algorithms. However, the
improvement is not as significant as that of the proposed OMTL method; These
results indicate that the proposed OMTL method improves the classification
performance with large scale imbalanced data stream.

We also evaluate the changing of online F measure performance in terms of
the training data of “w8a”. The lelf picture of Fig. 1 demonstrates the online
F-measure performance for all competitors; The right one illustrates the online
F-measure performance for all models with different threshold of our proposed
method.

8 X. Cai et al.

Table 2. Evalutation of testing performance

Methods codrna w8a mnist1all

F-measure F-measure F-measure

OGD-h 0.6939± 0.0020 0.5732± 0.0094 0.8335± 0.0129

PAUM-h 0.7129± 0.0042 0.6615± 0.0068 0.8462± 0.0085

CSOGD-h 0.7132± 0.0035 0.6265± 0.0025 0.8462± 0.0085

OFO-h 0.7686± 0.0027 0.6655± 0.0011 0.8544± 0.0133

OMTL-h 0.8148±0.0008 0.6827±0.0028 0.8846±0.0091

OGD-l 0.7012± 0.0022 0.4468± 0.0103 0.8362± 0.0164

PAUM-l 0.7129± 0.0042 0.6615± 0.0068 0.8462± 0.0085

CSOGD-l 0.7132± 0.0035 0.6265± 0.0025 0.8462± 0.0085

OFO-l 0.7751± 0.0025 0.5126± 0.0217 0.8583± 0.0166

OMTL-l 0.8085±0.0027 0.6713±0.0043 0.8599±0.0170

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Number of samples 104

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
nl

in
e

In
cr

em
en

ta
l F

-M
ea

su
re

OGD
CSOGD
PAUM
OFO

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Number of samples 104

0.1

0.2

0.3

0.4

0.5

0.6

0.7

O
nl

in
e

In
cr

em
en

ta
l F

-M
ea

su
re

threshold(-0.9)
threshold(-0.8)
threshold(-0.7)
threshold(-0.6)
threshold(-0.5)
threshold(-0.4)
threshold(-0.3)
threshold(-0.2)
threshold(-0.1)
threshold(0)
threshold(0.1)
threshold(0.2)
threshold(0.3)
threshold(0.4)
threshold(0.5)
threshold(0.6)
threshold(0.7)
threshold(0.8)
threshold(0.9)

Fig. 1. Online performance for “w8a”

4 Conclusion

This work presents an F-measure incremental updating based online learning
method for imbalance data stream. The proposed OMTL algorithm simultane-
ously trains multiple classifiers with various thresholds, and predicts by selecting
a classifier based on the incremental updated F-measure determined by online
performance of individual learners. Our promising results from extensive experi-
ments validate the superior efficiency of our algorithm and its ability to improve
online imbalanced problem.

Online Multi-threshold Learning with Imbalanced Data Stream 9

Acknowledgments. The authors would like to acknowledge the funding supported by
State Key Laboratory of Software Engineering, Computer School, Wuhan University,
and research project number is SKLSE-2015-A-06, and also partially supported by the
National Natural Science Foundation of China under the Project 61371191.

References

1. Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C.: DBSMOTE: density-
based synthetic minority over-sampling technique. Appl. Intell. 36(3), 664–684
(2012)

2. Busa-Fekete, R., Szörényi, B., Dembczynski, K., Hüllermeier, E.: Online F-measure
optimization. In: Advances in Neural Information Processing Systems, pp. 595–603
(2015)

3. Elkan, C.: The foundations of cost-sensitive learning. In: International Joint Con-
ference on Artificial Intelligence, vol. 17, pp. 973–978. Lawrence Erlbaum Asso-
ciates Ltd. (2001)

4. Gao, J., Liu, X., Ooi, B.C., Wang, H., Chen, G.: An online cost sensitive decision-
making method in crowdsourcing systems. In: Proceedings of the 2013 ACM SIG-
MOD International Conference on Management of Data, pp. 217–228. ACM (2013)

5. Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling
method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang,
G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878–887. Springer, Heidelberg (2005).
doi:10.1007/11538059 91

6. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling app-
roach for imbalanced learning. In: 2008 IEEE International Joint Conference on
Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–
1328. IEEE (2008)

7. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data
Eng. 21(9), 1263–1284 (2009)

8. Li, Y., Zaragoza, H., Herbrich, R., Shawe-Taylor, J., Kandola, J.: The perceptron
algorithm with uneven margins. In: ICML, vol. 2, pp. 379–386 (2002)

9. Scott, C.: Surrogate losses and regret bounds for cost-sensitive classification with
example-dependent costs. In: Proceedings of the 28th International Conference on
Machine Learning (ICML 2011), pp. 153–160 (2011)

10. Stefanowski, J., Wilk, S.: Selective pre-processing of imbalanced data for improving
classification performance. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK
2008. LNCS, vol. 5182, pp. 283–292. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85836-2 27

11. Sun, Y., Wong, A.K., Kamel, M.S.: Classification of imbalanced data: a review.
Int. J. Pattern Recogn. Artif. Intell. 23(04), 687–719 (2009)

12. Van Hulse, J., Khoshgoftaar, T.M., Napolitano, A.: Experimental perspectives on
learning from imbalanced data. In: Proceedings of the 24th International Confer-
ence on Machine Learning, pp. 935–942. ACM (2007)

13. Wang, J., Zhao, P., Hoi, S.C.: Cost-sensitive online classification. IEEE Trans.
Knowl. Data Eng. 26(10), 2425–2438 (2014)

14. Ying, Y., Wen, L., Lyu, S.: Stochastic online AUC maximization. In: Advances in
Neural Information Processing Systems, pp. 451–459 (2016)

15. Zinkevich, M.: Online convex programming and generalized infinitesimal gradient
ascent (2003)

http://dx.doi.org/10.1007/11538059_91
http://dx.doi.org/10.1007/978-3-540-85836-2_27
http://dx.doi.org/10.1007/978-3-540-85836-2_27

A Comparative Study of Machine Learning
Techniques for Automatic Product

Categorisation

Chanawee Chavaltada1, Kitsuchart Pasupa1(B), and David R. Hardoon2

1 Faculty of Information Technology, King Mongkut’s Institute of Technology
Ladkrabang, Bangkok 10520, Thailand

Kitsuchart@it.kmitl.ac.th
2 PriceTrolley Pte. Ltd., 573969 Singapore, Singapore

Abstract. The revolution of the digital age has resulted in e-commerce
where consumers’ shopping is facilitated and flexible such as able to
enquire about product availability and get instant response as well as
able to search flexibly for products by using specific keywords, hence
having an easy and precise search capability along with proper product
categorisation through keywords that allow better overall shopping expe-
rience. This paper compared the performances of different machine learn-
ing techniques on product categorisation in our proposed framework. We
measured the performance of each algorithm by an Area Under Receiver
Operating Characteristic Curve (AUROC). Furthermore, we also applied
Analysis of Variance (ANOVA) to our results to find out whether the dif-
ferences were significant or not. Näıve Bayes was found to be the most
effective algorithm in this investigation.

Keywords: Product classification · Product categorisation · Machine
learning

1 Introduction

The revolution of the digital age has resulted in e-commerce and purchasing of
goods has shifted from buying at physical stores to buying from virtual outlets
via online shopping where consumers are facilitated with shopping ease and
flexibility such as having an ability to enquire about product availability and
get instant response as well as having a flexibility to search for products using
specific keywords while also being able to access a description and perform a call
to action. In addition, intelligent search functions can provide consumers some
suggested products that are relevant to the search keyword. Therefore, having
an easy and precise search capability along with proper product categorisation
through keywords allow potential customers to have an overall better shopping
experience.

The United Nations Standard Products and Service (UNSPC) is a product
and service taxonomy standard that was established according to the United
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 10–17, 2017.
DOI: 10.1007/978-3-319-59072-1 2

A Comparative Study of Machine Learning Techniques 11

Nations’ Common Coding System (UNCCS) and the Dun & Bradstreet’s Stan-
dard Product and Service Codes (SPSC) [1]. Furthermore, common products
have also been categorised by product domain experts; however, these categori-
sation approaches have proven effective only if the number of products is small.

The challenge of large-scale, accurate and automated categorisation has moti-
vated exploration of computerised approaches where machine learning is a nat-
ural avenue given a framework for a computer algorithm to learn from a set
of data while continuously optimising the categorisation operation to reduce
error, time and cost [2]. Supervised learning is a widely used type of machine
learning that requires learning from a set of training data in order that the
trained model will be efficient before it is used for an actual analysis. In this
case, products can be classified into appropriate categories. However, a product
dataset is usually represented as a corpus of documents that posseses an a pri-
ori text processing challenge to be overcome before a classification model can be
developed [3]. Examples of text processing techniques are number removal, punc-
tuation removal, stop word removal, conversion to lowercase, and tokenisation.
Then, n-gram model is used for feature extraction, i.e., it counts the frequency
of words that are subsequently vectorised for use in text classification [4]. The
common classification techniques for document analysis include Näıve Bayes [5],
Support Vector Machine [6], Artificial Neural Networks [7], Latent Discrimi-
nant [8] Regression and Logistic Regression [9].

In this paper, we focused comparing the performances of multiple machine
learning methods on product catogorisation. In our experiment, we collected
product name and category data from three online shopping websites. Prior to
the classification process, the data were pre-processed with text processing tech-
niques mentioned above and an n-gram model was used in feature extraction.
Subsequently, classification models were built from popular techniques includ-
ing NB, SVM, ANNs, and LR which were described in Sect. 2. The experiment
framework is discussed in Sect. 3. In Sect. 4, we presented our results and finally
conclude the paper with a discussion and conclusion in Sect. 5.

2 Methodology

In this paper, we followed the overall product classification methodology illus-
trated in Fig. 1.

Fig. 1. Product classification processes.

12 C. Chavaltada et al.

2.1 Text Processing

Document data format is often done by converting the data into a compatible
format for each respective process or text processing. This approach manipu-
lates text into utility data. There are a number of text preprocessing techniques
such as number removal, punctuation removal, conversion of letters to lowercase,
and tokenisation. Usually, they are applied for information retrieval, information
extraction and data mining.

2.2 Feature Extraction

A feature is an individual measurable attribute of an occurrence being
observed [10]. This step is necessary for building effective algorithms. Effective
features are discriminant, independent and informative. For extracting features
from documents, count vectorisation is a good method. It counts word frequency.
Here, we used an n-gram model as a linguistic probability model for predicting
items in the same sequence order as that of a Markov model [11] and extracting
features.

2.3 Classification

Classification is a data mining and supervised learning technique with an objec-
tive to predict an outcome by learning a statistical model of historical data
attributes (also known as training data). Each classification method has differ-
ent tuning parameters that affect the efficiency of the model.

Näıve Bayes (NB). This technique is based on Bayes’ theorem with strong
independence assumptions between features. It is usually used for text clas-
sification by calculating the probabilities of occurrences of items or posterior
probabilities given that an occurrence and the previous occurrence are indepen-
dent. Then the occurrence with highest probability is chosen. Moreover, some
models such as text classification model has multiple labels, so a multinomial
model has to be used. This model is used for prediction of frequency of corpus
occurrences with an assumption that the length of the document is related to
label according to Bayes’ theorem. Therefore, each document represents a bag
of words. The words are counted so that the probability for each label can be
calculated [12].

Support Vector Machine (SVM). SVM selects and utilises proper repre-
sentative instances from a training set as a support vector. SVM constructs
hyperplanes between support vectors of each class, which can then be used basi-
cally for linear classification. In order to make a model as a non-linear classifier,
a kernel function is applied. Kernel function maps input data in a lower dimen-
sional feature space to a higher dimensional feature space. Some common kernel
functions include Polynomial and Radial basis function (RBF) [13].

A Comparative Study of Machine Learning Techniques 13

Artificial Neural Networks (ANNs). ANNs is a model of biological neural
structure that receives an input through an axon into a cell body and send an
output to the next neuron via a synapse. This process involves a lot of neurons
that are connected in parallel and have an ability to learn from a mistake in order
to improve themselves by adjusting the weight of each neuron. A neural networks
model has three main type of layers. The first layer is an input layer for receiving
data and sending them to next layer. The second layer consists of hidden layers
that are responsible for computing and improving nodes. The performance and
accuracy of a model depend on this the characteristics of this layer such the
number of hidden layers and nodes. After the data were processed by the hidden
layers, the output layer determines the answer by using an activated function
for a specified problem.

Logistic Regression (LR). LR is a regression model where dependent
attributes are categorical. Commonly, a regression model is used for analysing
an event probability by using an expect value that affects event. There are two
types of LR: Binary Logistic Regression and Multinomial Logistic Regression.
The differences between both types are in the types of labels which are binary
and multinomial, respectively. In the case that the labels are multiple values, we
must use the multinomial logistic regression [14].

3 Experimental Framework

3.1 Data Collection

The data have been collected from three online shopping websites. It consisted
of product names and categories. Details of each data are explained in Table 1.

Table 1. Details of dataset A, B and C.

Dataset Product names Categories

A 5,863 58

B 11,658 89

C 28,355 468

3.2 Data Preprocessing

The collected data were transformed to a structured format. This was done by
applying text processing techniques on the product names. Punctuations and
numbers were removed from the product names. Then, all of the letters were
converted to lowercase. Then, we were able to extract features by using an n-
gram model to transform the data into feature vectors for use in the models as
shown in Fig. 1. The data were normalised by z-score. The product names were
used as input data, but product categories were encoded into numerical data for
use as labels, and the labels were used for predicting the target for classifier.

14 C. Chavaltada et al.

3.3 Experiment Setting

Data were split into two sets. Eighty and twenty percent of the data were used
as a training set and a test set, respectively. They were pre-processed and fea-
ture extracted by methods explained in Sect. 2.1. Since all algorithms required
parameter tuning, five-fold cross validation was applied to find optimal parame-
ters for the best model on training set. The performance was evaluated by Area
Under Receiver Operating Characteristic Curve (AUROC) measure that is more
suitable for handling imbalance data than accuracy measure is and also more
statistically consistent [15]. We evaluated the performances on different sets of
features which were {1}-gram, {1, 2}-gram, {1, 2, 3}-gram and {1, 2, 3, 4}-gram.
Subsequently, the parameters for each algorithm were varied as follows:

– ANNs: Hidden layers were {1, 2, 3}, and the number of neuron for each layer
were {10, 20, 30, · · · , 100}

– SVM: C value was in range {10−4, 10−3, · · · , 105, 106}. We evaluated three
types of kernel which are Linear, Polynomial, and Radial Basis Function
(RBF). Degrees of Polynomial were in range 1–6 and Gaussian width range
was {10−6, 10−5, · · · , 105, 106}.

– LR: Regularisation parameter was in the range of {10−4, 10−3, · · · , 105, 106}.

(a) A box plot of four sets of feature.

(b) A box plot of six algorithms.

Fig. 2. The box plots show average of AUROC across feature and algorithms for each
datasets with 10 runs

A Comparative Study of Machine Learning Techniques 15

Once the optimal parameters had been set, they were used to train a model
which was later tested and evaluated on the test set. We ran the experiment 10
times, each with a different random split.

4 Results and Discussions

Figure 2(a) shows the average AUROC for each set of features across all consid-
ered classification techniques. Using the set of features 1, 2, 3-gram gave the best
performance for dataset A, while for the dataset B and C, using only the unigram
(n = 1) set was needed for a good performance. However, from the results for
dataset A, B and C, the determination of the best set of features was inconclusive
at p = 0.79, 0.35, 0.96 respectively with one-way analysis of variance (ANOVA).
Respectively, as determined by one-way analysis of variance (ANOVA, a sta-
tistical comparison technique that provides a capability to compare differences
between means [16]).

Furthermore, we compared the performances of six different techniques on
three datasets (averaged across four sets of features) as shown in Fig. 2(b). NB
showed the highest average AUROC for sdataset A and C but for dataset B,
the highest was LR. It was found that there were interactions between the sets
of features and the algorithm used in this framework for every dataset–dataset
A and B at p < 0.01 and C at p < 0.05 by two-way ANOVA. This means that

Table 2. Multiple comparison–it shows mean difference (MD) and its p-value. Bold
face indicates statistically significant.

Algorithm 1 Algorithm 2 DataSet A DataSet B DataSet C

MD p-value MD p-value MD p-value

NB LR 0.063 <0.05 −0.025 0.889 0.097 <0.01

NB ANNs 0.091 <0.01 0.114 <0.01 0.104 <0.01

NB SVM Linear 0.013 0.990 0.080 <0.01 0.083 <0.01

NB SVM Poly 0.025 0.843 0.089 <0.01 0.095 <0.01

NB SVM RBF 0.092 <0.01 0.134 <0.01 0.045 0.086

LR ANNs 0.029 0.746 0.138 <0.01 0.007 0.998

LR SVM Linear −0.050 0.166 0.105 <0.01 −0.013 0.967

LR SVM Poly −0.038 0.459 0.106 <0.01 −0.002 0.999

LR SVM RBF 0.029 0.742 0.159 <0.01 −0.052 <0.05

ANNs SVM Linear −0.079 <0.01 −0.034 0.671 −0.021 0.817

ANNs SVM Poly −0.067 <0.05 −0.034 0.722 −0.009 0.995

ANNs SVM RBF <0.001 0.999 0.02 0.949 −0.059 <0.01

SVM Linear SVM Poly 0.012 0.992 0.020 0.999 0.012 0.981

SVM Linear SVM RBF 0.079 <0.01 0.054 0.172 −0.039 0.187

SVM Poly SVM RBF 0.067 <0.05 0.052 0.204 −0.051 <0.05

16 C. Chavaltada et al.

Fig. 3. Confusion matrix of NB on all three datasets.

there was a significant difference between at least one pair of means for each
dataset; therefore, we subsequently conducted multiple comparison by two-way
ANOVA on each dataset as illustrated in Table 2. Clearly, NB yielded a better
performance than those of the others in 3/5 cases for dataset A, 4/5 cases for
both dataset B, and C (p < 0.01). It can be seen, for dataset B, LR performances
were significantly different better in 4/5 cases (p < 0.01), but inconclusive when
comparing to NB (p = 0.889)–NB and LR are comparable in this case. ANNs
were found to be worse than NB, SVM-Linear and SVM-Poly (p < 0.05) for
dataset A, while they were worse than NB and LR for dataset B (p < 0.01),
and they were worse than NB and SVM-RBF for dataset C (p < 0.01). It was
inconclusive which algorithm was the worst after all. Moreover, the confusion
matrices of NB on all three datasets in Fig. 3 show that it was the best algorithm
in this framework.

5 Conclusion

This paper proposes a framework for automatic product categorisation. We eval-
uated and compared well-known machine learning techniques on three datasets
obtained from the online websites and based on AUROC. We have found that
the performance of NB was the best-statistically significant. Furthermore, it is
inconclusive whether a set of proposed features was the best.

References

1. Ding, Y., Korotkiy, M., Omelayenko, B., Kartseva, V., Zykov, V., Klein, M.,
Schulten, E., Fensel, D.: GoldenBullet: automated classification of product data
in e-commerce. In: Proceedings of the 5th International Conference on Business
Information Systems (BIS 2002) (2002)

2. Simon, P.: Too Big to Ignore: The Business Case for Big Data. Wiley, Hoboken
(2013)

3. Shankar, S., Lin, I.: Applying machine learning to product categorization. Technical
report, Stanford University (2011)

A Comparative Study of Machine Learning Techniques 17

4. Kozareva, Z.: Everyone likes shopping! multi-class product categorization for e-
commerce. In: Proceedings of the 2015 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
pp. 1329–1333 (2015)

5. Zhang, H., Li, D.: Näıve bayes text classifier. In: Proceedings of the 2007 IEEE
International Conference on Granular Computing (GRC 2007), p. 708 (2007)

6. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. J. Mach. Learn. Res. 2, 45–66 (2001)

7. Wermter, S.: Neural network agents for learning semantic text classification. Inf.
Retr. 3(2), 87–103 (2000)

8. Wang, Z., Qian, X.: Text categorization based on LDA and SVM. In: 2008 Inter-
national Conference on Computer Science and Software Engineering, vol. 1, pp.
674–677 (2008)

9. Cheng, W., Hüllermeier, E.: Combining instance-based learning and logistic regres-
sion for multilabel classification. Mach. Learn. 76(2), 211–225 (2009)

10. Bishop, C.: Pattern Recognition and Machine Learning, vol. 128, 1st edn. Springer,
New York (2006). pp. 1–58, ISSN 1613-9011

11. Jurafsky, D., Martin, J.H.: Speech and language processing. Int. Ed. 710, 117–119
(2000)

12. Lewis, D.D.: Naive (Bayes) at forty: the independence assumption in information
retrieval. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp.
4–15. Springer, Heidelberg (1998). doi:10.1007/BFb0026666

13. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers.
Neural Process. Lett. 9(3), 293–300 (1999)

14. Yuth, K.: Principle and using logistic regression analysis for research. RMUTSV
Res. J. 4(1), 1–12 (2012)

15. Ling, X.C., Huang, J., Zhang, H.: AUC: a statistically consistent and more dis-
criminating measure than accuracy. In: Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI 2003), vol. 3, pp. 519–524 (2003)

16. Viaene, S., Derrig, R.A., Baesens, B., Dedene, G.: A comparison of state-of-the-art
classification techniques for expert automobile insurance claim fraud detection. J.
Risk Insur. 69(3), 373–421 (2002)

http://dx.doi.org/10.1007/BFb0026666

Bootstrap Based on Generalized Regression
Neural Network for Landslide Displacement

for Interval Prediction

Jiejie Chen1(B), Zhigang Zeng2, and Ping Jiang3

1 College of Computer Science and Technnology,
Hubei Normal University, Huangshi 435002, China

chenjiejie118@gmail.com
2 School of Automation, Huazhong University of Science and Technology,

Wuhan 430074, China
3 Computer School, Hubei PolyTechnic University, Huangshi 435002, China

Abstract. A novel interval prediction (PIs) method, called bootstrap
based on generalize neural network (Bootstrap-GRNN) for landslide dis-
placement forecasting model is proposed. New algorithm contains B+1
GRNN and then divide two parts. The first part includes B GRNN to
compute variance. The second part has one GRNN to get variance of
errors. According to the interval prediction formula, we can get the cor-
responding interval prediction for landslide displacement with real case.

Keywords: Interval prediction ·Bootstrap ·Generalize neural network ·
Variance

1 Introduction

Landslide [1–3] as one of kind of complex geological disasters, and brings seri-
ous threat to human life and production environment. Landslides have complex
causes, various and uncertainty effect factors, and bring very great difficultly
to disaster prevention and control of project. Three gorges reservoir area which
is located at upper reaches of Yangtze River in China is wide, large scale and
has complicated geological conditions. It has frequent geological disasters, espe-
cially large-scale landslide widely occurred in geological history. The prediction
of landslide disaster which mainly based on forecasting landslide sliding time,
so that people can as soon as possible take measures and countermeasures for
disaster prevention and reduction. These measures can be considered one of the
most effective ways and means of decreasing landslide disaster.

Landslide is a dynamic change process of complex geological mechan-
ics, which has been in disorderly, unsteady, unbalanced, uncertain and random
state. And there exists a variety of nonlinear process, and it is difficult to use the
traditional linear methods to solve. Therefore, artificial neural networks (ANNs)
[4,5] and various nonlinear methods are applied in Landslide displacement. Cur-
rently, a large number of approaches have been widely proposed in solving the
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 18–27, 2017.
DOI: 10.1007/978-3-319-59072-1 3

Bootstrap Based on Generalized Regression Neural Network 19

problem of the landslide forecast and prediction [4,5]. Most of these approaches
are inclined to forecast specific value about displacement. Then, it is very hard
to get exact value and has great deviation from actual value. Prediction interval
prone to attain more accurate than the prediction precision. Interval prediction
[6–11] can represent the dynamic characteristics of time series and the future
development trend. To build interval prediction can get upper and lower bounds
of the interval. Specific prediction results exist in the scope of the interval. There
are four main methods of interval prediction Delta, Bayesian, Bootstrap, and
Lower upper bound estimation (LUBE).

The paper has five sections. The first section is about introduction, methods
and materials are listed in Sect. 2. Section 3 shows the analytical method about
Bootstrap-GRNN [12]. A real case is proposed to illustrate the availability of
our model 4. Finally, Sect. 5 presents conclusion about this paper.

2 Methods and Materials

2.1 Confidence Interval

It is often supposed that targets can be defined as:

Si = Yi + εi (1)

where Si is the ith measured target (totally n targets). The error with a zero
expectation is noise εi. Then, it compute the value between true regression mean
Yi and measured value Si. Supposed that errors are identically and independently
distributed. Then, it defined

Si − Ŷi = [Yi − Ŷi] + εi (2)

Confidence Interval (CIs) [6–11] solve with the uncertainty between the pre-
diction true regression Yi and Ŷi, and are based on the estimation of character-
istics of the probability distribution P (Yi|Ŷi).

The measured value Si and the true regression mean Yi are statistically
independent, the total variance comes from

σ2
i = σ2

Ŷi
+ σ2

εi (3)

the measure of noise variance is σ2
εi , and σ2

Ŷi
is computed from model parameter

estimation errors and misspecification.

2.2 Interval Prediction

The coverage probability [6–11] is the important characteristic of PIs. Then, PI
coverage probability (PICP) [6–11] is defined as counting the number of target
values overlaped by the constructed PIs.

PICP =
1
N

N∑

i=1

δi (4)

20 J. Chen et al.

where N is called the number of samples in the test set, and the lower bounds
(LB) of is Li and the upper bounds (UP) of is Ui for the ith PI, respectively.
Theoretically, PICP need to approach to or larger than the nominal confidence
level related to the PIs.

where

δi =
{

1, if ti ∈ [Li, Ui]
0, otherwise (5)

NMPIW =
1

Nη

N∑

i=1

(Ui − Li) (6)

2.3 Bootstrap

Efron [9–11] introduced the approach bootstrap to compute confidence intervals
in the case that conventional method are not valid. Especially, when few data
are obtainable, approximate large sample methods are not applicable. Bootstrap
repeats resampling of the original sample set, and D∗

i (the index i represented for
the i resampling) means B samples with random sample size of N were extracted
from sample D0. When M is large enough, it can provide an approximation for
all possible values of the statistic T by repeated sampling from the Di. Small
sample data sets for statistical simulation. It can obtain unknown distribution
and unknown parameter distribution, the implementation process was shown in
Fig. 1.

Fig. 1. Bootstrap

2.4 GRNNS

The Specht [12] introduced a variation of the radial basis neural network which
named GRNN [12] to perform general (linear or nonlinear) regressions. It con-
cludes the joint probability density function (PDF) of x and y with a training
set. The pdf is derived from the data with no preconceptions about its form.

Bootstrap Based on Generalized Regression Neural Network 21

The f(x, y) is the function of the known joint continuous probability density
[12], including a vector random variable x and a scalar random variable y, the
regression of y on X is defined as:

E[y|X] =

∫ ∞
−∞ yf(X, y)dy
∫ ∞

−∞ f(X, y)dy
(7)

The estimator f̂(X,Y) can be calculated, which is based on sample values Xi

and Yi of the random variables x and y. The number of sample of observations
is n, and the dimension of the vector variable x is p:

f̂(X,Y) =
1

(2π)(p+1)/2σ(p + 1)
1
n

×
n∑

i=1

exp[− (X − Xi)T (X − Xi)
2σ2

]

× exp[− (Y − Yi)2

2σ2
]. (8)

An architecture of the GRNNS [12] is depicted in Fig. 2.

Fig. 2. Schematic diagram of a GRNNS architecture

22 J. Chen et al.

3 Bootstrap-GRNN

3.1 Confidence Interval

Bootstrap-GRNN contains B+1 GRNN and then divide two parts. The first part
includes B GRNN to compute variance σ2

ŷ. The second part has one GRNN to
get variance of errors σ2

εi . According to the interval prediction formula, we can
get the corresponding interval prediction for landslide displacement.

In Fig. 3, it used Bootstrap to divide the original data into B parts, each
part can be defined DB

b=1. The estimate variance is decided by specification
error. Under this assumption, the true regression ŷ is estimated by averaging
the point forecasts of ŷb

i B models. (Each GRNN).

Fig. 3. Bootstrap B NN

ŷ =
1
B

B∑

b=1

ŷb
i (9)

where ŷb
i is the prediction of the ith sample generated by the bth bootstrap

model. Assuming that NN models are unbiased, the model misspecification vari-
ance can be estimated using the variance of B model outcomes.

σ2
ŷi

=
1

B − 1

B∑

b=1

(ŷb
i − ŷi)2 (10)

According to two formula, the confidence interval can be defined:

ŷ ± Z1−α

√
σ2

ŷi
(11)

Bootstrap Based on Generalized Regression Neural Network 23

3.2 Cost Function

The one of character of Bootstrap-GRNN has only one regulation parameter
(spread). Meanwhile, the learning of network depends entirely on data sample.
And this trait point determines that the network can avoid the influence of the
subjective assumption on the prediction results. The larger the value of spread,
the more smooth function fitting. However, the value of approximation error will
become larger, the more hidden neurons needed and the greater the calculation.
On the contrary, the smaller the value of spread leads to more accurate the
approximation of the function. The approximation process will not be smooth
and present an over adaptation. The key of Bootstrap-GRNN is to find the proper
spread. During application process, we will try to calculate different spread to
obtain the proper value. Then, the CWC is introduced to solve with this problem.

C = NMPIW(1 + δ(PICP)e−μ(PICP−ν)) (12)

In the training process, δ(PICP) = 1, in the testing process, δ(PICP) = 1 is
defined as:

δ(PICP) =
{

1, PICP < ν
0, PICP ≥ ν

(13)

4 Application of Landslide Prediction

4.1 Data

In this paper, we tried to present the Bootstrap-GRNN approach to derive
meaningful nonlinear relationships between various parameters of one practical
geotechnical problems. All experiments about this paper are based on MAT-
LAB 2010b platform. The landslide is uncertainty, stability and complexity, so
the formation of the landslide is extremely difficult to know. A case of Baishuihe
landslide monitoring point ZG118 in Three Gorges Reservoir area in China is
proposed to illustrate the availability of our model.

The important task of selecting the appropriate spread value and the best
training samples to train GRNN. So parameter setting about Bootstrap-GRNN
has two: decomposition number B and spread. The decomposition number B can
decide the number of GRNN. Considering the length of data set and published
papers, we choose 10 B in our real case. Then in this paper, it sets 11 GRNN,
and 10 is for computing estimate variance, the left one is for computing error
variance (Figs. 4 and 5).

4.2 Experiment and Results

Considering some other external factors rainfall and reservoir level, pearson cross
correlation coefficients (PCC) and mutual information (MI) [4,5] are adopted to
find the potential input variables. All data basis on the general rules and feature
of landslide, which are divided into two groups to study. The first group includes

24 J. Chen et al.

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

D
is

pl
ac

em
en

t

Month

Train Validation Test

Fig. 4. Displacement

0 10 20 30 40 50 60 70
0

100

200

300

R
ai

n
fa

ll

120

140

160

180

Month

R
es

er
vo

ir
le

ve
l

Rain fall
Reservoir level

Train
TestValidation

Fig. 5. Rainfall and reservoir

70% to set up the predicting model, and the rest recordings 30% to predict
the displacement of landslide. Figures 6, 7, 8 and 9 are about interval prediction
and confidence interval prediction based on Bootstrap-GRNN Fig. 6 is shown for
training set about interval prediction, the minimum difference about UB and LB
is 0.6391, the maximum difference about UB and LB is 1.8838, the mean about
UB and LB is 1.3082, the standard deviations is 0.2661, and 11 points have
not existed in interval. Figure 7 is shown for confidence interval, the minimum
difference about UB and LB is 0.0107, the maximum difference about UB and
LB is 0.6241, the mean about UB and LB is 0.3119, and 15 points have not
existed in interval.

Figure 8 is shown for Prediction set about interval prediction, the minimum
difference about UB and LB is 0.4927, the maximum difference about UB and
LB is 2.7632, the mean about UB and LB is 1.5417, the standard deviations is
0.6965, and 5 points have not existed in interval. Figure 9 is shown for confidence
interval, the minimum difference about UB and LB is 0.0480, the maximum
difference about UB and LB is 1.7113, the mean about UB and LB is 0.3204,
and 5 points have not existed in interval. And, the PICP and NMPIW of Training
set are 68.06 and 65.41. And, the PICP and NMPIW of Training set are 75 and
77.09. In fact, the bigger PICP and smaller NMPIW are best results for PIs. So,
we should make some ways to get lager PICP and smaller NMPIW.

Bootstrap Based on Generalized Regression Neural Network 25

0 5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

1

Months

Upper bound
Real value
Lower bound

Fig. 6. PIs on training test

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

Months

Upper bound
Real data
Lower bound

Fig. 7. CIs on training test

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

1.5

2

Months

Upper bound
Real data
Lower bound

Fig. 8. PIs on prediction test

26 J. Chen et al.

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1

1.5

Months

Upper bound
Real data
Lower bound

Fig. 9. CIs on prediction test

5 Conclusion

The given study results are presented our proposed methods which be equipped
with profound prediction ability to reveal the nature of landslide evolution. Our
proposed methods are not only enrich the theory of landslide prediction but also
provide theoretical foundation for further landslide engineering practice research.

Acknowledgements. The work is supported by the Natural Science Foundation of
China under Grant 61603129, the Natural Science Foundation of Hubei Province under
Grant 2016CFC734.

References

1. Cubito, A., Ferrara, V., Pappalardo, G.: Landslide hazard in the Nebrodi Moun-
tains (northeastern Sicily). Geomorphology 66(1–4), 359–372 (2005)

2. Qin, S., Jiao, J., Wang, S.: The predictable time scale of landslides. Bull. Eng.
Geol. Environ. 59(4), 307–312 (2001)

3. Qin, S.Q., Jiao, J., Wang, S.: A nonlinear dynamical model of landslide evolution.
Geomorphology 43, 77–85 (2002)

4. Chen, J., Zeng, Z., Jiang, P., Tang, H.: Deformation prediction of landslide based
on functional networtk. Neurocomputing 149, 151–157 (2015)

5. Lian, C., Zeng, Z., Yao, W., Tang, H.: Displacement prediction model of landslide
based on a modified ensemble empirical mode decomposition and extreme learning
machine. Nat. Hazards 66, 759–771 (2013)

6. Khosravi, A., Mazloumi, E., Nahavandi, S., Creighton, D.: Prediction intervals to
account for uncertainties in travel time prediction. IEEE Trans. Intell. Transp.
Syst. 12(2), 537–547 (2011)

7. Sheng, C., Zhao, J., Wang, W., Leung, H.: Prediction intervals for a noisy nonlinear
time series based on a bootstrapping reservoir computing network ensemble. IEEE
Trans. Neural Netw. Learn. Syst. 24(7), 1036–1048 (2013)

8. Khosravi, A., Nahavandi, S., Creighton, D., Atiya, A.: Lower upper bound estima-
tion method for construction of neural network-based prediction intervals. IEEE
Trans. Neural Netw. Learn. Syst. 24(3), 337–346 (2011)

Bootstrap Based on Generalized Regression Neural Network 27

9. Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26
(1979)

10. Efron, B., Tibshirani, R.: Bootstrap methods for standard errors, confidence inter-
vals, and other measures of statixtical accuracy. Stat. Sci. 1(1), 54–77 (1986)

11. Efron, B.: The bootstrap and Markov chain Monte Carlo (2011)
12. Paojcic, J., Ibric, S., Djuric, Z., Milica, J., Owen, I.C.: An investigation into the

usefulness of generalized regression neural network analysis in the developmen of
level A in vitro-in vivo correlation. Eur. J. Pharm. Sci. 30(3), 264–272 (2007)

Multi-task Learning with Cartesian
Product-Based Multi-objective Combination

for Dangerous Object Detection

Yaran Chen1,2 and Dongbin Zhao1,2(B)

1 The State Key Laboratory of Management and Control for Complex Systems,
Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

2 The University of Chinese Academy of Sciences, Beijing, China
dongbin.zhao@ia.ac.cn

Abstract. Autonomous driving has caused extensively attention of
academia and industry. Vision-based dangerous object detection is a cru-
cial technology of autonomous driving which detects object and assesses
its danger with distance to warn drivers. Previous vision-based danger-
ous object detections apply two independent models to deal with object
detection and distance prediction, respectively. In this paper, we show
that object detection and distance prediction have visual relationship,
and they can be improved by exploiting the relationship. We jointly
optimize object detection and distance prediction with a novel multi-
task learning (MTL) model for using the relationship. In contrast to
traditional MTL which uses linear multi-task combination strategy, we
propose a Cartesian product-based multi-target combination strategy for
MTL to consider the dependent among tasks. The proposed novel MTL
method outperforms than the traditional MTL and single task methods
by a series of experiments.

Keywords: Dangerous object detection · Multi-task learning and
convolutional neural network

1 Introduction

Nowadays, more and more people pay attention to driving safety. Dangerous
object detection is an effective measure for improving driving safety which has
been widely studied for several decades by many researchers. However, it is still
challenging to accurately and promptly detect dangerous object.

Dangerous object detection aims to identify the potentially dangerous vehicles
and pedestrians for drivers. According to input signals, dangerous object detec-
tion methods usually are divided into: general sensor-based methods and vision-
based methods. Sensor-based methods mainly apply lasers and radars to sense sur-
roundings and detect dangerous object. They have been widely used, thanks to the

D. Zhao—This work is supported by National Natural Science Foundation of China
(NSFC) under Grants 61573353 and 61533017, and the National Key Research and
Development Plan under Grant No. 2016YFB0101000.

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 28–35, 2017.
DOI: 10.1007/978-3-319-59072-1 4

MTL with Cartesian Product-Based Multi-objective Combination 29

great environmental perception capability. Autonomous cars such as Google Car
and Baidu Car [1], use a rotating light detection and ranging (LIDAR) scanners
to obtain the environment information and warn drivers about dangerous objects.
However, these lidar sensors are too expensive to apply in a large scale. Compared
with sensor-basedmethods, vision-baseddangerous objectdetection is lowcost and
captures more traffic information, such as object distance, object categories and
trafficsigns [2]. Inpreviouswork,vision-basedmethodsareusually formulatedasan
object detection problem and a distance prediction problem, which are dealt with
using two independent models. The typical methods of object detection including
faster R-CNN [5], and SSD (Single Shot MultiBox Detector) [6], can be used for
object detection in autonomous driving. Object distance is generally measured by
a RGB-D cameras LIDAR or radar [9].

In fact,vision-basedobjectdetectionanddistancepredictionpresentprominent
visual relationship.Theobjects far fromthecamerausually looksmall andcover few
pixels of an image, while the closer ones are generally distributed in the near field of
viewand covermore pixels, shownasFig. 1(a) and (b). In addition,Fig. 1(c) and (d)
show that objects taken from different camera angles present different poses. Obvi-
ously, the visual relationship is very worthy to be exploited for detecting dangerous
objects.However, it ismuch ignored inpreviousworkwhichdealswith object detec-
tion and distance prediction using two independent models. Therefore, simultane-
ouslyoptimizingobjectdetectionanddistancepredictioninonemodelwillprobably
improve the performance of dangerous object detection.

(a) (b)

(c) (d)

Fig. 1. The cars with different distances and poses

Multi-task learning (MTL) is a well-known method for simultaneously opti-
mizing multiple tasks. MTL exploits shared information among multiple tasks
to improve the performance of each other [3]. MTL has been widely applied
in computer vision community: such as action recognition [14], pose estimation
[10], face detection [11], facial landmark localization [12], and achieved great
successes. MTL method generally linearly combines the objectives of multiple
tasks to exploit the shared information and jointly optimizes the related tasks.
However, it much ignores the correlations of multiple tasks.

30 Y. Chen and D. Zhao

In this paper, we propose a novel MTL method based on CNN to jointly
optimize object detection and distance prediction. In order to facilitate distance
prediction, it is formulated as a classification problem, through discretizing con-
tinuous distance. In the proposed MTL method, we propose a joint optimization
objective according to the Cartesian product of object classes and distance cat-
egories. We prove that the proposed Cartesian product-based multi-task combi-
nation strategy outperforms the linear multi-task combination strategy in math-
ematics and experiments.

Our contributions are shown as follows. First, we use the MTL mechanism to
dangerous object detection for exploiting the visual relationship between object
detection and object distance prediction for the first time. Second, we propose
a novel multi-task combination strategy based on the Cartesian product, and
prove it outperforms the linearly combination strategy.

2 Multi-task Learning

Dangerous object detection deals with object detection and distance prediction.
Object detection is usually expressed as a classification task. Namely we detect
objects by classifying the proposed regions of images. It is difficult to accurately
predicting continuous distance owing to the non-linear variation of the sight dis-
tance. Therefore, the distance prediction task is transformed into a classification
problem. MTL is a popular technique for dealing with related multiple tasks. In
this paper, we propose a novel MTL to jointly optimize the two classification
problems by shared information.

2.1 Linear Multi-task Combination

Traditional MTL methods generally optimize multiple tasks by a linear multi-
task combination strategy (LC-MTL). Namely the loss is a weighted linear com-
bination of the multiple objective functions [12] shown as:

Lc+d = α · Lc + (1 − α) · Ld, (1)

where Lc and Ld are the objective functions of the object detection task C and
distance prediction task D, respectively. And α specifies the relative importance
of each task and can be experimentally chosen.

Due to the powerful ability of representation learning, CNN has been widely
used in multi-task learning, especially for the classification task. For danger-
ous object detection, through shared model parameters, CNN can jointly model
the object detection C and distance prediction D. We use yc to denote a
class of objects, and yc ∈ {c1, c2, ..., cp}1×p where p represents the number
of object classes. Similarly, yd denotes a category of object distance, where
yd ∈ {d1, d2, ..., dp}1×q and q is the number of object distance categories. For
a given image x ∈ �m×n

+ , CNN simultaneously computes the probabilities of
object recognition and distance classification: p(yc = ci|x) the probability of the

MTL with Cartesian Product-Based Multi-objective Combination 31

image x belonging to the i-th class of object and p(yd = dj |x) the probability of
the image x belonging to the j-th class of object distance.

A typical objective function of the classification with multiple categories is
the cross entropy loss:

Lc = yc · log(p(yc = ci|x)). (2)

Similarly, we get Ld = yd · log(p(yd = dj |x)). Then the loss of the MTL (Eq. (1))
can be rewritten as:

Lc+d = yc · log(p(yd|x)) + yd · log(p(yd|x)), (3)

where we ignore the constant α for simplification.
Through the MTL with the linear multi-task combination strategy, CNN can

exploit the shared information for the related tasks from input images. However,
it much ignores the dependence among multiple targets.

2.2 Cartesian Product-Based Multi-task Combination

To exploit the dependence among related targets, we propose a Cartesian
product-based multi-task combination strategy (CP-MTL) to jointly optimize
object detection and distance prediction. We denote the combined task based
on the Cartesian product as M = C ⊗ D, where ⊗ represents the Cartesian
product operator. Concretely, we use yc⊗d = yc ⊗ yd as a category of M and
yc⊗d ∈ {c1d1, c1d2, ...c1dq, . . . , cidj , . . . , cpdq}1×pq, where pq is the number of the
combined task category.

Then, the loss function of M is formulated as:

Lc⊗d = yc⊗d · log(p(yc⊗d = cidj |x)). (4)

Through taking the Cartesian product operator into Eq. (4), we can obtain:

lc⊗d = c1d1 · log(p(yc⊗d = c1d1|x)) + c1d2 · log(p(yc⊗d = c1d2|x))+
· · · + cpdq · log(p(yc⊗d = cpdq|x)). (5)

Equation (5) is the sum of pq entries, and each one contains a probability
p(yc⊗d = cidj |x). It means that the image x belongs to ci of task C and dj of
the task D. If the task C and D are completely independent, we can obtain:

p(yc⊗d = cidj |x) = p(yc = ci|x) · p(yd = dj |x). (6)

Then we take Eq. (6) into Eq. (5) and deduce that:

Lc⊗d = Lc + Ld = Lc+d. (7)

Compared Eqs. (7) and (3), we prove that if the two tasks are independent,
the loss function of the traditional LC-MTL method is equal to the loss function
of the proposed CP-MTL method. Otherwise, the CP-MTL method can exploit
the dependency between two tasks, which is ignored by LC-MTL method. For
dangerous object detection, the object detection task and object distance clas-
sification task are probably not independent, which may be more suitable for
being modeled by the proposed CP-MTL model.

32 Y. Chen and D. Zhao

3 CP-MTL SSD Method

Dangerous object detection consists of object detection and distance prediction.
Owing to the strong capability of learning representation, CNN-based object
detection methods have achieved satisfactory performance. SSD is one of the
art-of-the-state CNN-based object detection methods. It directly predicts object
bounding boxes and object classes by sharing convolutional features, resulting
a short detection time and high accurate. In this paper, we incorporate the
proposed CP-MTL (Cartesian product-based combination multi-target) into the
optimization objective of SSD to simultaneously optimize the object detection
and distance classification tasks.

3.1 Model Architecture

Figure 2 shows the structure of the proposed CP-MTL SSD Method. It consists
of multiple hierarchical convolutional layers, some default bounding boxes with
different aspect ratios, and a number of detections. By the convolution operation,
the hierarchical convolution layers can produce a lot of feature maps of differ-
ent scales and resolutions for an input image. There are some default bounding
boxes on these feature maps. For one default bounding box, the following detec-
tion consists of a full-connected classification layer and a regression layer, to
regress the bounding box and classify the object category simultaneously. Due
to the larger number of default bounding boxes, the model can produce a lot
of detections of boxes. Through non-maximum suppression [8], the model will
predicts the final boxes.

Fig. 2. The architecture of the proposed CNNVA.

CP-MTL is a variant of SSD. Although they seem similar, there is an essen-
tial difference between them. Namely CP-MTL optimizes the Cartesian product-
based combination targets of object recognition and object distance classifica-
tion, while SSD just only optimizes the target of object recognition.

MTL with Cartesian Product-Based Multi-objective Combination 33

3.2 Cartesian Product-Based Combination Targets

We propose a Cartesian product-based combination of object detection task
and distance classification task to simultaneously optimize object detection and
object distance prediction. Based on the sizes and shapes of objects, we classify
objects into three categories: cars, vans and pedestrians, denoted as {c1, c2, c3}.
Due to the relationship between the distance and the object distance, we consider
the distance category task from two dimensions: the vertical distance and the
horizontal distance, shown as Fig. 3.

Fig. 3. (a) The image geographic division according to the distance and the visual
angle. (b) The categories of the Cartesian product-based combination target, where
(a) is mapped to the two dimensional plane (b) (Color figure online)

Figure 3(a) shows that the space is parted into 12 regions and 8 categories
denoted as {d1, d2, · · · , d8}, due to the symmetry of vehicles. And the red one
denotes the shortest vertical distance and the most dangerous category, followed
by the yellow one, the green one, and the blue one. In Fig. 3(b), each region is
a distance category and contains all the categories {c1, c2, c3} of C. Recognizing
objects during a given distance category is much easier than recognizing them
at all the range of distance.

4 Experiment

In this section, we comprehensively evaluate the proposed CP-MTL model on
dangerous object detection task by comparing the proposed CP-MTL with the
single task learning model (SSD) and the LC-MTL method with the linear multi-
task combination strategy.

Dataset: KITTI dataset [4] contains more than 40,000 images which are col-
lected by a car driving in European cities. About 16,000 images contain infor-
mation of object positions. In the experiments, we randomly divide the 16,000
images into 3 parts: training set, testing set and validating set. Among them,
the training set contains 12,000 images, the testing set contains 3000 images
and the validating set contains 1000 images. All experimental configures are
experimentally chosen according to the performances on the validating set.

Evaluation Metrics: In object detection, a common evaluation metrics is the
average precision (AP). AP measures the comprehensive performance, including
the recall rate and precision rate of object detection. The mAP is the mean value
of the APs of different object categories.

34 Y. Chen and D. Zhao

Experimental Setup: In this study, we take SSD as the baseline model. It has 18
convolutional layersand5detectors.Theearly13 layersare initializedbytheOxford
VGG[7,13], andothersare randomly initialized.Therearefiveboundingboxeswith
different aspect ratios ({1, 2, 3, 1

2 , 1
3}) at each position of 10-th, 15-th, 16-th, 17-th,

and 18-th convolutional feature layers. The detection with multiple shapes, resolu-
tions and scales, can deal with various objects with different shapes and sizes. The
proposed models, whether the CP-MTL or the LC-MTL, are the variants of SSD.
They have the same network architecture and configures with SSD. But the key dif-
ference is the output target of detector.Wedivide thewhole image into 12 regions as
shown inFig. 3, andseta = 3 m,b1 = 10 m,b2 = 20 m,andb3 = 40 m. Inadditionto
the object detection, the proposed CP-MTL and the LC-MTL also take the object
distance prediction into account.

Comparison Experiments: Table 1 reports the detection performance of SSD,
LC-MTL and CP-MTL. The proposed MTL methods (LC-MTL and CP-MTL)
consistently outperform the SSD on mAP and APs of each object category. It
mainly owes to MTL methods capturing the visual relationship between object
detection and object distance.

Compared with LC-MTL, the CP-MTL yields significant performance
improvements in the mAP and APs of all object categories. In a sense, it is
verified that the proposed the Cartesian product-based multi-task combination
strategy outperforms the linear multi-task combination strategy. At the same
time, we also note that the Cartesian product-based multi-task combination
strategy increases the difficulty of multi-task learning due to the more detailed
classification categories. Therefore, the proposed CP-MTL may require more
data to be trained. Finally, we exhibit an example of real-time dangerous object
detection on a video. Figure 4 shows four snapshots of the video at t = 1 s,
t = 10 s, t = 20 s and t = 30 s, respectively. Compared with other object detec-
tion systems, the proposed CP-MTL not only bounds the object in an image
but also gives its danger level according to the predicted object distance, shown
in Fig. 4. Moreover, the proposed CP-MTL based on a fast detection algorithm
SSD can meet the real-time requirements of practical applications.

Table 1. The detection results with CP-MTL, LC-MTL and SSD

Method mAP AP (Cars) AP (Pedestrians) AP (Vans)

SSD 0.8104 0.8779 0.6741 0.8790

LC-MTL 0.8331 0.8933 0.8945 0.7113

CP-MTL 0.8405 0.8945 0.8980 0.7292

Fig. 4. Snapshots from video detection with CP-MTL model

MTL with Cartesian Product-Based Multi-objective Combination 35

5 Conclusion

We propose the CP-MTL algorithm for dangerous object detection in
autonomous driving. Through Cartesian product-based multiple objectives com-
bination, CP-MTL can simultaneously optimize object detection and object dis-
tance prediction to exploit the relationship between them. We mathematically
prove that the proposed CP-MTL outperforms LC-MTL, when the two tasks
are not independent. Also, we carry out systematic experiments to verify that
the proposed method outperforms the state-of-art SSD object detection method
and the traditional MTL method.

References

1. Bruch, M.: Velodyne HDL-64E lidar for unmanned surface vehicle obstacle detec-
tion. In: Proceedings of SPIE - The International Society for Optical Engineering,
Florida, 05 April 2010

2. Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.: Monocular 3D
object detection for autonomous driving. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016

3. Evgeniou, A., Pontil, M.: Multi-task feature learning. Adv. Neural Inf. Process.
Syst. 19, 41 (2007)

4. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The
KITTI vision benchmark suite. In: Conference on Computer Vision and Pattern
Recognition (CVPR) (2012)

5. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE Conference on Computer
Vision, pp. 1440–1448 (2015)

6. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.:
SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). doi:10.
1007/978-3-319-46448-0 2

7. Lv, L., Zhao, D., Deng, Q.: A semi-supervised predictive sparse decomposition
based on the task-driven dictionary learning. Cogn. Comput. (2016). doi:10.1007/
s12559-016-9438-0

8. Neubeck, A., Gool, L.V.: Efficient non-maximum suppression. In: International
Conference on Pattern Recognition, pp. 850–855 (2006)

9. Xia, Y., Wang, C., Shi, X., Zhang, L.: Vehicles overtaking detection using RGB-D
data. Sign. Proces. 112, 98–109 (2015)

10. Yim, J., Jung, H., Yoo, B.I., Choi, C.: Rotating your face using multi-task deep
neural network. In: Computer Vision and Pattern Recognition, pp. 676–684 (2015)

11. Zhang, C., Zhang, Z.: Improving multiview face detection with multi-task deep
convolutional neural networks. In: IEEE Winter Conference on Applications of
Computer Vision, pp. 1036–1041 (2014)

12. Zhang, Z., Luo, P., Chen, C.L., Tang, X.: Facial landmark detection by deep multi-
task learning. In: European Conference on Computer Vision, pp. 94–108 (2014)

13. Zhao, D., Chen, Y., Lv, L.: Deep reinforcement learning with visual attention for
vehicle classification. IEEE Trans. Cogn. Dev. Syst. (2016). doi:10.1109/TCDS.
2016.2614675

14. Zhou, Q., Wang, G., Jia, K., Zhao, Q.: Learning to share latent tasks for action
recognition. In: IEEE International Conference on Computer Vision, pp. 2264–2271
(2013)

http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1007/s12559-016-9438-0
http://dx.doi.org/10.1007/s12559-016-9438-0
http://dx.doi.org/10.1109/TCDS.2016.2614675
http://dx.doi.org/10.1109/TCDS.2016.2614675

Collaborative Response Content
Recommendation for Customer Service Agents

Cuihua Ma1, Ping Guo1,2(B), Xin Xin1, Xiaoyu Ma3, Yanjie Liang3,
Shaomin Xing3, Li Li3, and Shaozhuang Liu3

1 School of Computer Science and Technology,
Beijing Institute of Technology, Beijing 100081, China

{chma,xxin}@bit.edu.cn
2 Laboratory of Graphics and Pattern Recognition,
Beijing Normal University, Beijing 100875, China

pguo@ieee.org
3 Beijing Easemob Technology Co, Ltd., Beijing 100086, China

{jma,liangyj,xingshaomin,lili,stliu}@easemob.com

Abstract. The rapid development of artificial intelligence (AI) has
motivated extensive research on dialog system. Using dialog system to
automatize customer service is a common practice in many business
fields. In this paper, we investigate a novel task to recommend response
for customer service agents of each shop. A major challenge is the prob-
lem of data insufficiency for each shop. Meanwhile, we want to keep
the personalized information for shops with very different commodities.
To deal with such problems, we propose a LSTM (Long Short-Term
Memory) Neuron Tensor Network architecture to encode the common
features of all shops’ data and model the personalized features of each
shop. Extensive experiments demonstrate that our method outperforms
four baseline methods evaluated by recall metric.

Keywords: Response recommendation · Dialogue system · Neural net-
work

1 Introduction

The rapid progress of online transaction makes people’s lives more convenient,
which requires many questions about commodity to be answered for customers.
This situation forces the fast development of customer service. The traditional
customer service system, such as airline booking [1] and restaurant reservation
[2], is slot-filling representation, while the research of response recommendation
for customer service is a novel application, which will relieve the workload of
customer service agents. And Fig. 1 represents our work that is aimed at recom-
mending response for customer service agents.

There is a challenge of data insufficiency for each shop in our dataset. The
largest number of dialogs from one shop is less than six thousand. In addition,
each shop has its own personalized features. How to collaboratively represent the

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 36–43, 2017.
DOI: 10.1007/978-3-319-59072-1 5

Collaborative Response Content Recommendation 37

Fig. 1. The business scenario.

common features of all shops and keep the personalized features of each shop at
the same time would be a problem worth solving, then a more targeted response
would be recommended. So we need to find a personalized recommendation
method which can resolve the problem of data insufficiency.

In this paper, we propose an effective method to address the aforementioned
issues. Firstly, the common features of all shops’ data are used to train a ranking
model. Then, the personalized features are added to the model to recommend
response with personalized information of specified shop. Finally, we will evaluate
the effectiveness of our personalized recommendation method by calculating the
recall of every shop. In our work, there are three primary contributions:

(1) We investigate a novel task – recommend response content for customer
service agents. It settles the problem of data insufficiency and personalized
response recommendation.

(2) From the aspect of model, we propose a LSTM Neuron Tensor Network
(LNTN), which is a general architecture and need not prior knowledge and
complicated syntactic analysis.

(3) The experimental results show that our recommendation method is effective.
Especially, on average, 10@1 recall of our personalized method has a 6%
obvious improvement compared with that of LSTM model with only 200
training samples.

2 Related Works

Related applications include:

Recommender System: Generally, recommender system recommends related
items for users based on their rating information and usage frequency [3] on
items, or according to relationships [4] among similar users. However, we recom-
mend response for customer service according to the relevancy of the response
to the question, rather than user-item rating information or frequency data.

Dialogue System: Normally, dialogue system [5] is realized by dialogue manage-
ment [6], who treats dialogue act (DA) as the input to represent sentence. This
type of data is represented using slot-filling. However, our data with the problem
of data insufficiency isn’t represented by DA.

38 C. Ma et al.

Question Answering: Researches on question answering [7] mainly focus on the
fact-based direct question commonly known as factoid question. Community
based question answering (CQA), a branch of question answering, is a platform
where users can share their expertise for askers. The characteristics of the data
we used are similar with those in CQA. While the questions in our data are
mostly short sentences that can not be factoid and need immediate response.

Retrieval model is one of the most widely used model in question answering
system. The traditional retrieval model can be summarized as features and clas-
sifier, and mainly used in early CQA [8]. Features in this method are extracted
according to rules of manual definition, but lack of good scalability. Then with
the development of neural network, learning-based deep feature extraction comes
into being. Especially for LSTM-based model [9], it is popular due to its capa-
bility of long term dependency memory. However, these methods cannot tackle
personalized recommendation problem. In this paper, we will study how to per-
sonalize response recommendation for customer service.

3 Recommendation Framework

3.1 Problem Definition

The major task studied in this paper is to recommend response content for each
shop’s customer service agents. The dialogue system records the detailed chatting
information between agents and customers, including shop ID, dialogue content
etc. Our goal is to train a ranking model using these data. The framework of
our customer service system is shown in Fig. 2. Suppose we have a dictionary
D = (wM

i=1 : eMi=1), where wi denotes the ith word and ei denotes the embedding
of ith word. M indicates the dictionary size. Then the segmentation of context
can be transformed to the embedding representation by extracting correspond-
ing word embedding from the dictionary. The model can use these embedding
representation to calculate the relevancy of a context-response pair. The result
would be used to recommend response.

Fig. 2. Framework of our system.

Collaborative Response Content Recommendation 39

Fig. 3. Architecture of our LSTM Neuron Tensor Network (LNTN)

3.2 Tensor Network Model

Figure 3 shows a visualization of our LSTM Neuron Tensor Network (LNTN).
Define f(x) = σ(x), g(x) = tanh(x), the LSTM architecture used in this paper
is defined by the following equations:

inputgate : it = f(Wxixt + Whiht−1 + Wcict−1 + bi)
forgetgate : ft = f(Wxfxt + Whfht−1 + Wcfct−1 + bf) (1)

cell : ĉt = Wxcxt + Whcht−1 + bc

ct = ft � ct−1 + it � g(ĉt)
outputgate : ot = f(Wxoxt + Whoht−1 + Wcoct + bo)

hiddenstate : ht = ot � g(ct)

Let matrixes q, a denote the embedding representation of the context sentence
and response sentence respectively, vectors qj , aj indicate word embedding of
the jth word in context and response respectively. Take q as the input of LSTM
model, after a series of gate operations, then the final output of the model is
sentence vector c for context q. The same applies to a to get r.

The traditional ways are to calculate their cosine distance. However, we need
model the personalized features to measure their relevancy. A tensor is a geomet-
ric object that can be represented as a multi-dimensional array of numerical val-
ues. Following the Neural Tensor Network (NTN) [10] and Convolutional Neural
Tensor Network (CNTN) [11], we place a tensor layer on top of the two LSTMs
to model the relevancy of context and its response with its shop’s personalized
features.

3.3 Algorithm

We can optimize the model by minimizing the error between the observed value
and the calculated relevance value. The cost function for our model is:

min
1
2

I∑

i

J∑

j

K∑

k

(yijk − fijk)2 (2)

40 C. Ma et al.

In order to speed up the optimization, we define the objective function by min-
imizing the cross entropy of all labeled pairs:

L = −ln
N∏

n

p(flagn|sn, cn, rn,M) = −ln
N∏

n

σ(sTn (cTnMrn)) (3)

For training, parameter initialization is consistent with Lowe et al.’s work
[9]. The process of training in our model can be summarized as:

(1) Initialize LSTM parameters W,b using normal distribution. Initialize per-
sonalized features si of shop i and core tensor M using a uniform distribution
with values between −0.01 and 0.01

(2) Generate cj , rk of context j and response k from LSTM model respectively.
Calculate relevancy yijk of context j from shop i and response k with out-
come yijk =

∑I
i

∑J
j

∑K
k Mijksiecjlrkl for e = 1, · · · , d, l = 1, · · · , h, where

d, h are dimensions. Generate observed value fijk
(3) Modify si and M based on gradient descent
(4) Update the neural network parameters based on backpropagation through

time to reduce L.
(5) Iterate steps (2) to (4) until convergence.

3.4 Complexity Analysis

The number of parameters in LSTM is 600 k. The number of personal parameter
is 10 for each shop which could be learned with a few data in the target shop.
On the real-world dataset with more than 1300 k, the experiments are practical.

The main computation of gradient methods is evaluating the object func-
tion L and its gradients against variables. So the computation complexity is
O(NFuv), where NF is the number of training data, u is time of updating vari-
ables and v is the number of iterations. Since our algorithm will converge after
4 to 11 iterations, this indicates that the computational time of our method is
linear with the number of training data. This complexity analysis shows that
our proposed approach is very efficient.

4 Experimental Analysis

In this section, we conduct several experiments to analyze the recommendation
quality of our proposed method.

4.1 Dataset

The primary source of data for this work is the multi-turn (3 is minimum)
dialogue records for one month in customer service dialogue system. Each line
of the data source may contains a lot of information. We only keep those entries
which include shop information, contexts and responses. In experiments, we

Collaborative Response Content Recommendation 41

adopt 133 k dialogues for positive samples from 81 shops. In order to enrich
training data, we require the number of dialogues for each shop is at least 1000.
Similar to the work in [9], the data is processed to (shopID, context, response,
flag) for test easily. To improve the robustness of the system, we consider the
case of one positive example and nine negative examples.

4.2 Evaluation Metric and Baselines

We use metric Recall to evaluate the performance of the prediction. The recall is
defined as: Recall = TP

TP+FN , where TP denotes the number of predicted positive
examples who are actual positive examples, FN denotes the number of predicted
negative examples who are actual positive examples. From the definition, we can
see that a larger Recall value means a better performance.

A family of metrics used in our task is Recall rc@k. The agents are asked to
select the k most likely responses from rc responses, and it is correct if the true
response is among these k candidates.

We compare our framework with the following baselines:

1. TFIDF: Prediction is calculated by using cosine similarity of TFIDF between
the context and response.

2. RNN: Prediction is calculated by using common features extracted through
RNN without personalized features.

3. LSTM: Prediction is calculated by using common features extracted through
LSTM without personalized features.

4. RNTN: Prediction is calculated by the Recursive Neuron Tensor Network
(RNTN) with common features extracted through RNN and personalized
features modeled by tensor.

Table 1. Average recall of all 81 shops

TFIDF RNN LSTM RNTN LNTN

2@1 0.62 0.55 0.77 0.70 0.79

5@1 0.37 0.24 0.53 0.40 0.55

5@2 0.50 0.45 0.75 0.65 0.77

10@1 0.27 0.13 0.38 0.25 0.40

10@2 0.36 0.24 0.57 0.42 0.59

10@5 0.50 0.55 0.83 0.76 0.85

4.3 Performance

Table 1 presents the overall performances of our method and other methods. It
is obvious that our personalized method outperforms other baseline methods.
TFIDF shows the term frequency has some impact. The methods with RNN

42 C. Ma et al.

Training Size
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
@

1
Re

ca
ll

0.1

0.15

0.2

0.25

0.3

0.35

0.4
RNN RNTN LSTM LNTN

(a)

Training Size
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
@

5
R

ec
al

l

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
RNN RNTN LSTM LNTN

(b)

Fig. 4. Performance of methods with different training sizes in 20 shops, (a) is for 10@1
and (b) is for 10@5 recall of methods with different training sizes, respectively.

perform poor while the methods with LSTM perform well. Moreover, our LNTN
method has a 2% improvement compared with LSTM model on average which
proves that the personalized information works.

In order to verify the recommendation quality of our model for the shops
with insufficient data, we uniformly and randomly select 20 shops from all 81
shops. In the 20 shops, we use different training sizes. 10@1 and 10@5 recall of
different methods are shown in Fig. 4(a) and (b). Both results show that our
method has excellent adaptability with less training size. When the training size
is over 7000, the LNTN performance is not as good as LSTM. We guess it may
be because we set the same iterations for methods with different training sizes,
while the larger the training size is, the more iterations it will need.

Figure 5 shows the effect of neuron number on the performance. From
Fig. 5(b) we can observe that the performance of 20 neurons is as good as that
of 300 neurons. Both results shown in Fig. 5 indicate that when training size is
small, it is a wise choice to select fewer neurons.

Number of Neurons
0 50 100 150 200 250 300

10
@

1
R

ec
al

l

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

(a)

Number of Neurons
0 50 100 150 200 250 300

10
@

5
R

ec
al

l

0.77

0.78

0.79

0.8

0.81

0.82

0.83

(b)

Fig. 5. Impact of different neuron numbers in our LNTN model with 200 training
samples, (a) is for 10@1 and (b) is for 10@5 recall of methods with different neurons,
respectively.

Collaborative Response Content Recommendation 43

5 Conclusion

In this paper, we investigate a novel task to recommend response content for
customer service agents. The experimental results demonstrate that the person-
alized information of each shop is important and our personalized method gets
the best results compared with four baselines even in case of data insufficiency.

Acknowledgments. The work described in this paper was mainly supported by the
National Nature Science Foundation of China (No. 61672100, 61375045), the Ph.D. Pro-
grams Foundation of Ministry of Education of China (No. 2013110112-0035), the Joint
Research Fund in Astronomy under cooperative agreement between the National Nat-
ural Science Foundation of China and Chinese Academy of Sciences (No. U1531242),
Beijing Natural Science Foundation (No. 4162054, 4162027), and the Excellent young
scholars research fund of Beijing Institute of Technology.

References

1. Levin, E., Pieraccini, R., Eckert, W.: Learning dialogue strategies within the
Markov decision process framework. In: Proceedings of the 1997 IEEE Workshop
on Automatic Speech Recognition and Understanding, pp. 72–79 (1997)

2. Ondřej D., Filip J.: Sequence-to-Sequence Generation for Spoken Dialogue via
Deep Syntax Trees and Strings (2016)

3. Ma, H., Liu, C., King, I., et al.: Probabilistic factor models for web site recommen-
dation. In: 2011 International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, p. 274. ACM (2011)

4. Ma, H.: An experimental study on implicit social recommendation. In: 2013 Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 73–82 (2013)

5. Ondřej D., Filip J.: A context-aware natural language generator for dialogue sys-
tems. arXiv preprint arXiv:160807076 (2016)

6. Ge, W., Xu, B.: Dialogue management based on sentence clustering. In: 2015 Meet-
ing of the Association for Computational Linguistics and the International Joint
Conference on Natural Language Processing, pp. 800–805 (2015)

7. Blooma, M.J., Kurian, J.C.: Research issues in community based question answer-
ing. In: Pacific Asia Conference on Information Systems, Pacis 2011: Quality
Research in Pacific Asia, Brisbane, Queensland, Australia, 7–11 July 2011. DBLP,
p. 29 (2011)

8. Hong, L., Davison, B.D.: A classification-based approach to question answering
in discussion boards. In: International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2009, pp. 171–178 (2009)

9. Lowe, R., Pow, N., Serban, I., et al.: The ubuntu dialogue corpus: a large dataset
for research in unstructured multi-turn dialogue systems. Computer Science (2016)

10. Socher, R., Chen, Q., Mannig, C.D., Ng, A.Y.: Reasoning with neural tensor net-
works for knowledge base completion. In: Advances in Neural Information Process-
ing Systems (2013)

11. Qiu, X., Huang, X.: Convolutional neural tensor network architecture for
community-based question answering. In: 2015 International Conference on Arti-
ficial Intelligence, pp. 1305–1311. AAAI Press (2015)

http://arxiv.org/abs/160807076

Text Classification Based on ReLU Activation
Function of SAE Algorithm

Jia-le Cui1, Shuang Qiu1, Ming-yang Jiang2, Zhi-li Pei2(&),
and Yi-nan Lu3

1 College of Mathematics, Inner Mongolia University for Nationalities,
Tongliao 028043, China

jialecui0228@163.com
2 College of Computer Science and Technology,

Inner Mongolia University for Nationalities, Tongliao 028043, China
zhilipei@sina.com

3 College of Computer Science and Technology,
Jilin University, Changchun 130012, China

Abstract. In order to solve the deep self-coding neural network training pro-
cess, the Sigmoid function back-propagation gradient is easy to disappear, a
method based on ReLU activation function is proposed for training the self
coding neural network. This paper analyzes the performance of different acti-
vation functions and comparing ReLU with traditional Tanh and Sigmoid
activation function and in Reuters-21578 standard for experiments on the test
set. The experimental results show that using ReLU as the activation function,
not only can improve the network convergence speed, and can also improve the
accuracy.

Keywords: ReLU activation function � Self coding neural network � Text
classification � Accuracy

1 Introduction

With the continuous development of information society, the problem of text classi-
fication has been the important content in the research of data mining and machine
learning. Different algorithms and models of classification techniques have been pro-
posed and widely applied in the Web document classification [1] and automatic abstract
[2]. Stacked Auto-Encoder neural network [3] is a common unsupervised learning
algorithm based on neural network algorithm. Each layer network is trained by the
layer-by-layer greedy method and the whole model is optimized by back-propagation

This work is supported by National nature science fund project (61373067); Inner Mongolia
autonomous region, 2013 annual “prairie talent project”; Autonomous region “higher school
youth science and technology talents” (NJYT-14-A09); Inner Mongolia natural science
foundation (2013MS0911); Jilin province science and technology development fund project
(20140101195JC); Inner Mongolia autonomous region higher school science and technology
research (NJZY16177); Inner Mongolia autonomous nature science fund project (2016MS0624).

© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 44–50, 2017.
DOI: 10.1007/978-3-319-59072-1_6

algorithm to the objective function input value is equal to the output value. In recent
years, many researchers have proposed many improved methods based on SAE
algorithm to achieve more significant results. Wu [4] proposed SAE-PCA model
improves the recognition rate in gesture recognition significantly than the traditional
algorithms. Jiang [5] proposed a based on SAE-LBP web classifier combined with
sparse auto-encoder and LBP neural network to improve the accuracy of the classifi-
cation compared with the traditional BP neural network. However, these improved
SAE algorithms use s-shaped growth curve (Sigmoid) and hyperbolic tangent (Tanh)
function as the activation function in the process of learning characteristics. The
convergence rate of the network using this kind of function is slow or Gradient dif-
fusion leads to non-convergence [8]. More serious is the neuron saturation will lead to
information loss, thereby affecting the classification results [7].

In order to solve these problems, it is popular in recent years by using unsaturated
linear function ReLUs (Rectified Linear Units) as the activation function in the neural
network. And ReLU is more prone to sparsity and reduce the interdependence between
parameters and alleviate over-fitting problems [10]. Therefore, based on the advantages
of ReLU function, this paper proposes a text classification method based on ReLU
activation function for SAE algorithm and verifies by Reuters-21578 standard test set,
and compared with other activation functions.

2 Related Work

2.1 Auto-encoder Neural Network (AENN) [3]

Self-coding neural network is an unsupervised learning model that makes the output
target as close as possible to the input data itself [3]. The traditional self-coding neural
network is divided into three layers, including input layer, hidden layer and output
layer. The structure is shown in Fig. 1.

x2

x3

^

1x

^

2x

^

3x

x1

Fig. 1. Self coding neural network

Text Classification Based on ReLU Activation Function of SAE Algorithm 45

The entire network model in the learning process is divided into two major steps:

(1) Encoding phase of the raw data from the input layer to the hidden layer:

h ¼ gh1ðxÞ ¼ rðw1xþ b1Þ ð1Þ

(2) Reconstruction from the hidden layer to the output layer of the original data
decoding stage:

z ¼ gh2ðhÞ ¼ rðw2xþ b2Þ ð2Þ

It through the process of encoding and decoding, the original data x by the acti-
vation function mapping to the hidden layer of the feature compression expression h,
and then use BP algorithm to reconstruct the original data information z to get hidden
layer more useful and concise compression feature expression [11]. As a result, each
training sample xi is ultimately mapped to an implicitly compressed feature represen-
tation hi and an output reconstructed feature representation zi. Thus, the objective of the
AE parameter model is to minimize the reconstruction error loss function. For
self-coding neural networks, the function is generally defined as:

J W ; bð Þ ¼ 1
m

Xm

i¼1

1
2

hW ;b xi
� �� yi

���� 2
� �" #

þ k
2

Xn�1
l

l¼1

Xsi

i¼1

Xs
þ 1
j

j¼1

W
lð Þ

ji

� �2
ð3Þ

Where m is the number of training samples, xi and yi represents the input and output of

the sample i, W
lð Þ

ji represents the weights of connections of the neuron i of layer l and
the neuron j of layer lþ 1, b is the offset item.

2.2 Stacked Auto-encoder Neural Network (SAENN)

SAE neural network is composed of a multi-layer sparse auto-encoder. We regard the
output of the sparse auto-encoder of the previous layer as the input of the sparse
auto-encoder of the next layer in SAE [3]. And it’s a depth network model through
unsupervised pre-training and supervised fine-tuning. The training method of the this
network model is layer-by-layer training method. In this process, neurons between each
layer learn characteristics through some kinds of activation function, we see this
activation function as a transfer function, the activation function of sparse auto-encoder
is sigmoid function in general f ðzÞ ¼ 1

1þ e�z, or tanh function f zð Þ ¼ ez � e�z

ez þ e�z.

3 SAE Algorithm of ReLU Activation Function

The activation function is at the core of the performance of the SAE network. If the
activation function is chosen improperly, no matter what kind of learning method is
used to learn the feature or improve the network structure can not achieve high

46 J. Cui et al.

learning accuracy, or even impossible to complete the classification task; the con-
trary, if you choose a better activation function can significantly improve the network
performance [6].

In recent years, a new modifier linear activation function has been widely used in
the Restricted Boltzmann Machine (RBM) [7] and Convolutional Neural Network
(CNN) [6] in the filed of deep neural network simulating the neural system of the brain,
gradually replace the Sigmoid activation function into the mainstream. The units
produced by this function are called rectified linear units (ReLU) [10], and the function
is defined as

rectifier xð Þ ¼ max 0; xð Þ ð4Þ

If the output value of this function is less than 0, let it equal to 0; otherwise keep the
original value of the same. Compared with the traditional Sigmoid function, ReLU has
a certain sparse ability and is closer to the biological activation model. Because the
gradient calculation is not used in the calculation and division of the exponential
operation, ReLU computing faster and more accurate, better generalization. Krizheysky
[6] pointed out that the convergence rate of ReLU can be increased by 6 times com-
pared with tanh function.

Therefore, the ReLU activation function is introduced into the SAE algorithm to
study the performance of the deep network.

4 Experimental Study

Based on the Reuters-21578 data set, this paper compares the performance of neural
network using ReLU activation function and traditional activation in SAE algorithm.
The experiment is completed in Matlab2012b, using the operating system WIN7 64-bit,
CPU2.3 GHz, RAM8G.

4.1 Experimental Parameters Analysis

At present, the selection of SAE neural network structure is not perfect theoretical basis
and often associated with specific application. In a reasonable range of SAE neural
network will learn the higher-lever data more abstract features, but too many network
layers may also reduce the performance of SAE, easily lead to over-fitting [9]. In [9],
the numbers of the best hidden layer and the best hidden nodes in SAE neural network
are determined experimentally. Therefore, in this paper, the number of neurons in input
layer is 1000 and the number of nodes in output layer is 10.

In SAE neural network, two parameters (learning rate, momentum) of unsupervised
pre-training phase have great influence on the classification performance. In this paper,
the accuracy indexes of different parameters under the same activation function are
tested under Reuters-21578 dataset as shown in figures. The parameters with highest
accuracy are taken as the optimal parameters in the paper. The parameters are: Learning
rate = 1.5, Momentum = 0.2 (Figs. 2 and 3).

Text Classification Based on ReLU Activation Function of SAE Algorithm 47

However we noticed the precision of ReLU dropped drastically when the
momentum is over 0.9. This is because the sparse ability of ReLU is to force some data
to 0, which reduces the average performance of the network model. So we can improve
the ability of ReLU [12], but we not described here in detail.

Fig. 2. Curve of recognition accurate rates of different activation functions with the change of
learning rate

Fig. 3. Curve of recognition accurate rates of different activation functions with the change of
momentum

48 J. Cui et al.

To avoid data duplication, the performance of the network with different activation
functions was evaluated objectively. The averge of 5-fold cross validation (CV5) was
used as the numerical result. In addition, the other parameters of the network are as
follows: the number of iterations is 50, the number of sampers pre-training is 100.

4.2 Results Analysis

As is shown in the Table 1 the comparison between mean square training error and test
sample error rate of the SAE algorithm for different activation functions (Sigmoid,
Tanh, ReLU) in the dataset.

It can be seen from Table 1 that when using different activation functions as the
transfer function in the SAE algorithm, both the mean square training error and final
test sample error rate are different. Although the training error is the lowest in the
network with Tanh as the activation function, it shows that the Tanh function is prone
to over-fitting and lead to decrease generalization ability. The test error is the highest
with Sigmoid function as the activation function. However, the ReLU function is not
only the highest training error, but also the lowest test error, which shows that ReLU
has sparse property better prevents the over-fitting and improves the accuracy of text
classification.

5 Conclusion

In this paper, in order to solve the deep self-coding neural network training process, the
Sigmoid function back-propagation gradient is easy to disappear, a method based on
ReLU activation function is proposed for training the self coding neural network and
experiments are carried on the Reuters-21578 dataset. The experimental results show
that using ReLU as the activation function in depth self-coding neural network not only
can prevent the over-fitting phenomenon, but also improve the accuracy of text clas-
sification. It also shows that the ReLU activation function with sparse nature is more
suitable for classification and recognition in dealing with large data problems, and it
has a stronger expression ability for models, which is important for the future research
of text mining technology.

Table 1. Error rate of Reuters-21578 dataset in SAE algorithm with different activation function

Activation function Training error Test error

SAE (Sigmoid) 8.569% 46.625%
SAE (Tanh) 3.46% 24.063%
SAE (ReLU) 24.465% 10.938%

Text Classification Based on ReLU Activation Function of SAE Algorithm 49

References

1. Deng, W., Wang, G., Hong, Z.: Weighting naïve Bayesian mail filtering based on rough set.
Comput. Sci. 02, 16–29 (2011)

2. Research on Automatic Summarization Based on Maximum Entropy. Kunming University
of Science and Technology (2013)

3. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural
networks. Science 313(5786), 504–507 (2006)

4. Li, S.Z., Yu, B., Wu, W., et al.: Feature learning based on SAE-PCA net-work for human
gesture recognition in RGBD images. Neuron Comput. 151(2), 565–573 (2015)

5. Jiang, G., Gu, N., Zang, X.: Study on Web Classification based on SAE-LBP. Miniat.
Microcomput. Syst. 04, 223–276 (2016)

6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Image-net classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systerms, pp. 1097–1105
(2012)

7. Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment
classification: a deep learning approach. In: Proceedings of the 28th International Conference
on Machine Learning, pp. 513–520 (2011)

8. Dahl, G.E., Sainnath, T.N., Hinton, G.E.: Improving deep neural networks for LVCSR using
rectified linear units and dropout. In: Acoustics, Speech and Signal Processing (ICASSP),
Piscataway, pp. 8609–8613 (2013)

9. Wang, Z., Ding, J.: Study on water body extraction method based on stacked self-coding.
J. Comput. Application 35(9), 2706–2709 (2015)

10. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier networks. J. Mach. Learn. Res. 15,
315–323 (2011)

11. Ge, S.S., Hang, C.C., Lee, T.H., et al.: Stable adaptive neural network control. Springer
Publishing Company, Incorporated, Berlin (2010)

12. Xu, B., Wang, N., Chen, T., et al.: Empirical evaluation of rectified activations in
convolutional network. arXiv preprint arXiv:1505.00853. (2015)

50 J. Cui et al.

http://arxiv.org/abs/1505.00853

On Designing New Structures with Emergent
Computing Properties

Daniela Danciu(B) and Vladimir Răsvan

Department of Automation and Electronics, University of Craiova,
A.I. Cuza Street, No. 13, 200585 Craiova, Romania

{ddanciu,vrasvan}@automation.ucv.ro

Abstract. In this paper we continue the analysis of some structures
with potentialities for Artificial Intelligence (AI) devices. We follow the
suggestions of J.J. Hopfield about ensuring a sufficiently large number of
equilibria which need to be asymptotically stable in some sense. Viewing
AI devices as repetitive structures, we focus on those devices ensuring
some stability properties of the equilibria from the design stage, point-
ing out that the so-called hyperstable blocks (in particular, the triplet
connection) are suitable for this purpose. At the same time the possi-
ble number and localization of equilibria as well as their stability are
discussed.

Keywords: Hyperstable structures · Triplet connection · Emergence
properties · Asymptotic behavior · Hopfield neuron · Modified FitzHugh-
Nagumo neuron

1 Introduction

In two previous papers [1,2] we have discussed the possibility of designing new
devices for Artificial Intelligence (AI) based on networked that fulfil two basic
requirements pointed out by a classic of the field [3,4]: emergence (i.e. existence
of a quite large number of equilibria) and such global behavior properties which
ensure that some of the aforementioned equilibria are attractors (the so-called
gradient behavior).

In most cases, the approach for designing a AI device with feedback inter-
connections is as follows: it is “trained” to achieve some “useful goal” by mod-
ifying its coefficients (algorithmically) while the behavioral properties result
a posteriori.

Our approach, within the framework of the hyperstability theory [5], will be
different. We shall point out some structures which ensure: (a) the necessary
qualitative properties from the beginning (e.g. global stability versus gradient
behavior) as well as (b) the preservation of these properties with respect to some
ways of interconnections. Among the hyperstable structures we shall take into
account the most complex and the less known at the same time – the triplet.
Hyperstability of triplets of Hopfield neurons is considered. Then some aspects
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 51–59, 2017.
DOI: 10.1007/978-3-319-59072-1 7

52 D. Danciu and V. Răsvan

concerning the localization and possible number of equilibria as well as their
local stability are analyzed. The paper ends with suggestions concerning repet-
itive structures of triplet cells to achieve functional Artificial Neural Networks
(ANNs).

2 Neural Networks Containing Feedback. Elementary
Theory of Hyperstability

In contrast to feedforward AI networks (e.g. Perceptrons), Hopfield and others
considered as useful and interesting the objects containing feedback connections.
As mentioned in [6], feedback might be an instability generator and among the
mechanisms that generate instability one should discover some hidden feedback.
But it is quite well known that existence of unstable steady states is not incom-
patible with the existence of many stable steady states. Starting from the basic
ideas of [3,4] we introduced in [1] two theses that we shall follow here also

• The performance of the neural networks as well as of other AI devices is
conditioned by some “collective behavior” of many equilibria, among which
the best is the gradient like behavior. Usually this condition is overlooked in
the functional design stage and has to be checked a posteriori.

• The most efficient (and the most common) way of seeking the gradient like
behavior is to make use of some Lyapunov like lemmas which are obtained
from the Barbašin-Krasovskii-LaSalle invariance principle.

In order to seek for the solutions of the aforementioned problems we shall look
for ensuring the gradient behavior by using the theory of hyperstability elaborated
by Popov [5]. The basic notions of the theory can be found in short in [1]. The
basic element of the theory is the so-called Popov system composed of some
controlled dynamics equation and an integral index [1,5]. To a standard “block”
of the control theory

ẋ = f(x, u(t), t), v = g(x, u(t), t) (1)

which is “square” (the number of the inputs equals the number of the outputs)
one associates the Popov system

ẋ = f(x, u(t), t)

η(t0, t) = �e

(∫ t

t0

u∗(τ)v(τ)dτ

)
= �e

(∫ t

t0

u∗(τ)g(x(τ), u(τ), τ)dτ

)
.

(2)

Definition 1. The block (1) is called hyperstable in the strict sense if system
(2) is such i.e. there exist two Kamke-Massera functions ρ : R

+ �→ R
+ and

ψ : R+ �→ R
+ (also called K-functions) such that

ρ(|x(t)|) ≤ η(t0, t) + ψ(|x(t0)|), ∀t ≥ t0 (3)

along the solutions of (1).

New Emergent Computing Structures 53

The following two results are basic

Proposition 1. The sum of two hyperstable Popov systems - defined by the
Cartesian product of the two dynamics and the sum of the two indexes - is also
hyperstable.

Proposition 2. Assume (1) is hyperstable in the sense of Definition 1. Then,
among the free state transitions of

ẋ = f(x, 0, t) (4)

there is found the trivial equilibrium x(t) ≡ 0 which is stable in the sense of
Lyapunov and all free state trajectories are globally bounded.

Remark that while Proposition 2 concerns a single block, Proposition 1 may
concern block interconnections leading to the sum of the associated Popov sys-
tems. With respect to this we can make.

Statement 1. [1] Those interconnections of hyperstable blocks to which one can
associate sum systems generate hyperstable aggregated blocks.

Fig. 1. The triplet interconnection (Source: [7]).

The most common such interconnections are the feedforward and the negative
feedback interconnections [5]. However, in a less circulated paper [7], V.M. Popov
introduced a new interconnection – of three blocks – which, at least in the case
of SISO (Single Input Single Output) blocks turns to be independent of the
aforementioned two (Fig. 1). This new interconnection was introduced within
the context of real positive transfer function synthesis. Since real positiveness
of the transfer function is necessary and sufficient for the hyperstability of the
linear time invariant blocks, the connection with the theory of hyperstability is
obvious.

We shall not insist any longer on this subject since this was done in a previous
paper [1]. As stated there, we propose the triplet of hyperstable neurons as a
basic cell for a possible new Cellular Neural Network. Among other advantages,
this structure can give at users’ disposal a stable structure with non-symmetric
weight matrix.

54 D. Danciu and V. Răsvan

3 Hyperstable Neurons

We shall discuss here briefly two types of artificial neurons for possible use in
hyperstable interconnections.

A. The standard Hopfield neuron is described by

ẋ = −ax + wy + I, y = f(λx), λ > 0 (5)

where f : R �→ R is a sigmoid i.e. sector restricted increasing function. Since the
neurons are connected at the level of the variable y, this will be considered the
output of the block. Moreover the “neuron block” itself is a feedback connection
of a linear and a non-linear block containing a sector restricted nonlinear func-
tion. This last block is hyperstable [5] hence we need the hyperstability of the
linear block

ẋ = −ax − wu(t), v = λx (6)

where a > 0, w ∈ R. As showed in [1,5], the necessary and sufficient condition
for hyperstability is the fulfilment of the frequency domain inequality

1
k

− �e
(1 + ıωq)wλ

a + ıω
> 0, ∀ω > 0 (7)

for some q ∈ R. Here k > 0 is the upper bound of the sector where f is con-
fined i.e. 0 ≤ f(σ)σ ≤ kσ2. A rather straightforward computation will give the
following condition

1 − wλk

a
> 0. (8)

if w > 0. For w < 0, (7) always holds for all λ > 0, a > 0, k > 0 provided q > 0.
B. We shall consider now a modified version of the FitzHugh-Nagumo neuron

for hyperstability. The original model reads as follows

u̇ = f(u) − v + I(t), τ v̇ = g(u) − v (9)

where f(u) = u − u3/3 and g(u) = δu with δ = δ+ for u > 0 and δ = δ− for
u < 0. This model is much alike to that of a Van der Pol oscillator since f(u)
is a S-like function. For AI needs we shall consider a modified version where the
S-function is substituted by a sigmoid to obtain

u̇ = −φ(u) − v + I(t), τ v̇ = δu − v. (10)

The original FitzHugh-Nagumo neurons are supposed to be interconnected as
follows

u̇i = f(ui) − vi +
N∑
1

wijuj + Ii(t), τiv̇i = δui − vi, i = 1, N. (11)

From here we deduce the structure of the modified FitzHugh-Nagumo neuron

u̇ = −φ(u) + wu − v + μ(t), τ v̇ = δu − v, y = u. (12)

New Emergent Computing Structures 55

The structure being a feedback one, with a sector restricted nonlinear function,
the approach is the same as in the case of the Hopfield neuron. The necessary and
sufficient condition for hyperstability is the fulfilment of the frequency domain
inequality

1
k

+ �e(1 + ıωq)γ(ıω) > 0, ∀ω > 0 (13)

for some q ∈ R. Here γ(s) is the transfer function of the following linear block

u̇ = wu − v + μ(t), τ v̇ = δu − v, y = u (14)

and is given by

γ(s) =
1 + sτ

δ − w + (1 − wτ)s + τs2
. (15)

The simple conditions w < δ, wτ < 1 ensure γ(s) has its poles with negative
real part. Therefore the modified transfer function

χ(s) = (1 + qs)γ(s) =
(1 + sq)(1 + sτ)

δ − w + (1 − wτ)s + τs2
(16)

has its poles and its zeros in the left hand plane provided q > 0. It will thus
be positive real provided �eχ(ıω) ≥ 0 for some q > 0. A straightforward while
tedious manipulation shows the following choices for q > 0:

– w < 0: if δτ < 1, then q > 0 is good; if δτ > 1 then take q > −(wτ2)(δτ−1)−1;
– w > 0: if δτ < 1 then take q > (wτ2)(1−δτ)−1; if δτ > 1 then take q between

the two positive roots of the trinomial

(δτ − 1)2q2 + 2τ2(w(δτ − 1) − 2(δ − w))q + w2τ4 = 0. (17)

Therefore the modified FitzHugh-Nagumo neuron (12) is hyperstable for any
k > 0 provided w < δ, wτ < 1; worth mentioning that the aforementioned
conditions are fulfilled automatically for w < 0.

4 Localization and Stability for the Equilibria of a Triplet
Cell of Hopfield Neurons

Consider the triplet cell of Hopfield neurons (TCH) described by the equations

ẋ = −Ax + Wy + I, y = F (Λx), v = cT y (18)

where A = diag(ai), Λ = diag(λi), F (Λx) = diag(fi(λixi)), I = bu, b = c =[
α 0 β

]T , α, β ∈ R+, ai > 0, λi > 0, ∀i = 1, 3 and the interconnections matrix
W, induced by the triplet structure presented in Fig. 1, with the form

W =

⎡
⎣w11 −w12 0

w21 w22 w23

0 −w32 w33

⎤
⎦ , wij > 0, ∀i, j = 1, 3. (19)

56 D. Danciu and V. Răsvan

The input u and the output v of TCH are terminals which allow coupling the
triplet cell with other similar structures within a more general cell-based neural
network ; we shall consider them as scalar real valued functions. The nonlinear
sigmoid function of the Hopfield neuron of type f(λx) = 1/(1 + exp(−λx)),
where the scaling factor λ > 0 may be different for each neuron, f : R →
(0, 1) is a continuous differentiable, monotonically increasing verifying, for λ > 0
sufficiently large,

lim
x→∞ f(x) = 1, lim

x→−∞ f(x) = 0, lim
|x|→∞

f ′(x) = 0. (20)

Due to these properties, the dynamics of the TCH evolves within the open cube
H = (0, 1)3; we define also the closed cube by H̄ = [0, 1]3.

The main aim of this section is the study of the existence, number, location
and stability properties of the equilibria for the TCH. The approach we shall use
is inspired by a paper by Vidyasagar [8]. Due to the structure induced by triplet,
(see (19) and Fig. 1) we shall not make use, as in [8], of the assumptions about
W regarding either the “no self-interactions” (wii = 0) or “symmetrical inter-
actions” (wij = wji). The Vidyasagar’s approach is based on the relationships
between the state xeq and the output yeq of an isolated neuron at equilibrium,
as they result from the features of the intersection points of two plots. More
precisely, by considering the equation of an isolated Hopfield neuron (5) and
defining

g1(x) =
a

w
x − I

w
, g2(x) = f(λx) (21)

the intersection points of g1(x) and g2(x) in Fig. 2, for w > 0 as well as for w < 0,
allow deriving in [8] the following relationships for the equilibria pair (xeq, yeq)

case P:

{
yeq → 0, if xeq < 0 (type P1)

yeq → 1, if xeq > 0 (type P2)
, case Q:

{
yeq ∈ (0, 1), if xeq → 0 (type Q)

(22)
Accordingly, one can distinguish the following possible locations within H̄ for

the equilibria yeq of the TCH when λi → ∞:

[I] - Interior of H: yeq ∈ Int(H) ⇔ yi
eq ∈ (0, 1), ∀ i = 1, 3

[V] - Vertices of H̄ : yeq → V (H̄) ⇔ yi
eq → {0, 1}, ∀ i = 1, 3

[F] - Faces of H̄ : yeq → F (H̄) ⇔ yi
eq → {0, 1}, yj,k

eq ∈ (0, 1), ∀ i, j, k = 1, 3
[E] - Edges of H̄ : yeq → E(H̄) ⇔ yi,j

eq → {0, 1}, yk
eq ∈ (0, 1), ∀ i, j, k = 1, 3.

(23)

Case [I]: Equilibria within the interior of H. This case corresponds to
points of type Q in (22). Consequently, by replacing x = 0 in the first equation
of (18) we obtain

Wy + bu = 0. (24)

Taking into account (19) it follows that det(W) > 0 and thus, when λ → ∞, the
triplet of Hopfield neurons has an unique equilibrium defined by

yeq = −W−1bu ∈ Int(H). (25)

New Emergent Computing Structures 57

−6 −4 −2 0 2 4 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

g 1, g
2

−6 −4 −2 0 2 4 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

g 1, g
2

g2(x)g2(x)

g1(x)

Q
Q

P2

P1

g1(x)

Fig. 2. Equilibria locations for the isolated Hopfield neuron (Source: [8]) as defined
in (21)–(23). Remark: λ → ∞ ensures the shape of sigmoid function to approach the
shape of threshold function. Legend: g1(x) (thick line), y = g2(x) for: λ = 2 (dotted
line), λ = 8 (thin line).

The Stodola criterion applied to the characteristic polynomial p(s) = det(sI−W)
gives that the unique equilibrium of the TCH within the interior of H is unstable.

Case [V]: Equilibria near the vertices Vi, i = 0, 7 of the closed cube
H̄ = [0, 1]3. Consider the vertices of H̄: V0 = [0 0 0]T , V1 = [0 0 1]T , V2 = [0 1 0]T ,
V3 = [0 1 1]T , V4 = [1 0 0]T , V5 = [1 0 1]T , V6 = [1 1 0]T , V7 = [1 1 1]T . The
existence and location of the TCH equilibria near the vertices of H̄ follow from
the fulfilment of the conditions of case P in (22) by the solutions of the equilibria
equation derived from (18) for ẋ = 0

Wy + bu = Ax. (26)

A straightforward computation leads to the following possible equilibria:{
yeq →{V ∗

2 , V ∗
3 , V ∗

6 , V ∗
7 } if u ∈ I=

(
max

{
w12−w11

α
, w32−w33

β

}
, min

{
w12
α

, w32
β

})
⊂ R+

yeq →V ∗
0 if u ≤ 0.

(27)
In order to evaluate the type and stability of these equilibria we take into account
the properties (20) of the nonlinear functions fi(·), i = 1, 3 and apply the well-
known stability by the first approximation method. Let xeq be an equilibrium
of the system (18) and yeq = F (Λxeq). The linearized system of (18) in the
equilibrium xeq is

ẋL = ALxL, AL = −A + WJF (xeq)Λ (28)

where JF (xeq) is the Jacobian matrix [∂F/∂x](xeq), a diagonal matrix. The con-
ditions (20) applied to (28) give AL → −A. Consequently, AL = diag(−ai)i=1,3

and all its eigenvalues are negative. Thus, all the equilibria located near the ver-
tices defined by (27) are stable nodes.

Cases [F and E]: Equilibria located near the faces and/or edges of
H̄ = [0, 1]3. These two cases are described by the relations [F] and [E] in (23). In

58 D. Danciu and V. Răsvan

order yeq be an equilibrium of either [F] or [E], the components of xeq and yeq

have to fulfil {
Wyeq + bu = Axeq if yi

eq → {0, 1}, xi
eq ∈ R \ {0}

Wyeq + bu = 0 if yi
eq ∈ (0, 1), xi

eq → 0 .
(29)

A straightforward computation gives that the elements of H̄ which may contain
equilibria are the face F ∗ and the four edges E∗

1 , E∗
2 , E∗

3 , E∗
4 defined by: y∗

F =
[y∗

1 1 y∗
3]

T , y∗
E1

= [y∗
1 1 0]T , y∗

E2
= [y∗

1 1 1]T , y∗
E3

= [0 1 y∗
3]

T , y∗
E4

= [1 1 y∗
3]

T .
Worth mentioning that y∗

1 = w12−αu
w11

and y∗
3 = w32−βu

w33
belong to the interval

(0, 1) if u ∈ I. The type and stability properties of these equilibria are evaluated
on the linearized system (28), with the entries of the Jacobian matrix JF (xeq)
as follows

J i
F (xeq) =

{
y∗
i

λi
if yi

eq ∈ (0, 1)
0 if yi

eq → {0, 1} .
(30)

An evaluation of the signs of AL eigenvalues leads to the conclusion that the
TCH has:

– at least an equilibrium yeq attaining the face F ∗; this equilibrium is: (i) a

stable node, provided u > max
{

w12−a1
α , w32−a3

β

}
or (ii) an hyperbolic equi-

librium with the unstable manifold of dimension 2, otherwise;
– at least an equilibrium attaining each of the edges E∗

1 , E∗
2 , E∗

3 , E∗
4 ; all these

equilibria are: (i) stable nodes, provided u > max
{

w12−a1
α , w32−a3

β

}
or (ii)

hyperbolic equilibria with the unstable manifold of dimension 1, otherwise.

5 Conclusions

Considering the framework of hyperstability theory [5], this paper concerns the
analysis of some structures with potentialities for AI devices. Our approach is,
as far as we know, different from most approaches at least in the AI field. More
specifically, we focus on those structures which ensure the necessary qualitative
properties (e.g. global stability versus gradient behavior) from the beginning, i.e.
from the design stage. Moreover, this approach also ensures the preservation of
these qualitative properties with respect to some ways of interconnections.

Among the hyperstable structures, we focus on the triplet connection. First,
there are derived conditions for hyperstablilty of both Hopfield and modified
FitzHugh-Nagumo neurons – as component blocks. Then, the triplet cell of
Hopfield neurons is studied from the points of view of equilibria localization
and number as well as their local stability. The results of this contribution give
reasons to further study the properties of repetitive hyperstable structures of
triplet networks in order to eventually discover such emergent collective capa-
bilities which allow them to achieve some functional ANNs.

New Emergent Computing Structures 59

References

1. Danciu, D., Răsvan, V.: On structures with emergent computing properties. A con-
nectionist versus control engineering approach. In: Rojas, I., Joya, G., Catala, A.
(eds.) IWANN 2015. LNCS, vol. 9094, pp. 415–429. Springer, Cham (2015). doi:10.
1007/978-3-319-19258-1 35

2. Răsvan, V.: Reflections on neural networks as repetitive structures with several
equilibria and stable behavior. In: Rojas, I., Joya, G., Cabestany, J. (eds.) IWANN
2013. LNCS, vol. 7903, pp. 375–385. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38682-4 40

3. Hopfield, J.J.: Neural networks and physical systems with emergent collective com-
putational abilities. Proc. Natl. Acad. Sci. USA 79(1), 2554–2558 (1982)

4. Hopfield, J.J.: Neurons with graded response have collective computational proper-
ties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81(5), 3088–3092
(1984)

5. Popov, V.M.: Hyperstability of Control Systems. Die Grundlehren der mathematis-
chen Wissenschaften, vol. 204. Springer, Heidelberg (1973)

6. Neymark, Y.I.: Dynamical Systems and Controlled Processes (in Russian). Nauka,
Moscow (1978)

7. Popov, V.M.: An analogue of electrical network synthesis in hyperstability (in
Romanian). In: Proceedings of the Symposium on Analysis and Synthesis of Elec-
trical Networks, no. III, p. 9.1. Power Institute of Romanian Academy (1967)

8. Vidyasagar, M.: Location and stability of the high-gain equilibria of nonlinear neural
networks. IEEE Trans. Neural Netw. 4(4), 660–671 (1993)

http://dx.doi.org/10.1007/978-3-319-19258-1_35
http://dx.doi.org/10.1007/978-3-319-19258-1_35
http://dx.doi.org/10.1007/978-3-642-38682-4_40
http://dx.doi.org/10.1007/978-3-642-38682-4_40

Fast Sparse Least Squares Support Vector
Machines by Block Addition

Fumito Ebuchi(B) and Takuya Kitamura(B)

National Institute of Technology, Toyama College,
13 Hongo-machi, Toyama-shi, Toyama, Japan

h1612106@mailg.nc-toyama.ac.jp, kitamura@nc-toyama.ac.jp

Abstract. In this paper, we propose two fast feature selection meth-
ods for sparse least squares support vector training in reduced empirical
feature space. In the first method, we select the training vectors as the
basis vectors of the empirical feature space from the standpoint of the
similarity. The complexity of the selection can be lower than that of the
conventional method because we use the inner product values of training
vectors without linear discriminant analysis or Cholesky factorization
which are used by the conventional methods. In the second method, the
selection method is forward selection by block addition which is a wrap-
per method. This method can decrease the size of the kernel matrix in
the optimization problem. The selecting time can be shorter than that of
the conventional methods because the computational complexity of the
selecting basis vectors depends on the size of the kernel matrix. Using
benchmark datasets, we show the effectiveness of the proposed methods.

Keywords: Empirical feature space · Least squares support vector
machine · Pattern recognition

1 Introduction

Support vector machines (SVMs) [1,2] are powerful classifiers for pattern clas-
sification problems, and have been applied for several disciplines. As the advan-
tage of SVMs, the solutions are sparse. Also, the generalization ability is high
and it is easy to expand to non-linearly problems by the kernel methods [3].
However, the computational complexity of the standard SVMs may be too high
because a quadratic programming problem must be solved in training SVMs. A
least squares SVM (LS-SVM) [4] is one type of SVMs and can overcome this
problem. The solutions of LS-SVMs can be obtained by solving a set of linear
equations. Therefore, the computational complexity of LS-SVMs can be lower
than that of the standard SVMs for the small problems. However, the solu-
tions of the LS-SVM are not sparse because all training vectors become support
vectors (SVs). A sparse LS-SVMs (SLS-SVMs) [5,6] in the reduced empirical
feature space were proposed by Abe as the sparse models of LS-SVMs. In the
SLS-SVMs, the solutions are obtained by solving LS-SVM in the empirical fea-
ture space [9] spanned by the linearly independent training vectors, which are
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 60–70, 2017.
DOI: 10.1007/978-3-319-59072-1 8

Fast Sparse Least Squares Support Vector Machines by Block Addition 61

selected by linear discriminant analysis (LDA) [7] or Cholesky factorization [8].
Then, the solutions are sparse because the basis vectors of the empirical feature
space are defined as SVs. Using LDA or Cholesky factorization, the complexity
of selection for the linearly independent training vectors may be large in large
problems. Also, the generalization ability of SLS-SVMs may be worse than that
of LS-SVM because the basis vectors of the empirical feature space are selected
from the only standpoint of linearly independence. To overcome this problem,
in an Improved SLS-SVM (ISLS-SVM) [10] which is proposed by Kitamura and
Asano, the basis vectors of the empirical feature space are selected from the
standpoints of classification and linearly independence. However, as with Abe’s
SLS-SVM, the computational complexity of ISLS-SVM is high.

In this paper, to reduce the computational complexity of ISLS-SVM, we pro-
pose two fast selection methods for the basis vectors of the empirical feature space.
In the first method, we select the basis vectors based on the similarity among
training vectors. First, as the ISLS-SVM, the training vectors are sorted based
on the objective function value of the LS-SVM in each one-dimensional feature
space spanned by each training vector. Then, we obtain phase angles between
the basis vector corresponding to the smallest objective function value and other
training vectors. We select the training vectors, whose phase angle is larger than
the threshold value, as the candidates of the basis vector of the empirical feature
space. We select another training vector based on the objective function values
from the candidates of the basis vectors and iterate the above procedure. Thus, the
similarities of the selected basis vectors are low. In this method, the basis vectors
of the empirical feature space can be selected faster than LDA and Cholesky fac-
torization because the computational complexity is O(M2). The second method is
forward selection by Block Addition [11]. In this method, the basis vectors of the
empirical feature space are selected from some subsets of training vectors. First, we
obtain the objective function values of LS-SVM in each one-dimensional feature
spaces spanned by each training vector. Then, based on these objective function
values, all training vectors are divided equally into some subsets in increase order
of the corresponding objective function values. Next, we generate the empirical
feature space whose basis vectors are selected by the wrapper method from these
subsets. Finally, we solve the LS-SVM in this generated empirical feature space.
As with SLS-SVM, the basis vectors of the empirical feature space in the proposed
method can be defined as the SVs.

In this paper, we describe the conventional SLS-SVM in the empirical feature
space in Sect. 2. In Sect. 3, we show the proposed methods, and, in Sect. 4, we
describe the effectiveness of the proposal method by computer experiment using
the benchmark datasets. In Sect. 5, we deliver the conclusion.

2 Sparse Least Squares Support Vector Machine in the
Sorted Empirical Feature Space

2.1 Least Squares Support Vector Machine

The decision function D(x) is shown as follows:

D(x) = w�φ(x) + b, (1)

62 F. Ebuchi and T. Kitamura

where x, w, φ(x) and b are the l-dimensional input vector, the n-dimensional
weight vector, the mapping function into the n-dimensional feature space, and
the bias term. We obtain w and b by solving the following optimization problem.

min
1
2
w�w +

C

2

M∑

i=1

ξ2i , (2)

s.t. w�φ(xi) + b = yi − ξi (3)
for i = 1, 2, ...,M.

Here, yi = 1 or −1 if xi belongs to Class 1 or 2, respectively. C is the mar-
gin parameter which determines the trade-off between the maximizing margin
between classes and the minimizing error. ξi is the slack variable for φ(xi). Intro-
ducing the Lagrange multipliers α = (α1, α2, ..., αM) into (2) and (3), we obtain
the following unconstrained objective function.

min Q =
1
2
w�w +

C

2

M∑

i=1

ξ2i −
M∑

i=1

αi(w�φ(xi) + b − yi + ξi). (4)

We obtain α and b by solving (4) and define the decision function which is shown
as follows:

D(x) =
M∑

i=1

αiφ
�(xi)φ(x) + b

=
M∑

i=1

αiK(xi,x) + b. (5)

Then, the decision function D(x) needs all training vectors. Namely, all training
vectors are SVs in LS-SVM and the LS-SVM doesn’t have sparsity.

2.2 Sparse Least Squares Support Vector Machine in the Reduced
Empirical Feature Space

The mapping function h(x) which maps the input vector x into the N -
dimensional empirical feature space is shown as follows:

h(x) = (K(x′
1,x), ...,K(x′

N ,x))�, (6)

where x′ are N linearly independent training vectors, which are basis vectors of
the empirical feature space. The decision function De(x) in the empirical feature
space is shown as follows:

De(x) = v�h(x) + be, (7)

where v and be are the N -dimensional weight vector and bias term. We obtain
v and be by solving the following optimization problem.

Fast Sparse Least Squares Support Vector Machines by Block Addition 63

min
1
2
v�v +

C

2

M∑

i=1

ξ2i , (8)

s.t. v�h(xi) + be = yi − ξi (9)
for i = 1, 2, ...,M.

In this problem, the solution can be obtained by solving the primal form because
the computational complexity of primal form is smaller than that of dual form.
From (6) and (7), the decision function De(x) need the linearly dependent train-
ing vectors. Hence, the solution is sparse. However, to obtain the linearly inde-
pendent training vectors by LDA or Cholesky factorization, the computer com-
plexity may be large in large problems. Moreover, there is no assurance that
good training vectors from the standpoint of classification are selected as the
basis vectors of the empirical feature space because the order of judge of linearly
independence for the training vectors is random.

2.3 Sorting Method for Kernel Matrix Based on the Objective
Function Value

In the ISLS-SVM [10], to select good training vectors as basis vectors of the
empirical feature space, the order of judge of linearly independence for the train-
ing vectors is sorted from the standpoint of classification.

First, we select one training vector φ(xi)(i = 1, 2, ...,M). Then we generate
the one-dimensional feature space spanned by φ(xi). We determine the following
mapping function gi(x) into this one-dimensional feature space:

gi(x) =
K(xi,x)√
K(xi,xi)

. (10)

Finally, we obtain the objective function value Qi by solving (8), (9) which
are replaced h(x) with gi(x). We obtain M objective function values Qi (i =
1, . . . , M). The training vector corresponding to the small objective function
value is effective as the basis vector of the empirical feature space because the
optimization problem of LS-SVM is the minimization problem. Then, we select
the linearly independent training vectors in increasing order of the objective
function values. However, in the conventional methods, the basis vectors of the
empirical feature space are selected by LDA or Cholesky factorization which
have a large computational complexity. The computational complexity of these
algorithms is O(M3).

3 Fast Selection for Basis Vectors of the Empirical
Feature Space

3.1 Fast Selection Using the Phase Angle

The phase angle between a training vector and other training vector is the degree
of dissimilarity. In this method, we select the basis vectors of the empirical

64 F. Ebuchi and T. Kitamura

feature space such that the phase angles are smaller than the threshold value.
First, as with the ISLS-SVM, we obtain the objective function value in the one-
dimensional feature space spanned by each training vector. Then, based on these
objective function values, the subscripts of the training vectors are sorted in
ascending order. We determine the following the similarity between the training
vector φ(xp) and the training vector φ(xq).

cosθpq =
φ(xp) · φ(xq)

||φ(xp)|| · ||φ(xq)||
=

K(xp,xq)√
K(xp,xp)

√
K(xq,xq)

(11)

for p = 1, ...,M − 1, q = p + 1, ...,M.

If the value of cosθpq is smaller than the threshold value β, the training vector
φ(xq) is selected as the basis vector of the empirical feature space. Then, the
complexity of this selection is O(M2), which is lower than that of the conven-
tional selection O(M3).

3.2 Fast Sparse Least Squares Support Vector Machines by Block
Addition

In this section, we discuss the fast selection method for the basis vectors of the
empirical feature space with block addition. The flow of the proposed method
is showed in Fig. 1. In this method, we divide the training vectors into several
sets. Let S be the SV candidate set. First, we sort the subscripts of the training
vectors from the standpoint of the classification as with the ISLS-SVM. Then, we
divide the training vectors equally into twenty sets Sl(l = 1, ..., 20) in subscript
order. We add S1 to S and select the linearly independence training data from
S by Cholesky Factorization or based on the degree of similarity. Then, we
obtain the average recognition rate R1 by five-fold cross-validation (CV). Let
R1 be R1. Next, using the Cholesky Factorization or the degree of similarity,
we select the linearly independent training vectors from S which is added to
Sl(l = 2, ..., 20) and we obtain the average recognition rate Rl

2 by five-fold CV.
Let R2 be maximum value of Rl

2 and add Sl to S. If R2 < R1, the iteration
is terminated. Otherwise, we iterate the above procedure until Ri+1 > Ri. In
the following, we show the algorithm of our proposed method for the Cholesky
Factorization or the degree of similarity.

Algorithm

Step 1 Sort the subscript of the all training vectors based on the objective func-
tion values.
Step 2 Divide the all training vectors equally into twenty sets Sl(l = 1, ..., 20) in
subscript order.
Step 3 Set S ← S1, Fl = 1(l = 2, ..., 20).
Step 4 Select the basis vectors of the empirical feature space from S by using

Fast Sparse Least Squares Support Vector Machines by Block Addition 65

the Cholesky Factorization or based on the degree of similarity.
Step 5 Solve the optimization problem (8), (9) to obtain the average recognition
rate by five-fold CV. Let this average recognition rate be R1.
Step 6 Set i = 2.
Step 7 Set l = 2.
Step 8 If Fl = 1, select the basis vectors of the empirical feature space from
S ← S + Sl by the Cholesky Factorization or based on the degree of similarity
and go to Step 9. Otherwise, set l = l + 1 and go to Step 8.
Step 9 Solve the optimization problem of (8) and that of (9) to obtain the aver-
age recognition rate by CV. Let this average recognition rate be Rl

i.
Step 10 If Rl

i < Ri−1, set Fl = 0.
Step 11 If l = 20, go to step 12. Otherwise, set l = l + 1 and go to Step 8.
Step 12 Set Ri = maxRl

i.
Step 13 If Ri > Ri−1, set i = i + 1, S ← S + Sl (l = argmaxRl

i) and go to Step
7. Otherwise go to Step 14.
Step 14 Using (6), all training vectors are mapped into the empirical feature
space whose basis vectors are the independent training vectors of the set S.
Step 15 Obtain v and be by solving the optimization problem of (8) and that of
(9).
Step 16 Calculate the decision function (7).

Fig. 1. The flow of the proposed method

4 Computer Experiment

In this section, we compare the proposed methods with the conventional ISLS-
SVM using UCI benchmark datasets [4,12]. We measure the computational time
using a computer (OS : Window 7 (64 bit), CPU : AMD Athlon (tm) II X 2 250
Processor, 4.00 GB memory). In this section, we refer to the ISLS-SVM as
SLS-SVM and the proposed method as FSLS-SVM. To distinguish between the
methods which use the Cholesky factorization and the phase angle, we add sub-
script P to the proposed method using the phase angle.

66 F. Ebuchi and T. Kitamura

Table 1. Two-classes benchmark
datasets

Data Input Training Test Sets

Banana 2 400 4900 100

B.cancer 9 200 77 100

Diabetes 8 468 300 100

German 20 700 300 100

Heart 13 170 100 100

Image 18 1300 1010 20

Ringnorm 20 400 7000 100

F.solar 9 666 400 100

Splice 60 1000 2175 20

Thyroid 5 140 75 100

Titanic 3 150 2051 100

Twonorm 20 400 7000 100

Waveform 21 400 4600 100

Table 2. Multi-classes benchmark datasets

Data Class Input Training Test

Iris 3 4 75 75

Numeral 10 12 810 820

Blood-cell 12 13 3097 3100

Thyroid(M) 3 21 3772 3428

4.1 Benchmark Datasets

We use the benchmark datasets shown in Tables 1 and 2. Table 1 lists the num-
ber of input variables, training data, test data, and datasets for 13 two-class
classification problems. Each problem has 100 or 20 datasets. Table 2 lists the
number of classes, input variables, training data, and test data.

4.2 Setting Hyper-Parameters

And, we use three types of kernel: linear (K(x,x′) = x�x′), polynomial
(K(x,x′) = (x�x′ + 1)d), and RBF (K(x,x′) = exp(γ||x − x′||2)) kernel. We
determined the parameters C, d for polynomial kernels, γ for RBF kernels, and η
which is the threshold values for the Cholesky Factorization by five-fold CV. We
selected C from {0.1, 1.0, 5.0, 10, 50, 100, 500, 103, 5×103, 104}, d from {2, 3, 4, 5},
γ from {0.1, 0.5, 1.0, 1.5, 3.0, 5.0, 10, 15, 20, 50, 100, 200}, and η which is the
threshold value of Choleskey factorization from {10−2, 10−3, 10−4, 10−5, 10−6}.
We also set the threshold value β = 0.99 of the phase angle. Table 3 lists the
hyper-parameters obtained by the five-fold CV.

4.3 Discussion

Table 4 shows the training time of each problem for the conventional method
and the proposed methods. The shortest training time for each dataset is shown
in bold. The shorter training time of the proposed methods than that of the
SLS-SVM is marked with *. The training time of the SLS-SVMP is shortest in

Fast Sparse Least Squares Support Vector Machines by Block Addition 67

Table 3. Selected kernels and hyper-parameters by five-fold cross validation

SLS-SVM SLS-SVMP FSLS-SVM FSLS-SVMP

Data Kernel C η Kernel C Kernel C η Kernel C

Banana γ = 100 5 10−4 γ = 100 5 γ = 30 5 × 103 10−5 γ = 50 103

B.cancer Linear 100 10−4 γ = 20 1 d = 3 104 10−2 d = 4 50

Diabetes d = 3 10 10−3 d = 2 500 γ = 15 100 10−4 γ = 15 100

F.solar d = 3 5 10−5 d = 5 1 γ = 5 100 10−3 γ = 5 100

German Linear 5 × 103 10−3 γ = 3 100 Linear 5 × 103 10−4 Linear 5 × 103

Heart Linear 103 10−2 γ = 50 0.1 γ = 1 104 10−4 γ = 1 104

Image γ = 200 104 10−6 γ = 200 104 γ = 200 104 10−4 γ = 200 104

Ringnorm γ = 100 0.1 10−2 γ = 100 0.1 γ = 100 0.1 10−2 γ = 100 0.1

Splice γ = 10 100 10−2 γ = 10 100 γ = 3 500 10−3 γ = 3 500

Thyroid γ = 200 1 10−2 γ = 200 1 γ = 200 500 10−3 γ = 200 500

Titanic Linear 500 10−5 Linear 5 d = 2 10 10−2 d = 2 10

Twonorm γ = 1 10 10−4 γ = 50 1 Linear 1 10−3 γ = 5 5

Waveform γ = 3 104 10−4 γ = 3 103 γ = 50 5 10−2 γ = 50 5

Iris d = 2 5 × 103 10−2 d = 2 500 γ = 5 104 10−3 γ = 5 104

Numeral γ = 15 500 10−3 γ = 15 500 γ = 10 5 × 103 10−4 γ = 10 5 × 103

Blood-cell γ = 50 100 10−3 γ = 50 50 γ = 50 104 10−3 γ = 50 5 × 103

Thyroid(M) γ = 200 104 10−5 γ = 200 104 γ = 200 104 10−6 γ = 200 104

Table 4. Comparison of training time in second

Data SLS-SVM SLS-SVMP FSLS-SVM FSLS-SVMP

Banana 0.0942 *0.0435 *0.0680 *0.0828

B.cancer 0.0171 *0.0088 *0.0151 *0.0153

Diabetes 0.1795 *0.0113 *0.1243 *0.1239

F.solar 0.8096 *0.0274 *0.1103 *0.1096

German 1.0531 *0.1008 *0.1205 *0.1268

Heart 0.0110 0.0155 0.0177 0.0164

Image 9.6861 *0.8837 *1.7498 *2.1738

Ringnorm 0.0794 *0.0734 *0.0727 *0.0786

Splice 5.2503 *4.9179 *1.0425 *1.0407

Thyroid 0.0050 *0.0039 0.0081 0.0082

Titanic 0.0082 *0.0008 *0.0070 *0.0060

Twonorm 0.0889 *0.0727 *0.0382 *0.0792

Waveform 0.0802 *0.0724 0.0823 0.0836

Iris 0.001 *− 0.005 0.004

Numeral 1.279 *0.209 *0.694 0.773

Blood-cell 147.7 256.9 *69.67 *118.5

Thyroid(M) 275.8 *262.9 *135.2 *139.9

68 F. Ebuchi and T. Kitamura

Table 5. Comparison of the average recognition rates and the standard deviation of
the rate in percent

Data SLS-SVM SLS-SVMP FSLS-SVM FSLS-SVMP

Banana 89.66± 0.42 *89.61 ± 0.42 88.49 ± 0.60 88.97 ± 0.60

B.cancer 73.40 ± 4.69 *73.71 ± 4.44 *73.88± 4.70 *73.84 ± 4.55

Diabetes 77.04 ± 1.55 *77.17± 1.66 *76.82 ± 1.60 *76.82 ± 1.60

F.solar 66.71 ± 1.71 *66.55 ± 1.63 *66.80± 1.72 *66.76 ± 1.73

German 75.66 ± 2.16 *75.85± 2.05 *75.48 ± 2.32 *75.51 ± 2.23

Heart 84.00 ± 3.07 *83.97 ± 3.34 *84.01± 3.10 *83.93 ± 3.07

Image 95.10± 0.58 *94.81 ± 0.50 93.67 ± 1.18 93.43 ± 1.26

Ringnorm 98.52 ± 0.10 *98.52 ± 0.10 *98.53± 0.10 *98.53± 0.10

Splice 89.34± 0.70 *89.34± 0.70 85.38 ± 0.67 85.34 ± 0.67

Thyroid 95.57 ± 1.96 *95.69 ± 1.93 *95.68 ± 2.13 *95.77± 2.07

Titanic 77.32 ± 1.13 *77.36± 1.15 *77.02 ± 1.85 77.03 ± 1.84

Twonorm 97.55 ± 0.16 *97.41 ± 0.15 *97.62± 0.12 *97.54 ± 0.17

Waveform 90.29± 0.43 *90.29± 0.42 *89.91 ± 0.46 *89.91 ± 0.46

Iris 92.00 *92.00 *96.00 *98.67

Numeral 99.39 *99.39 *99.76 *99.76

Blood-cell 93.42 93.39 93.00 93.00

Thyroid(M) 94.89 *94.89 94.81 94.81

the eight problems which are almost small. In three large problems, the train-
ing time of the FSLS-SVM is shortest in the three problems. And, the training
time of the FSLS-SVM is shorter than that of SLS-SVM in thirteen problems
because the size of kernel matrix in training of FSLS-SVM is smaller than that
of SLS-SVM. The training time of the SLS-SVMP is shorter than that of the
FSLS-SVMP in fourteen problems. In large problems, the training time of the
FSLS-SVMP is shorter than that of the SLS-SVMP. Because Cholesky Factoriza-
tion has complexity O(16M3 − 1

3M), the complexity are reduced by dividing the
training vectors into subsets. And, the complexity of LS-SVM in the empirical
feature space depend on the number of the basis vector of the empirical feature
space. Hence, the complexity of FSLS-SVM depend on the number of dimen-
sions of the empirical feature space and the number of iterations. Therefore,
our proposed methods are effective from the standpoint of the computational
complexity.

Table 5 shows the average recognition rates and standard deviations of each
problems for the conventional methods and the proposed methods. The maxi-
mum average recognition rate for each data set is shown in bold. The average
recognition rates of the proposed methods, which differ significantly from that of
the SLS-SVM in Welch’s t-test (5%) or is higher than that of the SLS-SVM, is
marked with *. The recognition rates of the FSLS-SVM do not differ significantly

Fast Sparse Least Squares Support Vector Machines by Block Addition 69

Table 6. Comparison of the numbers of SVs

Data SLS-SVM SLS-SVMP FSLS-SVM FSLS-SVMP

Banana 174 304 *34 *44

B.cancer 9 179 19 19

Diabetes 108 *101 *48 *49

F.solar 71 87 *34 *35

German 20 304 *20 40

Heart 13 169 14 14

Image 907 *446 *175 *179

Ringnorm 400 400 *40 *40

Splice 977 977 *121 *121

Thyroid 90 136 *15 *15

Titanic 3 10 8 8

Twonorm 240 400 *23 *34

Waveform 392 400 *43 *43

Iris 14 23 *6 *6

Numeral 457 *455 *61 *67

Blood-cell 1933 3059 *271 *462

Thyroid(M) 2327 2823 *376 *376

from that of the SLS-SVM in almost the problems. And, the recognition rates of
the FSLS-SVM is highest in six problems. However, for Splice dataset, the recog-
nition rate of the FSLS-SVM is too worse than that of the SLS-SVM because
the number of the basis vectors of the empirical feature space is insufficient.
The recognition rates of the FSLS-SVMP do not differ significantly from that of
the SLS-SVMP in eleven problems. Given these facts, there is little performance
degradation from the standpoint of the generalization ability in the proposed
method.

Table 6 shows the numbers in SVs of each problem for the conventional and
the proposed methods. The minimum number of the SVs for each dataset is
shown in bold. The number of SVs of the proposed method which is smaller
than that of the SLS-SVM is marked with *. The number of SVs of the FSLS-
SVM is smaller than that of SLS-SVM in fourteen problems. The number of SVs
of the FSLS-SVMP is smaller than of SLS-SVMP in sixteen problems. For the
SLS-SVMP, the all training vectors become SVs in two problems. Although it
can be improved by changing the threshold value. Thus, we can confirm that the
solutions of the proposed methods are sparse.

70 F. Ebuchi and T. Kitamura

5 Conclusion

In this paper, we presented two fast selection methods for the basis vectors of
the empirical feature space. In the first method, by obtaining and using cosine
values among the training vectors, we can fast-select the basis vectors of the
empirical feature space. In the second method, we introduced the block addition
to selection for basis vectors of the empirical feature space. As mentioned above,
in large problems, the training time of the proposed methods is much smaller
than that of the conventional methods. In small problems, the training time of
the proposed methods were almost the same as that of the conventional methods.
And, the generalization ability of the proposed methods was almost the same
as that of the conventional method. Furthermore, the sparsity improved by the
proposed methods. Therefore, our proposed method is more effective than the
conventional SLS-SVM.

References

1. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)
2. Abe, S.: Support Vector Machines for Pattern Classification. Advances in Pattern

Recognition. Springer, London (2010)
3. Schlkopf, B.: The kernel trick for distances. In: Proceedings of the Neural Infor-

mation Processing Systems 13 (NIPS 2000), pp. 301–307 (2000)
4. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers.

Neural Process. Lett. 9(3), 293–300 (1999)
5. Abe, S.: Sparse least squares support vector training in the reduced empirical

feature space. Pattern Anal. Appl. 10(3), 203–214 (2007)
6. Kitamura, T., Sekine, T.: A novel method of sparse least squares support vector

machines in class empirical feature space. In: Huang, T., Zeng, Z., Li, C., Leung,
C.S. (eds.) ICONIP 2012. LNCS, vol. 7664, pp. 475–482. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-34481-7 58

7. Mika, S., Rätsh, G., Weston, J., Schölkopf, B., Müller, K.R.: Fisher discriminant
analysis with kernels. In: Proceedings of the IEEE Workshop on Neural Networks
for Signal Processing IX, pp. 41–48 (1999)

8. Zdenek, D., Tomas, K., Martin, M., Alexandros, M.: Cholesky decomposition of
a positive semidefinite matrix with known kernel. Appl. Math. Comput. 213(13),
6067–6077 (2001)

9. Xiong, H., Swamy, M.N.S., Ahmad, M.O.: Optimizing the kernel in the empirical
feature space. IEEE Trans. Neural Netw. 16(2), 460–474 (2005)

10. Kitamura, T., Asano, K.: Sparse LS-SVM in the sorted empirical feature space for
pattern classification. In: Proceedings of the International Conference on Neural
Information Processing, pp. 549–556 (2015)

11. Nagatani, T., Ozawa, S., Abe, S.: Fast variable selection by block addition and
block deletion. J. Intell. Learn. Syst. Appl. 2(4), 200–211 (2010)

12. UCI machine learning repository. http://archive.ics.uci.edu/ml/datasets.html

http://dx.doi.org/10.1007/978-3-642-34481-7_58
http://archive.ics.uci.edu/ml/datasets.html

Construction and Analysis of Meteorological
Elements Correlation Network

Cui-juan Fang1, Feng-jing Shao1(&), Wen-peng Zhou2,
Chun-xiao Xing1, and Yi Sui1

1 College of Computer Science and Technology,
Qingdao University, Qingdao 266071, China

sfj@qdu.edu.cn
2 Institute of Science and Technology Information of Qingdao,

Qingdao 266003, China

Abstract. Analysis of the correlation between meteorological elements could
help find climate changing patterns. In this paper, the time series of meteoro-
logical elements, such as pressure, temperature and humidity, are converted to a
correlation network, in which nodes represent the correlation relation (state)
between the two meteorological elements and edges represent the transformation
between different states. By analyzing the topological properties of the corre-
lation network (degree, strength, path, etc.), the correlation patterns between
meteorological elements could be found. Empirical studies of Weifang with 9
years climate observation data show that the correlation network has a power-
law distribution and sub-seasonal characteristics. The correlation between
temperature and pressure are more strongly negative and it did not change
significantly with the year went. The correlation shows a seasonal variation that
more negative correlation in summer and the spring as follows.

Keywords: Correlation network � Time series � Topological properties �
Meteorological factors

1 Introduction

Climate system is a complex system. Exploring its complexity has important theoretical
significance and practical value. An important objective of studying meteorological
networks is to understand the interdependent nature of meteorological elements. In
recent years, meteorological networks that describe the correlation between climatic
factors have become a research hotspot.

Guolin Feng and Lei Zhou constructed the temperature fluctuation network by
using the Chinese temperature data and the coarseness method. They also constructed
stochastic and chaotic fluctuation network for comparing with the temperature network
[2]. For analyzing the regional characteristics of the temperature evolving in China,
Zhou used the average temperature to construct temperature fluctuation network [3].
Qin et al. [4] constructed a small - world network and scale - free network of mete-
orological station. Tsonis et al. [6] found the community of climate network can reflect
various global climate characteristics.

© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 71–80, 2017.
DOI: 10.1007/978-3-319-59072-1_9

However, researches mentioned above lacked the internal correlation of climates
elements and its dynamic mechanism, such as how different climate elements correlated
with time. The purpose of this paper is to study the internal correlation changes of
meteorological elements, to analyze the meteorological change pattern.

2 The Method of Constructing a Meteorological Correlation
Network

Let\p1; p2; . . .; pn [;Q ¼ \q1; q2; . . .; qn [two sequences with N elements. Pðs; lÞ
means sub sequence of P starting from s-th and the length of it is l. Pearson coefficient
is used for indicating the correlation between two sequences:

coorðP;Q; s; lÞ ¼
Plþ s�1

i¼s
ðpi � pÞðqi � qÞ

ffi
Plþ s�1

i¼s
ðpi � pÞ2

s ffi
Plþ s�1

i¼s
ðqi � qÞ2

s ð1Þ

where p is average mean of p, 1� s� n, 1� l� n.
According to the value of coorðP;Q; s; lÞ, we use symbols P, p, U, n, N to describe

different correlation between the two sequences. F is a function from ½�1; 1� to
fN; n;U; p;Pg, where

FðcoorÞ ¼

P ð0:8\coorðP;Q; s; lÞ� 1; Strong positive correlationÞ
p ð0:3\coorðP;Q; s; lÞ� 0:8;Weak positive correlationÞ
U ð�0:3\coorðP;Q; s; lÞ� 0:3;No significant correlationÞ
n ð�0:8\coorðP;Q; s; lÞ� � 0:3;Weak negative correlationÞ
N ð�1\coorðP;Q; s; lÞ� � 0:8; Strong negative correlationÞ

8
>>>>>><

>>>>>>:

ð2Þ

CSl ¼ \FðcoorðP;Q; 1; lÞÞ;FðcoorðP;Q; 2; lÞÞ; . . .;FðcoorðP;Q; n� lþ 1; lÞÞ[
is a sequence with length n-l + 1, where each element indicates consecutive period
with l length of symbol sequence. We call each element as the state of the correlation.
For example, NNN indicates a strong negative correlation between two sub sequences.

Then, we take each element of CSl as a node and transformation between nodes as
edge. And the weight of edge is how many times of this transformation occurs. Formal
description as follows: CSlðsÞ is a sequence, starting from s with l length. Nodes set is
N ¼ fCSlðsÞjs ¼ 1; 2; 3; . . .; n� lþ 1g; edges set is E ¼ fCSlðsÞ;CSlðs0Þjs0 � s ¼ 1g.
The weight is how many times of this transformation occurs.

72 C. Fang et al.

3 The Topological Properties of Meteorological Correlation
Network

3.1 Degree

Degree is simple but important attribute in node properties. The correlation network we
have established is directed, therefore the node degrees in this network includes out-
degree and in-degree.

Take this network for example, the in-degree of one node explains direct conver-
sion from other states to this state, and the out-degree of it represents a conversion from
this state to another state. Edges are linked by time sequences. Therefore except the first
and the last node, all other nodes’ in-degree and out-degree must be equal. We choose
the out-degree, namely a sequence directly converts to another. The degree of a node
indicates the degree of its short-range correlation with other nodes. The larger the
degree of a node, the more the node directly converters to its neighbor node.

3.2 Strength

Node strength means the total weight of its edges. The strength is defined as follows:

si ¼
X

j2Ni

xij ð3Þ

Ni: a set that contains those nodes connecting and pointing to node i.
xij: The weight of the edge from node i to node j.

Strength reflects the importance of the node in the network. It not only takes
account of all neighboring nodes connected into account, but also considers compact
degree between neighboring nodes and it [7].

In order to clearly observe the relationship between each node and the entire
network, we define strength ratio of node as follows:

Si ¼

P
j2Ni

xij

P
i2N;j2Ni

xij
ð4Þ

We count continuous frequency of correlation symbol, and the results are in the
following form:

csf1 : x1; 2 : x2; 3 : x3; 4 : x4; . . .g; cs 2 fN; n;U;P; pg

Number represents continuous frequency of correlation symbol, xiði ¼ 1; 2; 3; 4. . .Þ
is the occurrences number of continuous frequency. For example, when cs ¼ N,
occurrences number of N is x1, the occurrences number of NN is x2, the occurrences
number of NNN is x3.

Construction and Analysis of Meteorological Elements Correlation Network 73

3.3 Betweenness Centrality

The betweenness centrality of node i is defined as:

BCi ¼
X

s6¼i6¼t

nist
gst

ð5Þ

gst is the number of shortest path from node s to node t. nist is the number of shortest
path which from node s to node t and through the node i.

From the aspect of control information transmission, the higher BC, the important
of the node is. Although in actual network, the transmission frequency of nodes is not
the same, and not all transmission of nodes is based on the shortest path. The BC of the
nodes still approximate depicts the influence of information flow on the network For
the correlation network, understanding the central nodes can better know the changing
process of double variables correlation.

3.4 Clustering Coefficient

The correlation network defined in this paper is a weighted network. Weighted clus-
tering coefficient is adopted.

CwðiÞ ¼ 1
siðki � 1Þ

X

j;k

ðwij þwikÞ
2

aijajkaki; ð6Þ

CwðiÞ: the weighted clustering coefficient of node i.
si: the strength of node i; ki: the degree of node i.
wij;wik: the weight of the edge ði; jÞ; ði; kÞ.
aijajkaki: Whether the node i; j; k constitute a triangle. If aijajkaki ¼ 1, they would
constitute a triangle; If not, they did not constitute a triangle.

0�C� 1. C ¼ 0 If and only if all the nodes in the network are isolated nodes.
C ¼ 1 If and only if the network is a global coupled.

Weighted clustering coefficient is a statistical parameter which depicts gathered
properties between neighbor nodes in complex network, and the higher the clustering
coefficient is, the closer the degree of association is between adjacent nodes.

The clustering coefficient of the whole network C is the average of the clustering
coefficients Cw

i of all the nodes i.

4 The Empirical of Meteorological Correlation Network

This article selects Weifang on January 1, 2006 to November 30, 2015, the tempera-
ture, humidity and pressure data. Because some data are missing, we actually access to
3590 sets of data.

74 C. Fang et al.

For the symbol sequence CSl, we take l ¼ 3. It indicates that the symbol sequence
P;Q is 3 consecutive days state. At that time, there are 125 states theoretically.

Using temperature and pressure data, we finally create a weighted directed network
which contains 112 nodes, 405 edges.

4.1 Correlation Analysis

By computing the correlation coefficient of temperature and pressure, we found that the
negative correlation samples are 2519, positive correlation samples are 1062, and
completely irrelevant samples are 3. Through Eqs. 1 and 2, we got the symbol
sequence. After counting the number of symbol sequence, we found that the symbol
“N” turns up 1634 times, accounting for more than 45.6%; meanwhile, “n” appears 654
times, accounting for more than 18.2%. The correlation illustrating temperature and
pressure is more likely to be negative one. Through experiments, we can find the
correlation between humidity and pressure, humidity and temperature is also more
likely to be negative one.

At the same horizontal plane, the air temperature changes is an important cause of
the pressure change. When air cooling, air shrinkage, density, and weight per unit area
under the air column increasing, the pressure would rise. As a result, the cold air, is
always coupled with an increase in air pressure. But usually the relationship between
temperature and air pressure is also impacted by other factors, such as wind speed,
location, etc. Thus in the correlation statistics of temperature and pressure, negative
correlation usually occurred.

4.2 The Degree of Node

In the correlation network, the maximum out-degree of nodes is 5. It shows that the
kinds of state conversion is no more than 5. There are 41 nodes with the maximum
out-degree. The minimum out-degree of nodes is 1. In fact, nodes with minimum
means that only one state could be transformed to, indicating stable transformation.

For example, there is only one state which state pPn could convert to, that is
npp. We list those stable transformation in Table 1. The conclusion can be drawn that
those transformation are stable but rare changing pattern.

Table 1. Nodes with minimum out-degree

Nodes with minimum out-degree Nodes being pointed to Number of transformation

nPn Pnn 1
PNP NPU
UNp NpP
pnP npp
Npn pnn
PUP UPn
NpN pNN
Pnp npp

Construction and Analysis of Meteorological Elements Correlation Network 75

4.3 The Distribution of Edge Weight

As is depicted in Fig. 1, the number of edges in the network decreases as the weight of
the edge increases, showing a power-law distribution. In this figure, the weight of most
edges is very small, only a small part of the edge of the weight value is larger. In the
temperature and pressure correlation network, the maximum edge weight is 388 and the
minimum is 1. In humidity-pressure and humidity-pressure correlation network, the
number of edges and the weight of the edge show same character.

4.4 Strength

The strength and the strength ratio of the temperature and pressure correlations network
describe the degree of correlation states. The bigger the strength and the strength ratio,
the more important the state is in the correlation network. The probability of occurrence
and the probability of conversion to other states is larger.

From Table 2, the strength of node NNN and NNn are higher, which indicating that
the strong negative correlation of states NNN and NNn for temperature and pressure is
575, 217. The cumulative distribution of the two nodes is 22.05%.

Using logarithmic scales on both the horizontal and vertical axes of the strength
ratio(S) and rank(R), The linear regression equation is obtained:

y ¼ �0:8655x ¼ 2:66833;R2 ¼ 0:8322:

.

Fig. 1. The distribution of weight

Table 2. Strength ration and strength of each node (Descending order)

Rank ðRÞ 1 2 3 4

Node NNN NNn nNN nnn
Strength 575 217 206 129
Strength ratio ðSÞ 16.03% 6.05% 5.74% 3.58%
Rank ðRÞ 5 6 … 112
Node nNn UNN … pNP
Strength 96 70 … 1
Strength ratio ðSÞ 2.66% 1.95% … 0.03%

76 C. Fang et al.

Therefore, the distribution of correlation sequence is following power-law distri-
bution. As is shown in Fig. 2:

As is shown in Fig. 3: the strength of the node increases with the degree increasing
in the network.

Through the frequency of the occurrence of continuous sequence in the correlation
statistics, we found that strong negative correlation composition of the sequence length
up to 19, and the frequency of “N” decreases with the increasing of consecutive times,
as shown in Fig. 4.

Table 3 lists the edge whose weight was ranked in top 23. Maximum weight value
is 388, which appears in the NNN to its own ring. Those indicate that temperature and
pressure show a strong negative correlation. It is found that those nodes whose weight
rank in top 10 were composed by ‘N’ and ‘n’. And ‘U’ first appeared in 11th, ‘p’ first
appeared in 24th, ‘P’ first appeared in 38th. Again, the temperature and pressure show a
strong negative correlation.

Table 3. Edges whose weight rank in the top 24 in the network (Descending order)

Rank 1 2 3 4 5 6 7 8 9 10 11 12

Source NNN NNN nNN NNn nnN NNn nNN NnN Nnn nnn NNN UNN
Target NNN NNn NNN Nnn nNN NnN NNn nNN nnn nnN NNU NNN
weight 388 129 127 82 80 70 62 61 52 51 46 45
Rank 13 14 15 16 17 18 19 20 21 22 23 24
Source Nnn nnn UnN NNn nNn nnN NnN Unn UUN nNn NnU NNn
Target nnN nnn nNN NnU Nnn nNn nNn nnn UNN NnN nUU Nnp
weight 44 41 38 35 33 33 29 27 26 26 26 26

Fig. 2. The logarithm rela-
tionship between the point
strength and its ranking

Fig. 3. The relationship
between degree and strength

Fig. 4. The relationship
between the number of “N”
consecutive occurrences and
the frequency

Construction and Analysis of Meteorological Elements Correlation Network 77

4.5 Betweeness Centrality

There are some nodes whose BC is bigger than others’, which means any two states
convert more likely to through these nodes, and these nodes are important for the
control of other nodes’ transitions (Table 4).

Theoretically those nodes with bigger BC have larger control power. We use
temperature and pressure correlation network to analyze the highest BC rank of the
nodes.

In the network, we assume that any two nodes are named as node i and node j, and
the weight of the edge represents the conversion frequency from node i to node j. From
one state frequently converts to another state, we called them conversion pattern. In the
network, the performance of the conversion pattern is from one node to another node,
and the weight of the edge is big.

The conversion pattern in this network is as Fig. 5. It can be observed from Fig. 5
that there are more negative correlations in the correlation network and a few states
with weakly or non-correlated symbols. It indicates that there are a lot of negative
correlation between temperature and pressure, and a few positive correlation to a
negative correlation. In Fig. 6, the node in the box with the higher BC, other nodes
(states) from those nodes(states) convert to the nodes in the conversion pattern.

Table 4. The BC of all nodes in temperature and pressure correlation network (descending
order)

Order 1 2 3 4

Node UnN pnn nNn pUn
BC 0.0549 0.0462 0.0442 0.0427
Order 5 6 7.. 8
Node nnp PpU nnP PUU
BC 0.0410 0.0406 0.0401 0.0398
Order 9 10 … 112
Node NNn … … UUU
BC 0.0391 … … 0

Fig. 5. The conversion pat-
tern of network Fig. 6. The relationship

between node (state) who has
higher BC and conversion pat-
tern of network Fig. 7. The total number of

characters with

78 C. Fang et al.

4.6 The Impact of the Season

First of all, we count the frequency of each character after symbolization changes with
time. The results are shown in Fig. 7. It can be observed that in the eight years from
2007 to 2014, the correlation between temperature and pressure is a strong negative
one, and the number of correlations varies little with the changing of year.

What can be observed from Fig. 8 is that the summer temperature and pressure
show more negative correlation, followed by spring. In the autumn and winter, the
correlation performance are relatively uniform, and there are no particularly significant
correlation characteristics.

In order to further verify the different fluctuations of the temperature and pressure
correlations in different seasons, we constructed the network for four seasons and found
that the average clustering coefficient in the whole network is 0.007819, and the mean
clustering coefficients of the two-variable correlation in spring, summer, fall and winter
network respectively are 0.202, 0.208, 0.2179 and 0.1019. The average network
coefficients of four seasons are respectively 20 times larger than those of the integrated
network. Table 5 lists the nodes those clustering coefficients in top 4 in the four season
networks.

From Table 5, we can observe that there are differ in nodes who has higher clus-
tering coefficient between spring and summer network. In the spring and summer,
showing a high negative correlation and in the autumn and winter, the relative per-
formance of more uniform. Studying the clustering coefficient of the temperature and
pressure network will provide us some reference in the future studies of the changing of
temperature and pressure correlation [7].

2007 2008 2009 2010

Fig. 8. Different season character statistical figure in 2007–2010

Table 5. The nodes those clustering coefficients in top 4 in the four seasons networks

Season Rank
1 2 3 4

Spring NnN Nun UPU pUP
Summer NnN Unp NUN UNn
Fall pUp ppP nUn NnN
Winter UNN UnU NnN nNN

Construction and Analysis of Meteorological Elements Correlation Network 79

5 Results and Discussion

The fluctuation of time series bivariate is a nonlinear, unsteady complex system,
therefore it is difficult to reveal the fluctuation mechanism by using the existing tra-
ditional analysis methods. But it provides us a new way of thinking and methods in the
field of physical and economic research. Using coarseness method, which symbol the
coefficient correlation, abandoning the details of smaller level, is more conducive to
highlight its essential features. The traditional method only makes a simple statistical
analysis of its fluctuation state, but not study its fluctuation amplitude and inherent
evolution mechanism deeply.

In this paper, Weifang city temperature and pressure were chosen as the sample
data. The correlation was abstracted into one sequence by using Eqs. (1) and (2).
A complex network model of correlation network is constructed by using the con-
version between sequences based on time. By analyzing the network, three problems
are solved, which are bivariate correlation fluctuation statistic, variation rule and
evolution mechanism.

References

1. Tsonis, A.A., Roebber, P.J.: The architecture of the climate network. Phys. A Stat. Mech.
Appl. 333(4), 497–504 (2004)

2. Zhou, L., Zhi, R., Feng, A.X., Gong, Z.Q.: Topological analysis of temperature networks
using bipartite graph model. Acta Phys. Sin. (Chin. Ed.) 59(9), 6689–6696 (2010)

3. Gong, Z.-Q., Zhi, R., Zhou, L., Feng, G.-L.: Study on the regional characteristics of the
temperature changes in china based on complex network. Acta Phys. Sin. (Chin. Ed.) 58(10),
7351–7358 (2009)

4. Qin, K., Li, D.Y., Hu, X.L.: Research on weather data mining based on complex network
(Chinese Edition). In: CCCN (2006)

5. Palu, M., Hartman, D., Hlinka, J., Vejmelka, M.: Discerning connectivity from dynamics in
climate networks. Nonlinear Process. Geophys. 18(5), 751–763 (2011)

6. Wang, X.F., Li, X., Chen, G.R.: The Theories and Application of Complex Network (Chinese
Edition), p. 10. Tsinhhua University Press, Beijing (2006)

7. Tsonis, A.A., Wang, G., Swanson, K.L., Rondrigues, F.A., Costa, L.F.: Community structure
and dynamics in climate networks. Clim. Dyn. 37(5–6), 933–940 (2011)

8. Zhou, L., Gong, Z.Q., Zhi, R., Feng, G.L.: An approach to research the topology of chines
temperature sequence based on complex network. Acta Phys. Sin. (Chin. Ed.) 57(11), 7380–
7389 (2008)

9. Gao, X.Y., An, H.Z., Fang, W.: Research on fluctuation of bivariate correlation of time series
based on complex networks theory. Acta Phys. Sin. (Chin. Ed.) 61(9), 1321–1323 (2012)

80 C. Fang et al.

Classifying Helmeted and Non-helmeted
Motorcyclists

Atsushi Hirota1(B), Nguyen Huy Tiep2, Le Van Khanh2, and Natsuki Oka1

1 Kyoto Institute of Technology, Kyoto, Japan
hirota@ii.is.kit.ac.jp, nat@kit.ac.jp

2 Panasonic R&D Center Vietnam Co., Ltd., Hanoi, Vietnam

Abstract. Riding a motorcycle without a helmet can cause serious
injury. Although a crackdown on traffic violations is a good way to stop
this unsafe practice, it is not realistic to manually find and arrest riders
who do not wear helmets where there are numerous motorcycle riders,
as in Vietnam. In consideration of this situation, we developed an auto-
matic detection system for riders who are not wearing a helmet using
deep learning. The proposed method’s accuracy, precision, recall, and F-
measure in classifying motorcyclists into helmeted and non-helmeted are
0.966, 0.957, 0.936, and 0.946, respectively. The quality of the classifica-
tion was higher than in previous work which did not use deep learning.
As with other image-processing systems using deep learning, our sys-
tem achieved state-of-the-art performance. This system will reduce not
only the number of motorcycle riders not wearing a helmet, but also the
manual work of arresting illegal riders.

Keywords: Convolutional neural network · Classification · Helmet

1 Introduction

There is a very large number of motorcycles in use in several countries; for
example, in Vietnam, Malaysia, and India. In the case of Vietnam, this is because
cars are extremely expensive in terms of average annual income, and public
transportation is insufficient. There is no subway yet available, and construction
plans for a subway have been postponed many times. Considering this situation,
it is expected that a very large number of motorcycles will continue to be used
into the foreseeable future. Unfortunately, some riders do not wear helmets.
Riding motorcycles without a helmet is not only illegal in Vietnam, but can also
cause severe injury. To force motorcycle riders wear helmets, a enforcement of
penalties for traffic violations is desirable. However, it is impractical to manually
identify and arrest riders not wearing helmets from among the large number of
active riders. Therefore, automatic detection of non-helmeted motorcyclists is
required. In this paper, we report the implementation of a system capable of
identifying riders without a helmet in real time using deep neural networks.

Visual object tracking via deep neural networks has been studied
previously [1]. Compared with conventional methods using SIFT [2] or HOG [3],
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 81–86, 2017.
DOI: 10.1007/978-3-319-59072-1 10

82 A. Hirota et al.

deep neural networks have achieved higher levels of performance [5,6]. We
adopted deep learning because of its advantages, which are as follows.

– Fast execution: Although it takes an appreciable amount of time to train the
network, once learning has been completed, it operates at high speed.

– High precision.
– Situation independence: Conditions such as weather, day or night, etc. can

be disregarded.

2 Overall System Configuration

Our system consists of an IP camera for recording traffic, a motorcycle detector
for identifying motorcycles and their riders, a preprocessing system for resizing
and cropping the upper bodies of motorcycle riders in images, a classifier to cate-
gorize riders into helmeted and non-helmeted, and a report system for recording
the images of non-helmeted riders with the corresponding time stamps. Figure 1
shows the information flow of the system. We constructed the motorcycle detec-
tor, the preprocessor, and the classifier. This paper focuses on the classifier,
which is described in detail in Sect. 3.

Fig. 1. Information flow of the overall system, which consists of an IP camera, a motor-
cycle detector, a preprocessor, a classifier, and a report system.

As for the IP camera settings, the shutter speed must be fast enough to
capture images clearly. We captured the back views of riders in order to read
their motorcycles’ license plates. The size of the whole image was 1280 × 720
to allow recognition of the numbers on the plates. The motorcycle detector suc-
cessfully cut out almost all motorcycle rider images from the entire image using
deep learning technology. Details of the motorcycle detector will be reported
in another paper. The sizes of the clipped images vary depending on the situ-
ation. In order to fix the images’ sizes and improve classification accuracy, we

Classifying Helmeted and Non-helmeted Motorcyclists 83

resized them to 144 × 288 after which the system cropped the upper halves of
the resized images. We call these the resizing and cropping processes preprocess-
ing. Preprocessed images are sent as input to the classifier, where each image
is classified into helmeted or non-helmeted. The classifier is explained in detail
in the next section. In the final report system, if the result of the classification
is non-helmeted, the system records the rider’s image and the time when the
motorcycle passed the detector site.

3 Rider Classifier

This section describes how to classify images of riders into helmeted and non-
helmeted.

3.1 Network Design

Each motorcycle rider image is classified using deep learning technology. The
features are computed by propagating a mean-subtracted 144× 144 RGB image
in the forward direction through three sets of convolutional layers, a pooling
layer, a normalization layer, and three fully connected layers. A final softmax
layer outputs the probability distribution as to whether a rider is wearing a
helmet or not. The system processes each frame in a batch. Each convolutional
hidden layer convolves k filters of kernel size h × h with stride s and pad p
with the input image and applies a rectified linearity. In each pooling layer, max
pooling is done over a 3 × 3 region with stride 2 without any padding. The
hyper-parameters of the convolutional layers are shown in Table 1.

Table 1. Details of the convolutional layers.

Layer name Kernel size h× h Stride s Pad p Number of filters k

conv1 11×11 4 0 64

conv2 5×5 1 2 128

conv3 3×3 1 1 256

To implement the classifier, we used Caffe1, which was developed by the
Berkley Vision Learning Center, as a frame work for deep learning.

3.2 Training

Images outputted from the motorcycle detector include those in which motor-
cycles and riders are not properly cropped. We thus manually eliminated such
improper images and obtained 3,984 helmeted and 1,838 non-helmeted rider
1 http://caffe.berkeleyvison.org/.

http://caffe.berkeleyvison.org/

84 A. Hirota et al.

images. We divided these into training data and validation data randomly. The
ratio of the training set and the validation set was 4:1. We trained a 13-layer clas-
sifier network with the training data. It took about 30 min to train the network
with a single GPU.

4 Results

4.1 Classifier Performance

We evaluated the classification performance of the classifier by cross validation.
It should be noted that the performance evaluation of the classifier is based on
the assumption that the motorcycle detector performed ideally. This is valid
because inappropriate images were manually excluded as described in Sect. 3.2.
In this test, we calculated the accuracy, precision, recall, and F-measure with
the data set of 3,984 helmeted and 1,838 non-helmeted rider images described in
Sect. 3.2. Table 2 shows the result. The performance of our classifier was better
than in previous work [4]. Waranusast et al. [4] showed an accuracy of 0.74 in
the classification of helmeted and non-helmeted riders using a k-nearest neighbor
(kNN) classifier. Note that we used different data from that in the previous work.

Table 2. Classification result.

Measure Value

Accuracy 0.966

Precision 0.957

Recall 0.936

F-measure 0.946

4.2 Execution Speed

The processing speed of the three components of the motorcycle detector, pre-
processor, and classifier (see Fig. 1) was 20.2 frames per second (fps) on average.
Hence, the system functions in real time.

5 Discussion

5.1 Typical Errors

There were two typical error sources. Firstly, when a motorcycle rider wore
a black helmet whose color was similar to the hair color of most Asians, the
classifier sometimes judged them as non-helmeted riders. Secondly, in the case
of two people riding a motorcycle together where one wore a helmet and the
other did not, the classifier tended to judge them as helmeted riders. There were
not many images of these kinds, so these two types of errors would be reduced
by gathering more data to train the classifier network.

Classifying Helmeted and Non-helmeted Motorcyclists 85

5.2 Importance of Preventing False Positives

Table 3 shows all the possible cases in the classification. In this work, it is impor-
tant to reduce the number of false positives (FPs) because, if the system judges
a rider who actually wears a helmet as a non-helmeted rider, the rider is erro-
neously reported as having violated traffic rules. Consequently, it is necessary to
check all the images that were judged as positive by the system and remove false
positives manually. In general, decreasing FPs tends to increase the number of
false negatives (FNs). In other words, if we try to reduce the number of errors in
which a rider who actually wears a helmet is judged to be a non-helmeted rider,
the other error of judging a rider who does not wear a helmet to be a helmeted
rider will occur more often. However, FN errors are not as critical, as the sys-
tem then fails to report some illegal riders but still poses an adequate deterrent
against traffic violations. Therefore, we prefer to decrease the number FP errors
even though the number of FN errors will then increase. In implementation, we
used the following condition to reduce the number of FPs:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if T ≤ 5
if N ≤ 4 then helmeted

otherwise

if N ≤ T/2 then helmeted

where T represents how many times a rider is classified, and N designates how
many times he/she is classified as a non-helmeted rider. Note that each rider is
classified multiple times. This is because, as long as a motorcycle continues to
be detected by the motorcycle detector, it is classified every time it is detected
in order to increase accuracy. Using the above condition, we reduce the number
of FPs. We determined the hyper-parameters in the above condition by trial and
error.

Table 3. All possible classification cases.

Actual result

Helmeted Non-helmeted

System prediction Helmeted True negative (TN) False negative (FN)

Non-helmeted False positive (FP) True positive (TP)

6 Conclusion

We are developing a system to detect motorcyclists who are not wearing a helmet
in traffic images. This paper focused on the classifier of riders into helmeted
and non-helmeted. The performance cross validation of the classifier revealed

86 A. Hirota et al.

that it outperformed previous work which did not use deep learning. We will
develop license plate recognition software in the report system (see Fig. 1), which
is necessary in order to arrest illegal riders. Once the entire system has been
completed, it will reduce the instances of motorcycle riders not wearing helmets
and will reduce the manual work required to arrest illegal riders.

References

1. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate
object detection and semantic segmentation. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

2. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vis. 60(2), 91–110 (2004)

3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 886–893 (2005)

4. Waranusast, R., Bundon, N., Timtong, V., Tangnoi, C., Pattanathaburt, P.:
Machine vision techniques for motorcycle safety helmet detection. In: 28th Interna-
tional Conference on Image and Vision Computing, New Zealand, pp. 35–40 (2013)

5. Ciregan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3642–3649 (2012)

6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Systems,
pp. 1097–1105 (2012)

Dominant Set Based Density Kernel
and Clustering

Jian Hou1,2(B) and Shen Yin3

1 College of Engineering, Bohai University, Jinzhou 121013, China
dr.houjian@gmail.com

2 ECLT, Università Ca’ Foscari Venezia, 30124 Venezia, Italy
3 Research Institute of Intelligent Control and Systems,
Harbin Institute of Technology, Harbin 150001, China

Abstract. The density peak based clustering algorithm has been shown
to be a potential clustering approach. The key of this approach is to iso-
late and identify cluster centers by estimating the local density of data
appropriately. However, existing density kernels are usually dependent
on user-specified parameters evidently. In order to eliminate the para-
meter dependence, in this paper we study the definition of dominant set,
which is a graph-theoretic concept of a cluster. As a result, we find that
the weights of data in a dominant set provides a non-parametric measure
of data density. Based on this observation, we then present an algorithm
to estimate data density without parameter input. Experiments on vari-
ous datasets and comparison with other density kernels demonstrate the
effectiveness of our algorithm.

Keywords: Density peak · Clustering · Dominant set · Density kernel

1 Introduction

Data clustering has wide application in pattern recognition, image analysis and
fault diagnosis [14,15]. In the past decades, much efforts were devoted to data
clustering and various clustering algorithms have been proposed. Unfortunately,
in applying these algorithms to real clustering tasks, there are still many prob-
lems to be solved. The k-means-like algorithm, NCuts [12] and the general spec-
tral clustering algorithms [17] uses as input the number of clusters and their
results rely on the parameters heavily. In addition, these algorithms tend to
generate clusters of spherical shapes, and the results are also influenced by clus-
ter center initialization. The DBSCAN [5], AP [1] and DSets [10] algorithms
are able to determine the number of cluster automatically. However, all these
three algorithms have their own problems. The DBSCAN algorithm depends on
two parameters Eps and MinPts for density estimation. Generally, the other
density based clustering algorithms are also dependent on user-specified density

J. Hou—This work is supported in part by the National Natural Science Foundation
of China under Grant No. 61473045 and by China Scholarship Council.

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 87–94, 2017.
DOI: 10.1007/978-3-319-59072-1 11

88 J. Hou and S. Yin

parameters. The AP algorithm must be fed the preference value of each data,
which impacts on clustering results significantly. The DSets algorithm are built
on the pairwise similarity matrix of the data to be clustered and is parameter
independent in itself. However, in the case that data are represented as feature
vectors, the estimation of data similarity usually introduces one or more sim-
ilarity parameters, which have been found to impact on the clustering results
[7,8]. Besides, both the AP and DSets algorithms have the tendency to gener-
ate spherical clusters only. These observations show that it is still necessary to
explore new clustering algorithms, although there are already a vast amount of
clustering algorithms in the literature.

Our work in this paper is on the basis of the density peak (DP) based clus-
tering algorithm proposed in [11]. The DP algorithm is based on the assumption
that cluster centers are density peaks and they are relatively far from each other.
With the local density ρi of each data i and the distance δi to the nearest neigh-
bor with higher density to represent the data in a decision graph, it is found
that the cluster centers are with both high ρ and high δ, whereas the non-center
data are with either small ρ or small δ. As a result, the cluster centers are iso-
lated from non-centered data and it is relatively easy to differentiate between
two kinds of data. By assuming that the label of one data is the same as that of
its nearest neighbor with higher density, all the non-center data can be grouped
into clusters sequentially.

Local density calculation is the key of the DP algorithm as it determines
ρ, δ and then the cluster centers. In [11] the authors use cut-off and Gaussian
kernels, both of which involve a cut-off distance dc. Although [11] presents an
empirical method to calculate the range of dc, we have found that the clustering
results vary significantly with different dc’s in this range. In order to solve this
problem, in this paper we present a non-parametric density kernel based on the
DSets algorithm. One important feature of the DSets algorithm is that each data
in a cluster is assigned a weight. Our study of the dominant set definition shows
that this weight reflects the relationship of the data with all the others, and can
be viewed as a measure of the local density. By calculating the pairwise data
similarity matrix properly, all the data can be included in one single cluster, and
therefore the weights of all the data can be obtained with the DSets algorithm.
We show that this process can be accomplished independent of user-specified
parameters. The effectiveness of our algorithm is demonstrated in experiments
and comparisons with other density kernels.

2 Density Peak Clustering

2.1 The DP Algorithm

The DP algorithm is proposed based on the following observations. First, cluster
centers are usually the density peaks in the neighborhood. This means that
compared with non-center data, cluster centers have relatively large local density
ρ. Second, in practice few data are with the same local density, therefore the
distance δ of one data to its nearest neighbor with higher density is usually

Dominant Set Based Density Kernel and Clustering 89

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

x

y

(a) The Spiral dataset

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

rho

de
lta

(b) ρ − decision graph

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100

n

ga
m
m
a

(c) γ decision graph

Fig. 1. The Spiral dataset and two decision graphs with the Gaussian kernel.

not large. In contrast, cluster centers are surrounded by data with lower density,
therefore their δ’s are relative large. In summary, the cluster centers usually have
both large ρ’s and large δ’s, whereas non-center data have either small ρ’s or
small δ’s. This difference between cluster centers and non-center data makes it
possible to isolate and identify cluster centers from non-center data. Then based
on the assumption that the label of one data is the same as that of its nearest
neighbor with higher density, the non-center data can be grouped into clusters.
Although this assumption has no theoretic ground, it is consistent with human
intuition and works well in experiments.

From the above description we see that the key of the DP algorithm is the
calculation of local density. While the local density can be estimated in different
ways, existing approaches usually involve user-specified parameters, which may
influence the density values and then the clustering results. For example, the
cutoff kernel and Gaussian kernel is used in [11] to calculate the local density,
and both kernels involve the cutoff distance dc. The cutoff kernel measures the
density by the number of data in the neighborhood of radius dc, and the Gaussian
kernel uses dc as the decay parameter. After the local density ρ’s are calculated,
the distance δi is obtained by

δi = min
j∈S,ρj>ρi

dij . (1)

With the ρ’s and δ’s of all the data, we use a ρ−δ decision graph to illustrate
the relationship of the cluster centers and non-center data in the ρ − δ space.
Taking the Spiral dataset [3] for example, we show the ρ − δ decision graph
in Fig. 1(b). For space reason, here we use only the Gaussian kernel and dc is
calculated by including 1.6% of all the data in the neighborhood.

It is evident in Fig. 1(b) there are three data with both large ρ’s and large δ’s,
and they are presented as the outliers of the set of data. Obviously these three
data are the centers of the three clusters. Considering that identifying cluster
centers with the ρ− δ decision graph involves two thresholds, [11] then proposes
to use γ = ρδ as the single criterion of cluster center selection. We sort the data
in the decreasing order according to their γ’s and obtain the γ decision graph
in Fig. 1(c), where the three cluster centers with large γ’s can be recognized
relatively easily.

90 J. Hou and S. Yin

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage

F−
m
ea

su
re

Aggregation
Compound
Spiral
R15
Jain
Thyroid
Iris
Breast

(a) With cutoff kernel

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage

F−
m
ea

su
re

Aggregation
Compound
Spiral
R15
Jain
Thyroid
Iris
Breast

(b) With Gaussian kernel

Fig. 2. The influence of the percentage in calculating dc on the clustering results.

In general, while the ρ−δ decision graph and γ’s decision graph are helpful in
identifying cluster centers, it is still quite difficult to find out the correct cluster
centers automatically. In this paper we assume the number of clusters, N , is
determined beforehand, and use the N largest γ’s to identify the cluster centers.

2.2 The Problems

In both the cutoff and Gaussian kernels the parameter dc needs to be specified,
and it is suggested in [11] to determine dc such that 1% to 2% of all data are
included in the neighborhood on average. However, we have found that with
both kernels, different values of dc in this range causes significant variance in
the clustering results. In addition, the best results may not be obtained with dc in
this range. In fact, we show how the clustering results vary with the percentages
used to calculate dc in Fig. 2, where we use F-measure to evaluate the clustering
results. Eight datasets, namely Aggregation [6], Compound [16], Spiral, R15 [13],
Jain [9] and three UCI datasets Thyroid, Iris and Breast, are used in experiments.

Figure 2 indicates that the percentage and the parameter dc has a significant
influence on the clustering results. Unfortunately, we cannot arrive at any useful
conclusion as to the appropriate range of dc from Fig. 2. In addition, it is not
clear how the clustering results are correlated with dc. Consequently, it is very
difficult to determine the appropriate dc.

3 Our Algorithm

In order to solve the parameter dependence problem of existing density kernels,
in this paper we present a non-parametric density by making use of the nice
properties of the DSets algorithm. In this section we firstly introduce the domi-
nant set definition, and then present in details how the DSets algorithm can be
used to calculate the local density.

Dominant Set Based Density Kernel and Clustering 91

3.1 Dominant Set

In order to derive the non-parametric density kernel based on the dominant
set, we firstly present the definition of dominant set briefly. The details of the
definition can be found in [10].

We use S to denote the set of data for clustering, and A = (aij) to represent
the pairwise similarity matrix. With D as a non-empty subset of S and i ∈ D,
j /∈ D, we measure the relationship of j and i by

φD(i, j) = aij − 1
|D|

∑

k∈D

aik, (2)

with |D| denoting the number of data in D. The we define

wD(i) =

⎧
⎨

⎩
1, if |D| = 1,∑
l∈D\{i}

φD\{i}(l, i)wD\{i}(l), otherwise. (3)

With this key variable and W (D) =
∑

i∈D wD(i), the formal definition of dom-
inant set can be presented as follows. A subset D such that W (T) > 0, for all
non-empty T ⊆ D is called a dominant set if

1. wD(i) > 0, for all i ∈ D.
2. wD

⋃{i}(i) < 0, for all i /∈ D.

In [10] the authors show that a dominant set can be extracted with game
dynamics, e.g., replicator dynamics, developed in evolutionary game theory.
Specifically, we use x ∈ Rn to denote the weights of the data, which can be
obtained by replicator dynamics. In this paper we adopt the more efficient
dynamics proposed in [2]. It is shown that this weight vector corresponds to
the weighted characteristic vector xD of a dominant set D, which is defined as

xD
i =

{
wD(i)
W (D) , if i ∈ D,

0, otherwise
(4)

In other words, after we obtain the weight vector, the data with positive weights
form a dominant set. In extracting a dominant set, the weights of all the data for
clustering can be initialized to 1

n . The dominant sets can be obtained sequentially
in a peeling-off manner [10].

3.2 Non-parametric Density Kernel

From the last subsection we observe that in a dominant set, each data i is
assigned a weight equaling to wD(i)

W (D) . On the other hand, Eq. (3) indicates that
wD(i) measures the similarity between i and the other data, and a large wD(i)
means that i has a high overall similarity with other data. It is evident that if i
is in the central area of a dominant set, then it is likely that wD(i) is large and

92 J. Hou and S. Yin

i has a large weight. In contrast, one data i in the border area of a dominant set
tends to have a small weight. Since the weights of data in a dominant set can
be used to differentiate between the data in central and border areas, they can
be treated as the data density in the DP algorithm. In this sense, we can make
use of the dominant sets algorithm to calculate the density, and therefore treat
dominant set as a density kernel.

However, in applying this density kernel to the DP algorithm, there are
still two problems to be solved. First, while the dominant set extraction uses
as input only the pariwise similarity matrix and no parameters are involved,
the calculation of data similarity usually introduces parameters. For example,
the commonly used similarity measure s(i, j) = exp(−d(i, j)/σ) introduces the
parameter σ. Second, in the case that there are more than one clusters in the
dataset and the dynamics proposed in [2] are used, there will be some data with
zero weights. These data with identical density will influence the clustering of
non-center data negatively. By studying the definition of dominant set, in the
following we show how to solve these two problems.

The definition of wD(i) in Eq. (3) indicates that a large wD(i) corresponds
to large similarities between i and other data. Then the dominant set definition
states that each data in a dominant set has a positive wD(i). This is equivalent
to saying that each data in a dominant set are similar to all the others. As a
result, the dominant set definition imposes a high requirement on the internal
similarity in a dominant set. With a fixed dataset, the variance of σ results
in the change of similarity value. A small σ leads to small similarity values,
which further result in a large amount of small dominant sets. In contrast, a
large σ corresponds to large similarity values and then a small number of large
dominant sets. By adopting a sufficiently large σ, we can group all the data into
a dominant set, and therefore assign non-zero weights to all the data. Although
σ influences the similarity values, it does not change the magnitude ordering of
these similarity values, and therefore has no influence on the ordering of data
weights. Consequently, the value of σ does not impact on the DP clustering
results, only if all data are assigned positive weights.

In practice, if σ is too large, many large similarity values may become iden-
tical due to limited digits after decimal. Therefore we use the following algo-
rithm to determine the σ and generate the density used in the DP algorithm.
With d denoting the average of pairwise distances, we build a list composed of
d, 10d, 50d, 100d, 200d, · · ·. Given a dataset, we assign σ with the values in the
list from small ones to large ones, until all the resulted data weights are greater
than zero.

4 Experiments

We test the proposed density kernel in experiments on the eight datasets, and
compare the results with those from the cutoff kernel and Gaussian kernel.
In addition, we also compare with some other algorithms, including k-means,
DBSCAN, NCuts, AP and SPRG [17]. With k-means, NCuts and SPRG, we set

Dominant Set Based Density Kernel and Clustering 93

Table 1. Clustering results (F-measure) comparison on eight datasets.

k-means NCuts DBSCAN AP SPRG DP-cutoff DP-Gaussian Ours

Aggregation 0.83 0.99 0.80 0.82 0.73 0.99 0.99 0.94

Compound 0.68 0.70 0.88 0.77 0.64 0.82 0.69 0.81

Spiral 0.35 0.58 1.00 0.35 0.37 0.64 1.00 1.00

R15 0.82 0.99 0.77 0.54 0.93 0.99 0.99 0.95

Jain 0.79 0.63 0.87 0.57 0.86 0.90 0.87 1.00

Thyroid 0.83 0.64 0.68 0.52 0.97 0.55 0.51 0.72

Iris 0.89 0.93 0.77 0.93 0.87 0.70 0.90 0.78

Breast 0.96 0.64 0.87 0.82 0.97 0.67 0.66 0.69

Average 0.77 0.76 0.83 0.66 0.79 0.78 0.83 0.86

Table 2. Clustering results (Jaccard index) comparison on eight datasets.

k-means NCuts DBSCAN AP SPRG DP-cutoff DP-Gaussian Ours

Aggregation 0.64 0.98 0.67 0.71 0.49 0.98 0.99 0.87

Compound 0.46 0.46 0.84 0.69 0.42 0.71 0.47 0.74

Spiral 0.20 0.30 1.00 0.20 0.20 0.39 1.00 1.00

R15 0.65 0.99 0.42 0.25 0.83 0.96 0.99 0.86

Jain 0.53 0.42 0.91 0.29 0.63 0.71 0.65 1.00

Thyroid 0.64 0.40 0.57 0.29 0.90 0.29 0.29 0.58

Iris 0.69 0.79 0.59 0.77 0.66 0.51 0.73 0.60

Breast 0.87 0.39 0.78 0.56 0.89 0.48 0.40 0.54

Average 0.59 0.59 0.72 0.47 0.63 0.63 0.69 0.77

the required number of clusters as ground truth and report average results of 10
runs. With DBSCAN, the MinPts is set as 2, manually selected from 1 to 10,
and Eps is determined based on MinPts [4]. For AP, the required preference
value is manually selected to be pmin + 9.2step, where step = (pmax − pmin)/10
and [pmin, pmax] is the preference value range calculated with the method pro-
posed by the authors of [1]. In DP algorithm with the cutoff and Gaussian kernel,
the percentage of data used to calculate dc is set as 1.1% and 2.0%, respectively,
both of which are manually selected from 1, 1.1, 1.2, · · · , 2.0. The comparison of
these algorithms are presented in Tables 1 and 2, where F-measure and Jaccard
index are used to evaluate the clustering results. The comparison indicates that
in terms of average clustering quality, our non-parameter kernel performs better
than the cutoff and Gaussian kernels, and our algorithm also outperforms some
other algorithms with carefully selected parameters.

5 Conclusions

In this paper we present a non-parametric density kernel to be used in the den-
sity peak based clustering algorithm. We study the dominant set definition and

94 J. Hou and S. Yin

propose to treat the extraction of dominant set as a density kernel which is inde-
pendent of parameters. We compare with the cutoff and Gaussian kernels in the
DP algorithm and also some other clustering algorithms to illustrate the effec-
tiveness of the proposed density kernel. One problem with the proposed density
kernel is the relatively high computation load involved in similarity calculation
and density calculation, which will be studied in our future work.

References

1. Brendan, J.F., Delbert, D.: Clustering by passing messages between data points.
Science 315, 972–976 (2007)

2. Bulo, S.R., Pelillo, M., Bomze, I.M.: Graph-based quadratic optimization: a fast
evolutionary approach. Comput. Vis. Image Underst. 115(7), 984–995 (2011)

3. Chang, H., Yeung, D.Y.: Robust path-based spectral clustering. Pattern Recognit.
41(1), 191–203 (2008)

4. Daszykowski, M., Walczak, B., Massart, D.L.: Looking for natural patterns in data:
Part 1. Density-based approach. Chemom. Intell. Lab. Syst. 56(2), 83–92 (2001)

5. Ester, M., Kriegel, H.P., Sander, J., Xu, X.W.: A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In: International Conference
on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

6. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl.
Discov. Data 1(1), 1–30 (2007)

7. Hou, J., Gao, H., Li, X.: DSets-DBSCAN: a parameter-free clustering algorithm.
IEEE Trans. Image Process. 25(7), 3182–3193 (2016)

8. Hou, J., Liu, W., Xu, E., Cui, H.: Towards parameter-independent data clustering.
Pattern Recognit. 60, 25–36 (2016)

9. Jain, A.K.: Data clustering: user’s dilemma. In: Perner, P. (ed.) MLDM 2007. LNCS,
vol. 4571, pp. 1–1. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73499-4 1

10. Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern
Anal. Mach. Intell. 29(1), 167–172 (2007)

11. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science
344, 1492–1496 (2014)

12. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern
Anal. Mach. Intell. 22(8), 167–172 (2000)

13. Veenman, C.J., Reinders, M., Backer, E.: A maximum variance cluster algorithm.
IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1273–1280 (2002)

14. Yin, S., Gao, H., Qiu, J., Kaynak, O.: Descriptor reduced-order sliding mode
observers design for switched systems with sensor and actuator faults. Automatica
76, 282–292 (2017)

15. Yin, S., Gao, H., Qiu, J., Kaynak, O.: Fault detection for nonlinear process with
deterministic disturbances: a just-in-time learning based data driven method. IEEE
Trans. Cybern. (2016). doi:10.1109/TCYB.2016.2574754

16. Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clus-
ters. IEEE Trans. Comput. 20(1), 68–86 (1971)

17. Zhu, X., Loy, C.C., Gong, S.: Constructing robust affinity graphs for spectral clus-
tering. In: IEEE International Conference on Computer Vision and Pattern Recog-
nition, pp. 1450–1457 (2014)

http://dx.doi.org/10.1007/978-3-540-73499-4_1
http://dx.doi.org/10.1109/TCYB.2016.2574754

Web Content Extraction Using Clustering
with Web Structure

Xiaotao Huang(&), Yan Gao(&), Liqun Huang(&), Zhizhao Zhang,
Yuhua Li, Fen Wang, and Ling Kang

Huazhong University of Science and Technology,
Wuhan City, Hubei Province, China

{huangxt,wangfen,kling}@hust.edu.cn,

kevin_gao1212@163.com, huanglq2002cn@163.com,

245442801@qq.com, 1491378629@qq.com

Abstract. Web content extraction is an essential part of data preprocessing in
web information system. An algorithm for web content extraction based on
clustering with web structure is proposed. The whole process can be divided in
two steps. In the first step, clustering with the web pages collected from different
websites. During this processing, similarity measurement of web page based on
dynamic programming of weight is used. First, the web page is parsed to DOM
tree; second, the weight is assigned to every node according to the position of
the node and the amount of nodes in same depth and the depth of the DOM tree;
third, calculating the similarity of two pages according to the given formula.
When the first step is finished, web pages with similar structure would be
divided into a set. In the second step, pages in the same set are compared and the
same parts of pages will be removed, thus the remain is the web content.
Experiments show that the proposed algorithm works with great effectiveness
and accuracy.

Keywords: Web content extraction � Similarity � DOM tree � Cluster

1 Introduction

With the rapid development of internet which result into the situation that huge amount
of HTML pages is created on World Wide Web, more and more complex components
in web page makes research on web page difficult, so web content extraction is an
essential part of data preprocessing in web information system. Many researchers have
paid a lot of effort in extracting content from HTML documents. Many approaches
have been proposed, all of which can be divided into four categories [1].

Content Extraction Based on HTML Template. There are two methods to get
HTML template. The one is that extracting the template from web page set in same
structure. Always, pages from same website share the same HTML template, so the
template can be made by artificial for the web pages with same structure. The another is
that generalizing the characteristics from different pages and then extracting general
abstract template. The accuracy of this kind method is well, but manual service is
required.

© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 95–103, 2017.
DOI: 10.1007/978-3-319-59072-1_12

Content Extraction Based on Heuristic Rules. Heuristic rules are created by ana-
lyzing the HTML source code and generalize the characteristics of the real content and
noisy, then formulate the heuristic rules. Xiong et al. has proposed an extraction
algorithm of Chinese HTML content based on similarity [2]. However, this method
only suits for the pages that contain long text and the tag of every paragraph are same.
Chang Yaohong has proposed a method based on tags, which are not applicable to the
unknown pages because of various layout of web pages from different websites [3].

Content Extraction Based on Vision Division. It is easy to find that a web page can
be visually divided into several areas. So this kind of algorithm divide the page into
several areas according to tag <style> and CSS source files and then find out the
content area. Microsoft Research Asia has put forward an algorithm called VIPS which
needs a large amount of calculation because it needs to analyze numerous CSS source
files containing much source code [4–6]. Some other improved algorithms based on
VIPS and TVPS (Table and vision based page segmentation) also show that they need
much computing even if the accuracy has been improved.

Content Extraction Based on Machine Learning. In this kind of algorithm, the
content layout, tags and text features are counted and the results are used to build and
train model. Aanshi Bhardwaj put forward a novel approach to extract content. The
ratio of the amount of words under a node and the amount of the subtrees is calculated,
however, this method cannot be used to pages with little content because of the low
accuracy [7]. Many researchers extracted the content by analyzing the amount and
density of punctuation [8–12]. They didn’t take the situation into consideration that
noisy data are showed as text with punctuation just like real content.

It is necessary to propose a content extraction algorithm that needs less artificial
participation, that costs less computing resources, whose accuracy doesn’t vary dra-
matically according to different websites.

To calculate the web page similarity, some researchers have proposed a method that
the similarity is calculated through calculating the similarity of tree route which is a
path from root node to a leaf node and a DOM tree can be described by a set of tree
route [13]. This method will cost less time and system resources and is easy to be
implemented. But there are two defects, a. the duplicated paths would result in much
unnecessary calculations; b. there are several optimum matching paths to one path. In
order to solve those problems, Liao et al. proposed an improved algorithm of web
structure similarity based on tree path matching which defined the sequence similarity
and position similarity of tree path and which cut the costs of time and improved the
accuracy, however it did not take the hierarchy into consideration [14]. Some other
researchers advised that the similarity can be calculated through counting the nodes and
links in a DOM tree [15, 16]. However, this method only paid attention to the nodes
and links, did not take the hierarchy into consideration, which resulted into low
accuracy.

96 X. Huang et al.

2 CECWS Algorithm

According to the discussion above, we know that the same parts of two pages from
same website are the noisy data. Thus, for a set of web pages whose structure are
similar to each other, we can extract the content through comparing the pages and then
remove the same parts, the remain would be the content. We call algorithm CECWS.

However, in actual applications, the data collection is made up of many pages
collected from different websites. In order to divide the pages from same website into
same set, the cluster algorithm will be used.

2.1 Select Cluster Algorithm

It is easy to find that the cluster result has the following characteristics: the number of
the sets is uncertain, high density of the cluster, the distance between clusters is large.

The cluster algorithm could be divided into five kinds including partitioning
methods, hierarchical methods, density-based methods, grid-based methods and
model-based methods. K-MEANS is the representative algorithm for partitioning
methods, however, the number of the cluster (K) need to be assigned at the beginning,
so it is not applicable. Density-based methods have two parameters (radius and min-
imum number) which have to be assigned at beginning, the result would be inaccurate
if the two parameters are assigned inappropriately. Grid-based methods usually are
used for multidimensional data. Model-based methods need to build the model
according to characteristics of target dataset, the model determines the accuracy of the
result. Hierarchical methods would cost too much resources.

Compared with those five kinds methods, Canopy have many advantages, the logic
is simple and it is easy to convergence. Usually it is used to pre-process the data
quickly and extensively. We think that it is the best algorithm to cluster the dataset.

2.2 Web Page Structure Similarity Measurement Method

To cluster the dataset, web page structure similarity measurement is required. A web
page structure similarity measurement method based on dynamic programming on
weight is proposed.

The DOM tree show in Fig. 2 is the parsing result of the web page show in Fig. 1.
According to the discussion above, node a, c and d are static node, while node e is
dynamic node which is generated by script.

According to the features discussed above, a structure similarity measurement
method based on average distributed weight. The process can be described as follow:

• Assume that the weight of the whole DOM tree is 1, the amount of the nodes whose
depth is 1 is N, thus, the weight that every node get is 1/N;

• Distribute the weight the node got equally to his child nodes.
• Distribute the weight iteratively utile reaching the leaf node.

Web Content Extraction Using Clustering with Web Structure 97

• As for leaf node x and y, if x equals to y, the similarity of x and y is the weight they
got, if not, the similarity is 0. As for non-leaf node x and y, if x equals to y, the
similarity is sum of their child nodes’ similarity, if not, the similarity is 0.
Define: As for non-leaf node x and y, if the tag name, element set value and the
amount of child nodes of two nodes are same, x ¼ y; otherwise, x 6¼ y.

• The similarity of two DOM trees equals to the similarity of their root nodes.

This method works well for most web pages, but in the situation that node b and c
in two DOM trees are same correspondingly while node a are different, the similarity
value using this method will be large enough to identify that two pages have the same
template which is obviously wrong.

In order to solve this problem, a structure similarity measurement method based on
dynamic programming on weight is proposed (SMDPW). We find that static areas
always lay at the top and bottom of page while the content areas always lay at the
center. In other words, the closer to the ends of page the areas lay at, the more likely it
is static areas. Thus, the weight is distributed by dynamic programming, the closer to
the ends of page the areas lay at, the bigger the weight is. This distribution strategy is
only applicable to the nodes at depth 1. The other nodes get the weight which is
calculated by distributing their parent nodes’ weight equally.

In summary, the calculation process can be described as:

sim P1;P2ð Þ ¼ sim P1X11;P2X11ð Þ ð1Þ

sim P1Xnm;P2Xnmð Þ ¼ r�
XNum nþ 1ð Þ

i¼1

sim P1Xnþ 1;i;P2Xnþ 1;i
� �" #

� Lpn mð Þ ð2Þ

LpnðmÞ ¼

1; n ¼ 1
NumðnÞ þ 1

2 � m
��� ��� þ 1

PNumðnÞ
m¼1

NumðnÞ þ 1
2 � m

��� ��� þ 1
� � ; n ¼ 2

1
NumðnÞ ; n[2

8>>>>><
>>>>>:

ð3Þ

Fig. 1. Web page structure

Fig. 2. DOM tree

98 X. Huang et al.

r ¼ 1; P1Xnm ¼ P2Xnm

0; other

�
ð4Þ

Where P is a DOM tree, P = (X11, X21, X22,……, Xnm); n is the height of the tree, the
depth of root node is 1; X11 is the root node; m is the sequence number of the node;
Xnm is mth node at depth n; PiXnm is the node Xnm in tree Pi; Num nð Þ is the amount of
the node at depth n.

The algorithm SMDPW (P1, P2, N) can be described as following:

2.3 Content Extraction

As described in Sect. 2.1, the last step in our algorithm is to extract the content through
comparing the pages and then remove the same parts, the remain would be the content.
In order to remove the same parts from two web pages, we parse the web page to DOM
tree first, then compare the corresponding nodes, the nodes will be removed if they are
equal, otherwise, their brother nodes will be compared.

3 Experimental Result

We collect 5 group of news pages for our experiments, each group has 100 pages
collected from 5 Chinese websites. We examine our algorithm using one group at a
time. We implement the experiments programmed with java on a PC with 3.2 GHZ
Core I5 2processors, 4 GB RAM and Win7 OS.

Web Content Extraction Using Clustering with Web Structure 99

3.1 Performance Metrics

In our experiments, we use the precision P, the recall R and the harmonic mean F to
evaluate our algorithm for every page. They are calculated as follows:

P ¼ Length CM
T

CEð Þ
Length CEð Þ ð5Þ

R ¼ Length CM
T

CEð Þ
Length CMð Þ ð6Þ

F ¼ 2PR= P þ Rð Þ ð7Þ

Where CM is the content of pages extracted by manual, CE is the content of pages
extracted by machine using our algorithm. Then we calculate the mean respectively
among all pages:

3.2 Result

Since the threshold of Canopy in our algorithm is a previously determined value, there
is a tradeoff between how high the threshold should be in order to balance precision,
recall, and harmonic mean. Fig. 3 and Table 1 shows the change of R, P, F as the
threshold increases.

In order to compare the performance of our algorithm with other approaches, we
implement three other approaches. A, the approach based on page structure clustering
proposed by Liao et al. [14]. B, a novel approach proposed by Aanshi and Veenu [7].
C, an approach based on layout similarity proposed by Yang et al. [1]. The results are
presented in Table 2.

0%
20%
40%
60%
80%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.87 0.9 0.95

R
es

ul
t

Threshold of Canopy

Avg(R) Avg(P) Avg(F)

Fig. 3. Avg(P), Avg Rð Þ and Avg Fð Þ as the threshold increases from 0.1 to 0.95

100 X. Huang et al.

3.3 Discussion

Why does R keep 100% no matter how the threshold changes? It is because that the
content is extracted through comparing two pages who have similar structures and
removing the same parts. In this process, the threshold can only affect the cluster result,
in other words, inaccurate cluster result would result into the situation that noisy data
cannot be removed exactly, which has no affection on the content. Thus, R would keep
100% no matter how the threshold changes, P would be low if the cluster result is
inaccurate.

Why does R decreases rapidly when threshold is bigger than 0.87? It is because that
the threshold bigger than 0.87 is too big to cluster a page into any set. According to the
formula (3), in a three parts web page, the weight which is assigned to content is 20%,

Table 1. Result of our algorithm when threshold is 0.8

R P F

Yahoo! 100.00% 97.24% 98.60%
SOHU 100.00% 95.62% 97.76%
NETEASY 100.00% 96.51% 98.22%
CNN 100.00% 92.14% 95.91%
Average 100.00% 95.38% 97.62%

Table 2. Comparison between the three alternative algorithm and our algorithm

Algorithm Avg Rð Þ Avg Pð Þ Avg Fð Þ
Yahoo! Liao 67.63% 92.26% 78.05%

Aanshi et al. 86.24% 91.25% 88.67%
Yang et al. 97.01% 95.63% 96.32%
Our 100.00% 93.24% 96.50%

SOHU Liao 97.36% 92.47% 94.85%
Aanshi et al. 76.64% 91.25% 83.31%
Yang et al. 94.27% 90.53% 92.36%
Our 100.00% 95.62% 97.76%

NETEASY Liao 90.24% 98.28% 94.09%
Aanshi et al. 97.34% 92.14% 94.67%
Yang et al. 83.24% 92.73% 87.73%
Our 100.00% 96.51% 98.22%

CNN Liao 83.24% 97.01% 89.60%
Aanshi et al. 95.24% 97.24% 96.23%
Yang et al. 95.41% 89.37% 92.29%
Our 100.00% 92.14% 95.91%

Average Liao 84.62% 95.01% 89.15%
Aanshi et al. 88.87% 92.97% 90.72%
Yang et al. 92.48% 92.07% 92.17%
Our 100.00% 94.38% 97.10%

Web Content Extraction Using Clustering with Web Structure 101

thus the minimum similarity between two pages (if they have same HTML template) is
80%; in a four parts web page, the minimum similarity is 82%. Besides, there will be
some same parts in content, for the dataset in our experiments, the maximum similarity
is 87%. Thus, if the threshold is bigger than 0.87, there will be no similar pages, every
page in dataset will be divided into a single set, which result into that R and P are 0 as
shown in Fig. 4-1. This is also the reason that threshold should better be set at 0.8.

Table 2 shows the performance of the other three algorithms and our algorithm.
First, the results show that our algorithm achieves the best precision and the best
harmonic mean. Second, our algorithm works stably, Third, the recall is good enough
even if it is not the best.

4 Conclusion

We propose an algorithm for web content extraction based on clustering with web
structure in which similarity measurement of web page based on dynamic program-
ming of weight is used. Experimental results show that our algorithm works with great
effectiveness and accuracy compared with three other algorithms.

In future, we plan to adopt our algorithm for Web data mining applications.

Acknowledgements. This work is supported by National Natural Science Foundation of China
under grants 61572221.

References

1. Yang, L., Li, X., Geng, G.: Study of web pages content extraction based on layout similarity.
Appl. Res. Comput. 32(9), 2581–2586 (2015)

2. Xiong, Z., Zhang, H., Lin, M.: An extraction algorithm of Chinese HTML content based on
similarity. J. Southwest Univ. Sci. Technol. 25(1), 80–84 (2010)

3. Chang, Y., Zheng, Y., Chen, Y.: Content extraction technique for web pages based on
HTML-tags. J. Comput. Eng. Des. 31(24), 5187–5191 (2010)

4. Cai, D., Yu, S., Wen, J., et al.: VIPS: a vision- based page segmentation algorithm (2003)
5. Cai, D., Yu, S., Wen, J.-R., Ma, W.-Y.: Extracting content structure for web pages based on

visual representation. In: Zhou, X., Orlowska, M.E., Zhang, Y. (eds.) APWeb 2003. LNCS,
vol. 2642, pp. 406–417. Springer, Heidelberg (2003). doi:10.1007/3-540-36901-5_42

6. Mehta, R., Mitra, P., Karnick, H.: Extracting semantic structure of web document using
content and visual information. In: Proceedings of the 14th Special Interest Tracks and
Posters of International Conference on World Wide Web, pp. 928–929, ACM Press,
New York (2005)

7. Aanshi, B., Veenu, M.: A novel approach for content extraction from web pages. In:
Proceedings of 2014 RAECS UIET, pp. 6–8. Panjab University, Chandigarh (2014)

8. Peng, Q., Wang, Q., Li, Y., Zhang, J., et al.: Content extraction from chinese web pages
based on punctuations distribution. In: International Conference on Computer Science and
Service System, pp. 1351–1355 (2012)

9. Guo, Y., Tang, H., Song, L., et al.: ECON: an approach to extract content from web news
page. In: International Asia-Pacific Web Conference, pp. 314–320 (2010)

102 X. Huang et al.

http://dx.doi.org/10.1007/3-540-36901-5_42

10. Yang, Q., Yang, M.: A method of webpage content extraction based on point density.
J. Intell. Comput. Appl. 5(4), 42–44 (2015)

11. Lin, S., Chen, J., Niu, Z.: Combining a segmentation-like approach and a density-based
approach in content extraction. Tsinghua Sci. Technol. 17(3), 256–264 (2012)

12. Xiong, Z., Lin, X., Zhang, Y., et al.: Content extraction method combining web page
structure and text feature. Comput. Eng. 17(3), 256–264 (2013)

13. Joshi, S., Agrawal, N., Krishnapuram, R., Negi, S.: A bag of paths model for measuring
structural similarity in Web documents. In: Proceedings of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 577–
582. ACM Press, Washington (2003)

14. Liao, H., Yang, Y., Jia, Z., et al.: An improved web structure similarity based on matching
algorithm of tree paths. J. Jilin Univ. 50(6), 1199–1203 (2012)

15. Joshi, S., Agrawal, N., Krishnapuram, R., Negi, S.: A bag of paths model for measuring
structural similarity in web documents. In: SIGKDD 2003 (2003)

16. Cruz, I.F., Borisov, S., Marks, M.A., Webb, T.R.: Measuring structural similarity among
web documents: preliminary results. In: Hersch, R.D., André, J., Brown, H. (eds.)
EP/RIDT-1998. LNCS, vol. 1375, pp. 513–524. Springer, Heidelberg (1998). doi:10.1007/
BFb0053296

Web Content Extraction Using Clustering with Web Structure 103

http://dx.doi.org/10.1007/BFb0053296
http://dx.doi.org/10.1007/BFb0053296

Optimal KD-Partitioning for the Local Outlier
Detection in Geo-Social Points

Teerawat Kumrai1, Kyoung-Sook Kim2(B), Mianxiong Dong1,
and Hirotaka Ogawa2

1 Muroran Institute of Technology, Muroran, Japan
15096013@mmm.muroran-it.ac.jp, mx.dong@csse.muroran-it.ac.jp

2 Artificial Intelligence Reserach Center,
National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

{ks.kim,h-ogawa}@aist.go.jp

Abstract. Coupling social media with geographic location has boosted
the worth of understanding the real-world situations. In particular, event
detection based on clustering algorithms or bursty detection aims to find
more specific topics that represent real-world events from geo-tagged
social media. However, it is also necessary to identify unusual and seem-
ingly inconsistent patterns in data, namely outliers. For example, it is
difficult to obtain social media posted by residents of the places where
a disaster is happening for quite some while. In this paper, we focus on
a problem in partitioning a space to find a meaningful local outlier pat-
tern by using a genetic algorithm (GA). We first describe a model of local
patterns based on spatio-temporal neighbors and a normal distribution
test. Then we propose our optimization process to maximize the number
of patterns. Finally, we show results of the performance simulation with
a real dataset related to a landslide disaster.

Keywords: Geo-social media · Spatio-temporal analysis · Outlier
detection · KD-tree partitioning · Genetic algorithm

1 Introduction

In recent years, the analysis of geo-tagged social media (in short, geo-social
media) is being emphasized to capture and predict real-world situations in emer-
gency management, as evidenced by experiences from recent natural disasters
such as the Tsunami and earthquake in Japan, and Hurricanes in the USA
(Sandy and Katrina) and Haiti (Fay, Gustav, Hannah, and Ike). In [1], many
Twitter messages were concentrated in the path of Hurricane Sandy and the
tweets related to flooding showed a similar pattern to the path. We can find
those messages reflect human experiences of the storm and allow us to obtain
local information. Working with geo-location data in social media raises the
need for the enhanced spatio-temporal data analysis to automatically discover
potentially useful patterns and knowledge.

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 104–112, 2017.
DOI: 10.1007/978-3-319-59072-1 13

Optimal KD-Partitioning for the Local Outlier Detection 105

There have been proposed many techniques and tools of spatio-temporal
data mining: spatio-temporal clustering, hotspot detection, outlier detection,
co-occurrence pattern discovery, and so on [2]. In particular, spatio-temporal
clustering methods have been used to find more specific topics that represent
real-world events, which unfold over space and time. For example, TwitterStand
[3] captures tweets related to breaking news from noise by implementing online
clustering. In [4,5], localized events within a small geographic area, such as pub-
lic events and emergency situations, are extracted by using clustering techniques.
Also, a space-time scan statistic approach is introduced in [6] to detect hotspots
as topic events within a dataset across both space and time. They present spatio-
temporal regions to depict disaster events from Twitter data. However, unusual
and seemingly inconsistent patterns in data, namely outliers, sometimes repre-
sent useful information about abnormal situations in many applications, such as
network traffic monitoring, credit card fraud detection, and outbreak of disease.

In this paper, we propose a genetic algorithm based approach that can detect
spatio-temporal outliers with a multi-objective optimization function. First, we
divide a spatio-temporal domain into several small areas and measure the key-
word impartance of each area. Even though there are many definitions of outliers,
we assume that a spatio-temporal outlier of a keyword in geo-social media has a
different pattern of the local impartance measures with respect to the surround-
ing neighbors. Here, we classify patterns into 2 categories: L-pattern that is lower
bound and H-pattern that is outbound. However, the problem is that we get a
different result depending on the size and way of sub-space partitioning. In this
paper, we focus on an optimal partitioning problem in a spatio-temporal domain
as an NP-complete problem [8]. In order to find the optimal way to partition a
space, we employ a genetic algorithm (GA) that is capable of making a global
search and requires a shorter processing time than other meta-heuristics algo-
rithms such as particle swarm optimization and ant colony optimization. The
main contribution of this paper is summarized as follows:

• We apply a k-dimensional (KD) tree to divide a spatio-temporal domain into
sub-cells.

• Two outlier patterns of a keyword are formulated by the local importance
measures among the surrounding sub-cells.

• We investigate the optimal solution of partitioning to maximize the number
of patterns.

• The simulation results are used to evaluate our approach.

The organization of this paper is as follows. Section 2 defines a problem of
outlier pattern detection and Sect. 3 describes our genetic algorithm for the opti-
mal solution of KD tree partitioning. Then, a simulation result of the proposed
algorithm is described in Sect. 4. Finally, we conclude this paper with future
work in Sect. 5.

2 Problem Statement

This section states the problem to partition a spatio-temporal domain and find
outlier patterns. Let gp be a geo-social point as a tuple of (s, t, B), where

106 T. Kumrai et al.

Fig. 1. TF-IDF based on the two-dimensional grid partitioning (Color figure online)

s = (lat, lon) is a geographical coordinate of latitude (lat) and longitude (lon),
t is a timestamp, and B is a bag of words. Given a set of geo-social
points, GP = {gp1, gp2, · · · , gpn}, in a spatio-temporal bounding box,
ST = ([lonmin, lonmax], [latmin, latmax], [timemin, timemax]), consisting of three
bounding intervals of longitudes, latitudes, and timestamps to cover all elements
in GP , we examine the local importance measurement of a keyword, w, by apply-
ing tf-idf (term frequency-inverse document frequency) weighting scheme. Instead
of document-based tf-idf, we divide ST into non-overlapping small cells, and each
cell is regarded as a document to calculate tf-idf as shown in Fig. 1, i.e., ST =
{st1, st2, . . . , stN}. For each keyword, we scan the local importance score (x) of
each cell. Then we identify the outlier pattern of each cell with respect to the sur-
rounding neighbors. In this study, we simply use the normal distribution test (Z-
test) [9] to detect outliers because our interest is a way how to partition ST . Given
the local importance scores of cells, the Z value of a target cell is calculated as
Z = (x − μ0)/(σ/

√
n), where x is the average of local importance scores of queen

contiguity neighbors (blue rectangles in Fig. 1) of the target cell, μ0 are the mean
value of the normal distribution, σ is the standard deviation of the local impor-
tance scores, and n is the number of neighbors including the target cell. If the Z
values is more than the Zα/2, we count the target cell as one pattern of outbound
outlier, called H-pattern. On the other hand, if the Z values of the target cell is less
than the −Zα/2, we count it as one pattern of lower bound, called L-pattern.

Now we turn the optimization problem of the space partitioning. The rea-
son why we use the space-partitioning approach instead of the distance metric is
that the partitioning is suitable to apply a large dataset such as geo-social media.
However, it leads to different results of the outlier detection depending on the
size and shape of cells. In this paper, we take account of kd-tree [10] to divide ST
as a three-dimensional (3D) space into small disjoint cells. The kd-tree is like a
hybrid spatial grid and binary search tree and supports an efficient processing of
range and nearest neighbor searches for high-dimensional point data comparing
to other space partitioning methods. An example of 2-dimensional space parti-
tioning by using kd-tree is showed in Fig. 2. From a subset of geo-social points
containing keyword w, GPw ∈ GP , we randomly select m-number of sampling
points and create a kd-tree with them. Each node in the kd-tree represents one
subdivision of ST . Then we determine whether each cell has an outlier pattern
such as H- and L-pattern by the Z-test. However, the results have a critical issue

Optimal KD-Partitioning for the Local Outlier Detection 107

(136, 40)

(131, 35)

(132, 32)

(133, 37)

(144, 40)

(134, 42) (138, 43)

(135, 36) (143, 35)

(140, 37)

(136, 40) (131, 35) (144, 40) (140, 37) (132, 32) (143, 35) (138, 43) (134, 42) (133, 37) (135, 36)

Create kd-tree

x

y

y

x

(a) Create kd-tree

x-coordinate
130 132 134 136 138 140 142 144

y-
co

or
di

na
te

30

32

34

36

38

40

42

44

(136, 40)

(131, 35)

(144, 40)

(132, 32)

(134, 42)

(140, 37)

(138, 43)

(133, 37)
(135, 36)

(143, 35)

(b) KD-tree partitioning

Fig. 2. 2-dimensional pattern example

about dependency of the samples. In order to find the optimal partition of space,
we here employ a genetic algorithm (GA) as a well-known meta-heuristic app-
roach that solves an optimization problem. It has already used for the outlier
detection in several researches. In [11], two detection algorithms are proposed
for high dimensional data based on the data distribution. Also, a fitness function
based GA approach is introduced to detect outliers in [12]. Unlike the existing
methods that focus on the detection of outlier objects, we consider a spatio-
temporal outlier pattern with respect to the neighbors’ point pattern.

3 Genetic Optimization Process

This section describes the process to seek the Pareto-optimal kd-tree partitioning
for the outlier pattern detection. In order to operate GA, we define our objective
function as follows:

U = ω1HP + ω2LP = ω1

N∑

i=1

pH
i + ω2

N∑

i=1

pL
i , (1)

where HP and LP are the sums of H-pattern and L-pattern, ω1 and ω2 are the
weighting factors of the number of two patterns, respectively, and N is the total
number of sub-cells. The pH

i and pL
i is each outlier indicator of H-pattern and

L-pattern of i-th sub-cell in ST as follows:

pH
i =

{
1, if Zi ≥ Zα/2

0, otherwise
, pL

i =

{
1, if Zi ≤ −Zα/2

0, otherwise

In other words, we want to partition ST to get the maximum number of two
outlier patterns. We assume if we get more patterns, then the areas would be
smaller. Also we need more cells to obtain candidates where a certain unusual
event happens. In Eq. (1), the function is dependent on two weight factors: ω1

and ω2 (ω1 + ω2 = 1). However, the finding the best value for the weights ω1 and

108 T. Kumrai et al.

x1 y1 t1

N1

x2 y2 t2

N2

x3 y3 t3

N3

... xm ym tm

Nm

Fig. 3. The structure of an individual

Mutate

Fig. 4. Mutation operator example

Parent I Parent II

Offspring I Offspring II
Two Point Crossover

(b) Two-point Crossover

Parent I Parent II

One Point Crossover
Offspring I Offspring II

(a) One-point Crossover

Fig. 5. Crossover operator example

ω2 are very difficult. Thus, we consider the two objectives as a multi-objective
optimization problem as well as maximizing the number of patterns.

The algorithm executes its optimization process to adjust the 3D kd-tree
partitioning until the number of the generation reaches its maximum number of
generations. After GA is finished, the set of solution and objective values are
provided to select one of the solutions to use in 3D kd-tree partitioning for the
detection of spatio-temporal outlier patterns. For the GA process, we define the
population which consists of M individuals. Each individual i in the population
represents by multiple segments, which is a set of the 3D coordinates of (x, y, t) in
ST for kd-tree. The number of nodes in the kd-tree represents by the number of
multiple segments in each individual. Figure 3 shows an example of the individual
structure. Initially, the population will be generated by random coordinates in
ST . Then, a fitness value of each individual is calculated by using Eq. (1). After
that, the GA selects a pair of individuals who have the highest fitness values as
parents by a selection operator (e.g., binary tournament and random selection).
Then, selected parents reproduce two offspring by a crossover operator (e.g.,
one-point crossover, two-point crossover, and simulated binary crossover). The
crossover operator operates with crossover rate. In this study, we use one-point
crossover [15] and two-point crossover to implement the algorithm. An example
of one-point and two-point crossover operator in our algorithm is showed in
Figs. 5a and b, respectively.

Optimal KD-Partitioning for the Local Outlier Detection 109

The offspring can be evolved by a mutation operator (e.g., bit-flip mutation,
uniform mutation, and polynomial mutation). The mutation operator randomly
selects a node in kd-tree with a mutation rate. Also, the operator randomly
decides to add or delete nodes. An example of mutation operator of the algorithm
is shown as Fig. 4. The GA repeats these operators until the number of the
offspring achieves size N . Then, this set of the offspring will be combined with
the set of population. Finally, the algorithm selects the best M individuals from
M + N individuals by a selection operator as a new population for the next
generation. After the fitness value error is satisfied or the maximum limit of
the number of generations is found, the optimization processes of the GA are
terminated.

4 Performance Simulation

This section shows the performance of our GA-based partitioning to maximize
the number of H-patterns and L-patterns. We set up a simulation with a dataset
of samples of Twitter messages that contains keyword ‘landslide’ related to 2014
Hiroshima landslides.

4.1 Simulation Configurations

The number of the sample data we used is 33,030 consisting of geographical
coordinates (x and y) and timestamps (t). We calculated tf-idf values of key-
word ‘landslide’ in each tweet. As mentioned in Sect. 2, we applied a normal
distribution test (Z-test) to find the optimal number of H and L patterns. Two-
tailed Z test with α is considered by 0.05. Therefore, the decision rule to find
the number of H or L patterns is Z ≤ −1.960 or Z ≥ 1.960, respectively. The
simulation parameters of GA were set as: 250 max generations, 100 population
size, 0.9 crossover rate, and 1/n mutation rate. We evaluated our GA to find the
optimal partition with the maximum number of H-patterns and L-patterns. The
maximum number of kd-tree partitioning depends on the size of an individual in
the Hiroshima dataset. We consider three cases of the individual size as shown
in Table 1. There are two crossover operators are compared: one-point crossover
and two-point crossover. The operators are compared in term of convergence.

Table 1. The size of an individual

Individual size 1% of Hiroshima 5% of Hiroshima 10% of Hiroshima

The number of coordinates 330 1652 3303

110 T. Kumrai et al.

4.2 Simulation Results

In this simulation results, we show a performance metric that represents
how individuals obtained from one algorithm outperform the individuals from
another, called C-metric [16]. The C-metric between algorithm A and B is rep-
resented by C(A,B) and calculated by C(A,B) = |{b ∈ B|∃a ∈ A : a � b}|/|B|,
where operator � denotes the dominating (e.g., individual a dominates individ-
ual b is represented by a � b). Thus, there is at least one individual in A that
dominated all individuals in B, if C(A,B) = 1. On the other hand, there is no
individual in B that dominated by individual in A, if C(A,B) = 0.

Table 2. C-metric

Individual Size 1% of Hiroshima 5% of Hiroshima 10% of Hiroshima

C(OPX,TPX) 0.23 1.00 0.00

C(TPX,OPX) 0.02 0.41 1.00

Table 2 shows the C-metric at generation 200. The result shows that the
one-point crossover (OPX) operator contribute in GA to better non-dominated
frontier than the two-point crossover (TPX) operator in the case of the number
of a partition that is 1% and 5% of the sample data. However, the number of
a partition is 10% of the sample data, the OPX operator contributes in GA to
better non-dominated frontier than the TPX operator, because there is at least
one individual from the TPX operator dominated all individuals from the OPX
operator, and there is no individual from the TPX operator that dominated by
individual in the OPX operator.

Generation distance (GD) represents how fast an algorithm can optimize the
solution. The minimum Euclidean distance from the non-dominated individuals
to the Utopian point in objective space (U) at the end of each generation is
calculated. It is measured as follows: GD = mini∈μ

√∑n
k=1(xi[k])2. Figure 6

shows the generation distance of the individuals at the end of each generation
by using one-point crossover and two-point crossover. Figure 6a, b, and c show
the generation distance in scenario 1%, 5%, and 10% of the individual size,
respectively. Figure 6a shows that OPX contributes to increase the generation
distance faster than TPX at the 100 and 150 generation. On the other hand, TPX
contributes to increase the generation distance faster than OPX at the 50 and
200 generation. Figure 6c shows that OPX contributes to increase the generation
distance faster than TPX at the 50 and 150 generation. On the other hand, TPX
contributes to increase the generation distance faster than OPX at the 100 and
200 generation. However, OPX contributes to increasing the generation distance
faster than TPX for 5% of the Hiroshima data as shown in Fig. 6b.

Figure 7a and b confirm the maximum number of the H-patterns and L-
patterns by using one-point crossover (OnePointXover) and two-point crossover
(TwoPointXover). The figures explain that the TwoPointXover is able to find the

Optimal KD-Partitioning for the Local Outlier Detection 111

Generation
0 50 100 150 200

D
ist

an
ce

 to
 th

e
U

to
pi

an
 P

oi
nt

0

2

4

6

8

OPX
TPX

(a) 1% of Hiroshima

Generation
0 50 100 150 200

D
ist

an
ce

 to
 th

e
U

to
pi

an
 P

oi
nt

0

2

4

6

8

OPX
TPX

(b) 5% of Hiroshima

Generation
0 50 100 150 200

D
ist

an
ce

 to
 th

e
U

to
pi

an
 P

oi
nt

0

2

4

6

8

10

OPX
TPX

(c) 10% of Hiroshima

Fig. 6. The generation distance

Generation
0 50 100 150 200 250

Th
e

nu
m

be
r o

f H
-p

at
te

rn

0
200
400
600
800

1000
1200
1400
1600
1800
2000

(a) H-pattern

Generation
0 50 100 150 200 250

Th
e

nu
m

be
r o

f L
-p

at
te

rn

0
20
40
60
80

100
120
140
160
180
200

(b) L-pattern

1% by OnePointXover
1% by TwoPointXover
5% by OnePointXover
5% by TwoPointXover
10% by OnePointXover
10% by TwoPointXover

Fig. 7. The number of patterns

maximum number of H-patterns while maximizing the number of L-patterns in
the case of 10% of the individual size better than the OnePointXover. However,
in the 5% case, the OnePointXover is able to find the maximum number of
H-patterns better than the TwoPointXover, but the TwoPointXover found the
maximum number of L-patterns better than the OnePointXover. On the other
hand, in the 1% case, the TwoPointXover is able to find the maximum number
of H-patterns better than the OnePointXover, but the OnePointXover found the
maximum number of L-patterns better than the TwoPointXover.

5 Conclusion

In this paper, we investigated the genetic algorithm for the outlier pattern detec-
tion in a spatio-temporal domain. We considered a normal distribution test (Z-
test) of the tf-idf values of keyword in a subcell with respect to the surrounding
neighbors. The simulation results show that the genetic algorithm is able to find
an optimal kd-tree partitioning with the maximum number of the H and L out-
lier patterns. Also, the two-point crossover operator is able to find appropriate
sets of the kd-tree partitioning for maximizing the number of the patterns in
the both of H and L-patterns better than the one-point crossover operator in
the case of the large number of partition. In future work, we will proceed exper-
iments with large volumes of geo-social media and reduce the complexity of the
GA considering a parallel processing to enhance our method.

112 T. Kumrai et al.

Acknowledgments. This work was partially supported by the Japan Society for the
Promotion of Science (JSPS) KAKENHI under Grant No. 15K15995, and based on
results obtained from a project commissioned by the New Energy and Industrial Tech-
nology Development Organization (NEDO).

References

1. Shelton, T., Poorthuis, A., Graham, M., Zook, M.: Mapping the data shadows of
Hurricane Sandy: uncovering the sociospatial dimensions of ‘big data’. Geoforum
52, 167–179 (2014)

2. Shekhar, S., Jiang, Z., Ali, R.Y., Eftelioglu, E., Tang, X., Gunturi, V., Zhou, X.:
Spatiotemporal data mining: a computational perspective. ISPRS Int. J. Geo-Inf.
4(4), 2306–2338 (2015)

3. Sankaranarayanan, J., Samet, H., Teitler, B.E., Lieberman, M.D., Sperling, J.:
TwitterStand: news in tweets. In: The 17th ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, pp. 42–51, November
2009

4. Abdelhaq, H., Sengstock, C., Gertz, M.: Eventweet: online localized event detection
from Twitter. Proc. VLDB Endow. 6(12), 1326–1329 (2013)

5. Sugitani, T., Shirakawa, M., Hara, T., Nishio, S.: Detecting local events by ana-
lyzing spatiotemporal locality of tweets. In: 2013 27th International Conference
on Advanced Information Networking and Applications Workshops (WAINA), pp.
191–196, March 2013

6. Cheng, T., Wicks, T.: Event detection using Twitter: a spatio-temporal approach.
PloS One 9(6), e97807 (2014)

7. Kulldorff, M.: A spatial scan statistic. Commun. Stat.-Theory Methods 26(6),
1481–1496 (1997)

8. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Mondrian multidimensional k-
anonymity. In: Proceedings of the 22nd International Conference on Data Engi-
neering (ICDE 2006), pp. 25–25, April 2006

9. Bamnett, V., Lewis, T.: Outliers in Statistical Data. Wiley, Hoboken (1994)
10. Bentley, J.L.: Multidimensional binary search trees used for associative searching.

Commun. ACM 18(9), 509–517 (1975)
11. Aggarwal, C.C., Yu, P.S.: Outlier detection for high dimensional data. ACM SIG-

MOD Rec. 30(2), 37–46 (2001)
12. Raja, P.V., Bhaskaran, V.M.: An effective genetic algorithm for outlier detection.

Int. J. Comput. Appl. 38(6), 30–33 (2012)
13. Kumrai, T., Ota, K., Dong, M., Champrasert, P.: An incentive-based evolution-

ary algorithm for participatory sensing. In: Global Communications Conference
(GLOBECOM), pp. 5021–5025, December 2014

14. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16.
Wiley, Hoboken (2001)

15. Poli, R., Langdon, W.B.: Schema theory for genetic programming with one-point
crossover and point mutation. Evol. Comput. 6(3), 231–252 (1998)

16. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

V2G Demand Prediction Based on Daily Pattern
Clustering and Artificial Neural Networks

Junghoon Lee and Gyung-Leen Park(B)

Department of Computer Science and Statistics,
Jeju National University, Jeju City, Republic of Korea

{jhlee,glpark}@jejunu.ac.kr

Abstract. This paper presents how to manage the power consumption
history in a microgrid, clusters days according to their time series pat-
terns, and develops a prediction model for next day demand. Daily con-
sumption patterns, each of which consists of quarter-hourly records, are
grouped into 6 clusters, taking advantage of the dynamic time warp-
ing method in measuring the similarity between all feasible pairs of
days. We select 3 main parameters for the cluster prediction of the next
day, namely, month, day-of-week, and day-high temperature given by
the weather forecast. For machine learning, learning patterns are gen-
erated after joining tables of power consumption, weather archive and
day-group association on a daily basis. The next step builds an artificial
neural network model using well-known open software. The model shows
the accuracy of 67%, making it possible to estimate next day behavior,
select the best demand model, and estimate power demand for vehicle-
to-grid trades.

Keywords: Smart grid · Power demand estimation · Consumption pat-
tern clustering · Dynamic time warping · Artificial neural network

1 Introduction

In modern power networks called the smart grid, EVs (Electric Vehicles) are
making transportation as a part of the energy grid [1]. Having electric batteries,
they can play a role of energy storage when they do not move. This feature
brings a completely new energy service model called V2G (Vehicle-to-Grid),
which makes EVs absorb over-produced electricity and emit when the system
load is high [2]. As the two periods, namely, peak-load and low-load intervals,
have different price rates, the EV owners can get economic benefits by buying
cheap and selling high. Moreover, considering that the power facility is provi-
sioned to match the peak demand in a target community, the V2G service can
suppress the construction of a new power plant, as it can reduce or shift the
energy peak.

This research was supported by Korea Electric Power Corporation through Korea
Electrical Engineering & Science Research Institute. (Grant number: R15XA03-62).

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 113–119, 2017.
DOI: 10.1007/978-3-319-59072-1 14

114 J. Lee and G.-L. Park

However, nation-wide or community-wide energy trade is not mature yet
mainly due to the lack in the availability of bidirectional-flow batteries or attrac-
tive reward policies for selling electricity. Meanwhile, a microgrid having its own
autonomous power system can be an active buyer for EV-stored electricity. Dur-
ing the peak time, it possibly does not use the expensive grid-supplying energy
but takes cheap EV-stored electricity which has been bought much cheaper at
an off-peak rate. For the V2G trade in which electricity flows from EVs to a
microgrid, EVs must be plugged-in to the microgrid. Hence, the microgrid needs
to decide not only how much electricity it wants to buy at a specific time instant
but also from which EV it will buy much before the actual electricity injection
[3]. Hence, the demand prediction is indispensable.

The energy consumption pattern is different microgrid by microgrid, accord-
ing to how it is equipped, how many people will gather most, and the like.
A microgrid can be an airport, a shopping mall, an office building, and the like.
Hence, the prediction model must be different for each autonomous grid, and
must be elaborately built based on its previous consumption history [4]. Here,
many energy venders offer consumers with such records, making it possible to
build an efficient energy consumption schedule and select an appropriate price
plan [5]. In addition, recently, open software is widely available for processing a
massive volume of big data, allowing even non-experts to conduct an intelligent
data analysis.

In this regard, this paper analyzes the power consumption pattern in a cam-
pus of our university and builds a forecast model, aiming at the development of
an efficient and convenient V2G service building block [6]. The process begins
with cooking raw energy consumption files downloaded from the utility company
and then groups each day according to the consumption shape by a hierarchi-
cal clustering method. After that, we make a prediction model which estimates
to which group the next day will belong, mainly taking advantage of machine
learning and big data handling techniques [7].

2 Data Processing

As shown in Fig. 1, our energy company provides a time series of power con-
sumption records on quarter-hourly basis along with graphic display, after user
authentication (http://pccs.kepco.co.kr). A record consists of timestamp, con-
sumption amount (kwh), maximum consumption rate (kw), lagging reactive
power (kV arh), leading reactive power (kV arh), lagging power factor, and lead-
ing power factor for each the 15-minute interval.

The set of records for a day are downloaded as a single file formatted by the
HTML syntax. We download 366 records dating from 2015-7-1 to 2016-6-30. A
C language program parses the set of files one by one, extracting those fields
necessary in each record and standardizing the timestamp representation, and
then converts to a series of SQL statements. The SQL script is moved to and
executed on the MySQL server running on a Linux machine. Figure 2 shows that
35,136 records are currently inserted in the predefined PowDemand table having
those fields described previously.

http://pccs.kepco.co.kr

V2G Demand Prediction Based on Daily Pattern Clustering and ANN 115

Fig. 1. Power consumption information

Fig. 2. Database table definition

To begin with, as the daily peak is very important to the power purchase
plan and energy cost, Fig. 3 plots daily high consumptions for the whole period.
We can see a seasonal effect as well as sharp decrease in weekends. In addition, at
the beginning of the spring semester, the peak increases substantially, possibly
due to the construction of new buildings.

Next, it is possible to retrieve information fromthis table in anRworkspace, one
of the most widely used statistics packages nowadays [8]. We take the timestamp
and power consumption fields for all days by an R command and split them into 366
series, each of which includes 24 × 4 consecutive values. We implement an R script
whichcompares the similaritybetweeneachseries (366×365pairs)accordingto the
dynamic time warping method to identify the cluster of days. It takes quite a long
time to calculate the distance between any two points belonging to the respective

116 J. Lee and G.-L. Park

Fig. 3. Daily peak dynamics

Fig. 4. Clustering result

series. Indispensably,theconsumptionpatternofaschoolwillbedifferentdaybyday
according towhether it is during the semester or vacationaswell as it is aweekdayor
weekend. Other microgrids also have different daily consumption curves according
to their types.

The clustering result is shown in Fig. 4 and the number of days in each group
is shown in Table 1. From the hierarchy created from the similarity measure, we
can find the proper number of clusters for the target data set, with quite intu-
itive observation. Actually, there are outlier days. Some of them have corrupted
data containing many 0’s in their records. A day has extraordinarily large power
consumption and we cannot know the reason. Most days belong to Group 1 and
this group embraces weekdays during the semester. Group 2 includes semester
weekdays and vacation weekends. Group 3 and Group 4 includes vacation week-
days and Group 4 shows much higher consumption. Group 5 includes some of
vacation weekends and Group 6 some of semester weekends. It is not possible to
discover such factors capable of perfectly classifying each group.

Figure 5 plots 6 curves, each of which is randomly selected day from a single
group. Those curves have common features. First of all, the consumption stays
low during the night and increases according to the beginning of work hours.
How sharply the consumption increases decides the group. Group 4 shows the

V2G Demand Prediction Based on Daily Pattern Clustering and ANN 117

Table 1. Clustering results

Group Number of days

1 122

2 55

3 58

4 65

5 29

6 33

highest demand during the work hours. Miscellaneously, the demand slightly
decreases around noon, or lunch time.

(a) Consumption pattern (b) Daily peak

Fig. 5. Consumption statitics

In addition, Fig. 5 shows the daily peak and the group the day belongs to.
The peak of each day is marked by a symbol representing its group. Group 3
and Group 4 are intensively found during the summer and winter vacation. Even
though the number of students staying at the campus is small, the heating and
cooling equipment spends quite much energy. If the cut-down of the peak load
is the main goal, the arrangement of V2G trades must focus on this period,
which is highly likely to suffer from the lack in the number of EVs participating
in the trade. It is possible to assign a better reward or run a membership pro-
gram. Semester weekends show low peak, hence the V2G trade is not so urgent.
Semester weekdays can benefit from a better availability of EVs.

3 Data Fusion and Group Prediction

Assume that respective prediction models are developed for each group. Then,
the V2G scheduler must know which group the next day will belong to and

118 J. Lee and G.-L. Park

how much electricity is desirably purchased according to the predicted demand.
The decision criteria can be weather forecast and temporal information such as
month and day-of-week. The month field can account for the seasonal feature
and whether the next day is in semester or vacation. First, we continuously
retrieve the weather archive of our region. It comprises temperature, wind speed,
insolation, and the like. The records are published on an hourly basis. In addition,
the grouping result associates a day having a set of parameter instances with a
specific group.

Machine learning is one of the most efficient and commonly-used methods for
prediction. Particularly, artificial neural networks (ANN) can trace a non-linear
behavior of a given time series based on the principle of learn-by-example [9].
Moreover, we can find versatile libraries of ANN such as FANN (Fast ANN).
The first step is to make a set of learning patterns consisting of input and
output variables. Here, we select month, day-of-week, and temperature as input
variables and the group decided by the clustering process as an output variable.

As in other approaches, we will feed 70% of patterns to an ANN for training,
while the other 30% for evaluating the accuracy of the model. The number of
nodes in the hidden layer is selected by trial-and-error and we fix it to 25. The
learning phase takes the learning patterns and iteratively calculates the weight
of each link connecting two nodes. Learning and evaluating are accomplished by
calling FANN library functions in a not so complex C language program. After
all, the prediction model estimates the group for the given input parameters with
the accuracy of 67%. It will allow us to make an efficient electricity purchase plan
for the next day. In addition, for better performance, a compensation scheme
will be needed to cope with the prediction error which may result in excessive
or insufficient supply of energy.

4 Conclusions

In this paper, we have obtained the energy consumption records in our campus,
grouped each day according to its consumption pattern, and developed a pre-
diction model telling us which group the next day will belong to. Built on top
of the combination of MySQL, R, and FANN, the hierarchical clustering process
has found 6 groups with the dynamic time warping method. Then, FANN takes
month, day-of-week, temperature forecast as input and the expected group as
output to make a prediction model for a non-linear series, achieving the accu-
racy of 67%. This model makes it possible to develop a group-by-group energy
demand model and thus build an efficient V2G service. In the whole steps, we
have demonstrated the powerfulness and ease-to-use of open software and arti-
ficial intelligence. The smart grid will be enriched by abundant big data and
sophisticated computational intelligence for high-level energy efficiency.

As future work, we are planning to combine more data streams such as
charger status monitoring, energy consumption, wind and solar energy gener-
ation, and the like, for the sake of building an energy-efficient and eco-friendly
green energy network in a city level [10].

V2G Demand Prediction Based on Daily Pattern Clustering and ANN 119

References

1. Ramchrun, S., Vytelingum, R., Rogers, A., Jennings, N.: Putting the ‘Smarts’ into
the smart grid: a grand challenge for artificial intelligence. Commun. ACM 55(4),
89–97 (2012)

2. Bayram, I., Shakir, M., Abdallah, M., Qaraqe, K.: A survey on energy trading in
smart grid. In: IEEE Global Conference on Signal and Information Processing, pp.
258–262 (2014)

3. Lee, J., Park, G.: A heuristic-based electricity trade coordination for microgrid-
level V2G services. Int. J. Veh. Des. 69(1/2/3/4), 208–223 (2015)

4. Lee, J., Park, G., Cho, Y., Kim, S., Jung, J.: Spatio-temporal analysis of state-of-
charge streams for electric vehicles. In: 4th ACM/IEEE International Conference
on Information Processing in Sensor Networks, pp. 368–369 (2015)

5. Goiri, I., Le, K., Nguyen, T., Guitart, J., Torres, J., Bianchini, R.: GreenHadoop:
leveraging green energy in data-processing frameworks. In: Proceedings of Eurosys
(2012)

6. Aman, S., Simmhan, Y., Prasanna, V.: Holistic measures for evaluating prediction
models in smart grids. IEEE Trans. Knowl. Data Eng. 27(2), 475–488 (2015)

7. Duerden, C., Shark, L.-K., Hall, G., Howe, J.: Prediction of granular time-series
energy consumption for manufacturing jobs from analysis and learning of historical
data. In: Annual Conference on Information Science and Systems, pp. 625–630
(2016)

8. Brunsdon, C., Comber, L.: An Introduction to R for Spatial Analysis & Mapping.
SAGE Publication Ltd, Thousand Oaks (2015)

9. Nissen, S.: Neural Network Made Simple. Software 2.0 (2005)
10. Karnouskos, S., Ilic, D., Silva, G.: Assessment of an enterprise energy service plat-

form in a smart grid city pilot. In: IEEE International Conference on Industrial
Informatics, pp. 24–29 (2013)

An Arctan-Activated WASD Neural Network
Approach to the Prediction of Dow Jones

Industrial Average

Bolin Liao(B), Chuan Ma, Lin Xiao, Rongbo Lu, and Lei Ding

College of Information Science and Engineering,
Jishou University, Jishou 416000, China

mulinliao8184@163.com

Abstract. Accurate prediction of the stock market index is a very chal-
lenging task due to the highly nonlinear characteristic of financial time
series. For this reason, a single hidden-layer feed-forward neural net-
work, activated by the arctan function, is proposed and investigated
for predicting the Dow Jones Industrial Average. Then, a weights and
structure determination (WASD) method is exploited to train the pro-
posed arctan-activated neural network (termed arctan-activated WASD
neural network). The relatively optimal weight and structure could be
obtained by the presented WASD method. Numerical experiments are
carried out based on huge amounts of historical data. The experimental
results demonstrate the effectiveness and superior abilities of the arctan-
activated WASD neural network for predicting the Dow Jones Industrial
Average.

Keywords: Arctan · WASD neural network · Prediction · Dow Jones
Industrial Average

1 Introduction

The stock market is a barometer of the country’s economic situation. It reflects a
country’s capital mobility and expectations of the future economic trends [1,2].
Because the stock market interacts with many factors such as political events,
general economic conditions and the expectations of traders, it possess the char-
acteristics of non-linearity, discontinuities and high-frequency polynomial com-
ponents [3]. In addition, with the help of modern technology, the rapid data
processing of the stock market has led to very rapid fluctuations of stock market
index. As a result, numerous banks, financial institutions, investors and stock
brokers must buy and sell stocks in the shortest possible time, even within a few
hours between buying and selling [4]. The topic has attracted more and more
attention as well as research enthusiasm. Many researchers have devoted much
effort to the predictability of the stock market and put forward many methods,
such as the basic analysis, time series prediction and machine learning meth-
ods [5]. Among them, the artificial neural network (ANN) method is considered
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 120–126, 2017.
DOI: 10.1007/978-3-319-59072-1 15

An Arctan-Activated WASD Neural Network Approach 121

to be the best predictive method with a high level of validity in the field of
stock market index forecasting [6]. However, some of the key points of the ANN
structure should be carefully investigated. Because the choice of input variables
directly affects the prediction accuracy, the definition of the optimal set of ANN
input variables is one of the main problems in ANN. Number of neurons in the
hidden layer, which often needs to be adjusted, is another key point of ANN.
Unfortunately, there is no definite method to determine the optimal number of
neurons in the hidden layer. Therefore, researchers usually employ the trial and
error method to achieve this purpose [1]. However, the trial and error method is
time-consuming, it does not apply to modern society that the time is money.

The Dow Jones Industrial Average, also termed the Dow Jones or simply
the Dow, is a stock market index that shows how thirty large-cap companies
located in the United States have traded during a trading cycle in the stock
market. The Dow Jones Industrial Average is calculated by adding the prices of
the thirty component stocks in the average and dividing by a divisor. Although
the Dow Jones Industrial Average is compiled to evaluate the performance of
the industrial department within the United States economy, the index’s perfor-
mance continues to be affected by not only economic reports, but also by polit-
ical events such as war and terrorism, as well as by natural disasters that could
potentially lead to economic harm. It is of great significance to make accurate
prediction. In this paper, we propose a arctan-activated weights and structure
determination (WASD) neural network to predict the Dow Jones Industrial Aver-
age. The WASD neural network comes from the error back propagation (BP)
neural network. Theoretically, it can approximate any nonlinearity continuous
function with arbitrary accuracy as a universal approximator [7]. In addition,
the arctan-activated WASD neural network overcomes the weaknesses of clas-
sical neural networks, such as the presence of relatively slow convergence and
local minima. Through illustrative experiments, the efficacy and the superiority
of the proposed arctan-activated WASD neural network are well-verified.

The remainder of this paper is organized as follows. Section 2 provides a sin-
gle hidden-layer feed-forward neural network, which is activated by the arctan
function. Then, we describe experiments that used arctan-activated neural net-
work to predict the return of Dow Jones Industrial Average, and we use arctan-
activated WASD neural network and support vector machine (SVM) network
for comparative analysis in Sect. 3. Finally, Sect. 4 presents conclusions.

2 Arctan-Activated WASD Neural Network and
Theoretical Analysis

In this section, a multi-input arctan-activated WASD neural network is con-
structed and analyzed theoretically.

2.1 Arctan-Activated WASD Neural Network

The arctan-activated WASD neural network consists of K input layer neurons,
an output neuron, and M hidden neurons. In this paper, we denote by wkm

122 B. Liao et al.

the weight connecting the kth input-layer neuron (with k = 1, 2, . . . , K) and
the mth hidden-layer neuron (with m = 1, 2, . . . ,M), which is chosen randomly
within interval (χ1, ς1) to make the period of the arctan function different. In
addition, we denote by um the weight connecting the mth hidden-layer neuron
and the output-layer neuron, which is determined in the next section by adopting
the weights direct determination method [8,9]. Without loss of generality, the
threshold bm of the mth hidden layer neuron is randomly chosen in the interval
(χ2, ς2), and the bias of the input-layer and output-layer neurons are all set to
be zero simply.

Accordingly, we obtain the output of the mth hidden layer neuron as

ϕm = arctan(
K∑

k=1

(xkwk,m)) − bm, (1)

where xk denotes the kth input-layer neuron. The output of the arctan-activated
WASD neural network can be further described as

y =
M∑

m=1

(umϕm). (2)

The above equality means that the objective function is just a weighted combi-
nation of numerous arctan functions.

2.2 Weights Direct Determination Method

Hidden layer output matrix can be expressed as

H =

⎡

⎢⎢⎢⎢⎢⎣

ϕ0,0 ϕ0,1 ϕ0,2 · · · ϕ0,M−1

ϕ1,0 ϕ1,1 ϕ1,2 · · · ϕ1,M−1

ϕ2,0 ϕ2,1 ϕ2,2 · · · ϕ2,M−1

...
...

...
. . .

...
ϕN−1,0 ϕN−1,1 ϕN−1,2 · · · ϕN−1,M−1

⎤

⎥⎥⎥⎥⎥⎦
∈ R

N×M , (3)

where N is the number of samples, M is the number of neurons in the hidden
layer, and ϕn,m is the nth day’s the mth hidden layer neuron output value.
The connection weights of hidden layer neurons to output layer neurons can be
directly determined as follows

u = (HTH)−1HTδ = H+δ,

where H+ is the pseudo-inverse of the output matrix H of the hidden layer, and
δ is the column vector of the learning sample of Dow Jones Industrial Average.

2.3 Structure Determination Method

With regard to the arctan-activated WASD neural network, we define the fol-
lowing mean square error (MSE)

MSE =
1
N

N−1∑

n=0

(δn −
M−1∑

m=0

umϕn,m)2, (4)

An Arctan-Activated WASD Neural Network Approach 123

where δn is the nth day’s actual value of the opening index of the Dow Jones. The
training error Etra and the internal check error Eval are calculated according to
Eq. (4). The introduction of weighted error in the neural network can effectively
prevent the occurrence of over-fitting phenomenon. Therefore, we define the
weighted error of the arctan-activated WASD neural network as

Etol = αEtra + (1 − α)Eval, (5)

where α is the proportion of training samples to the total number of samples. The
weighted error Etol is involved in the subsequent optimal structure determination
process of the neural network.

First, we set the maximum number of resets. The hidden layer neurons are
added one by one. When the weighted error no longer drops, the newly-added
hidden layer neuron are reset (the weights of the input layer neurons to newly-
added hidden layer neuron and the threshold of the newly-added hidden layer
neuron). If the number of resets has reached the maximum number of resets and
it still can not make the weighted error drop, then the structure is the optimal
structure.

3 Experimental Verification

The Dow Jones Stock Average, also known as US30, is the worlds most influential
and widely used stock index. It is based on the New York Stock Exchange listed
on the part of the representative of the company stock as the preparation of the
four stock price index composition. This paper uses 3748 valid data of the period
from April 8, 2002 to November 11, 2016. The data includes the opening index,
the highest index, the lowest index, the day’s trading volume, and the closing
index. In this paper, we set the weights of the input layer to the hidden layer
and the thresholds of the hidden layer between [−1, 1]. In order to eliminate the
impact of latitude on the results, the data need to be normalized. In this paper,
we set the normalization interval as [−1, 1].

0 5 10 15 20 25 30 35 40 45
10

−5

10
−4

10
−3

10
−2

10
−1

Weighted error

The number of hidden-layer neurons

Best point

Fig. 1. Weighted error generated by arctan-activated WASD neural network

124 B. Liao et al.

3.1 Training

In this paper, based on a lot of experiments, we use the first 2898 data for
training and the last 850 data for internal verification (i.e., α = 2898/3748).
In addition, we set the maximum number of resets as 1300. To illustrate the
relationship among the training error and M (i.e., the number of hidden-layer
neurons), the corresponding result is displayed in Fig. 1. It is seen from Fig. 1
that by adding the hidden-layer neurons one by one, the weighted error first
drops and then starts rise. Clearly, the number of hidden layer neurons at 40
is a turning point. Therefore, the optimal number of hidden layer neurons is
approximately 40.

1 2 3 4 5 6 7 8 9 10
1.875

1.88

1.885

1.89

1.895

1.9

1.905

1.91

1.915
x 10

4 Dow Jones Industrial Average

Day

Arctan−activated WASD Neural Network Prediction Output

Dow Jones Industrial Average Raw Data

Fig. 2. Prediction results Arctan-activated WASD neural network

3.2 Prediction

To test the performance of the arctan-activated WASD neural network, we use
the data of the next 10 days (2016.11.14–2016.11.25) to make predictions. The
prediction results are displayed in Fig. 2. From this figure, on can observe that
the predicted results are in agreement with the actual values. Besides, before
the inverse normalization, the value of MSE is 1.781e − 06, which is quite small.
Consequently, the effectiveness of arctan-activated WASD neural network for
predicting the Dow Jones Industrial Average is verified.

3.3 Comparison

In order to illustrate that arctan-activated WASD neural network has advantages
in the stock index prediction, we compare it with SVM network. They all use
the same data to test, and then predict the Dow Jones Industrial Average of
10 days. The actual errors of the two approaches are shown in Fig. 3. From

An Arctan-Activated WASD Neural Network Approach 125

Fig. 3, one can see that the absolute value of the actual error generated by
arctan-activated WASD neural network is less than 20. However, the value of
actual error generated by SVM network is gradually increased and the maximum
actual error is more than 120. Therefore, the superior performance of arctan-
activated WASD neural network for predicting the Dow Jones Industrial Average
is demonstrated once again.

1 2 3 4 5 6 7 8 9 10
−40

−20

0

20

40

60

80

100

120

140
Arctan−activated WASD
SVM

Actual error

Day

Fig. 3. Actual errors generated by arctan-activated WASD neural network and SVM
network

In order to avoid accidental errors, we repeat the experiment ten times, and
compare the best results and average results of ten experiments. The results
are shown in Table 1. From Table 1, one can observe that the arctan-activated
WASD neural network prediction error is one order of magnitude lower than the
SVM network prediction error from the best angle or from the average point of
view. In addition, the training time of arctan-activated WASD neural network
is less than half of the SVM network. As a result, it can be concluded that the
prediction performance of arctan-activated WASD neural network is superior to
the SVM network.

Table 1. Numerical results of arctan-activated WASD (AWASD) neural network and
SVM network

Models AWASD best AWASD average SVM best SVM average

MSE 1.91e−06 7.65e−06 2.0571e−05 2.0571e−05

CPU time 27.509 s 27.207 s 74.0209 s 74.3352 s

126 B. Liao et al.

4 Conclusion

WASD neural network is a new feedforward neural network, which directly
determines the weight and structure and reduces the complexity of the itera-
tive process. The numerical experiments have demonstrated that the arctan-
activated WASD neural network can effectively realize the self-determination of
the optimal weights and the optimal structure, and show a very good accuracy
in the prediction of the Dow Jones Industrial Average. In addition, by compar-
ing the performance between arctan-activated WASD neural network and SVM
network in large data processing, it has confirmed that arctan-activated WASD
neural network has better learning and prediction performance when the non-
linear degree is increased. However, a detail that is worth mentioning is that
the stock index prediction may be continuously challenging because of many
uncertainties in the future, such as government regulation, unexpected wars,
and natural disasters.

Acknowledgment. This work is supported by the National Natural Science Foun-
dation of China (Grants No. 61563017, 61503152 and 61363073), and the Scientific
Research Foundation of Jishou University, China (Grants No. jsdxxcfxbskyxm201508
and Jdy16008).

References

1. Mustafa, G., Mehmet, Ö., Aslı, B., Ayşe, T.D.: Integrating metaheuristics and arti-
ficial neural networks for improved stock price prediction. Expert Syst. Appl. 44,
320–331 (2016)

2. Perwej, Y., Perwej, A.: Prediction of the Bombay Stock Exchange (BSE) market
returns using artificial neural network and genetic algorithm. J. Intell. Learn. Syst.
Appl. 4, 108–119 (2012)

3. Hadavandi, E., Shavandi, H., Ghanbari, A.: Integration of genetic fuzzy systems
and artificial neural networks for stock price forecasting. Knowl.-Based Syst. 23,
800–808 (2010)

4. Bonde, G., Khaled, R.: Stock price prediction using genetic algorithms and evolution
strategies. In: Proceedings of the 2012 International Conference on Genetic and
Evolutionary Methods, pp. 10–15 (2012)

5. Prasanna, S., Ezhilmaran, D.: An analysis on stock market prediction using data
mining techniques. Int. J. Comput. Sci. Eng. Technol. 4, 49–51 (2013)

6. Sureshkumar, K., Elango, N.: Performance analysis of stock price prediction using
artificial neural network. Glob. J. Comput. Sci. Technol. 12, 18–26 (2012)

7. Zhang, Y., Guo, D., Luo, Z., Zhai, K., Tan, H.: CP-activated WASD neuronet
approach to Asian population prediction with abundant experimental verification.
Neurocomputing 198, 48–57 (2016)

8. Li, S., You, Z., Guo, H., Luo, X., Zhao, Z.: Inverse-free extreme learning machine
with optimal information updating. IEEE Trans. Cybern. 46, 1229–1241 (2015)

9. Zhang, Y., Yin, Y., Guo, D., Yu, X., Xiao, L.: Cross-validation based weights and
structure determination of Chebyshev-polynomial neural networks for pattern clas-
sification. Pattern Recogn. 47, 3414–3428 (2014)

State Estimation for Autonomous Surface
Vehicles Based on Echo State Networks

Zhouhua Peng1,2(B), Jun Wang2, and Dan Wang1

1 School of Marine Engineering, Dalian Maritime University,
Dalian 116026, People’s Republic of China
zhpeng@dlmu.edu.cn, dwangdl@gmail.com

2 Department of Computer Science, City University of Hong Kong,
Kowloon Tong, Hong Kong
jwang.cs@cityu.edu.hk

Abstract. This paper investigates the state estimation for autonomous
surface vehicles in the presence of unknown dynamics and unmeasured
states. The unknown dynamics comes from parametric model uncer-
tainty, unmodelled hydrodynamics, and external disturbances caused
by wind, waves and ocean currents. A nonlinear adaptive observer is
proposed based on echo state networks, which are used to approximate
the unknown dynamics using input-output data. By using the proposed
observer, the unmeasured states and unknown dynamics can be simul-
taneously estimated in real time. The stability of the observer is ana-
lyzed via Lyapunov analysis. The proposed observer can be used in vari-
ous motion control scenario, such as target tracking, trajectory tracking,
path following, formation control, and even sideslip angle identification,
not only for fully-actuated marine vehicles but also for under-actuated
marine vehicles.

Keywords: Echo state network · State estimation ·Unknown dynamics ·
Fully-actuated marine vehicles · Under-actuated marine vehicles

1 Introduction

In applications, the position information of marine surface vehicles can be easily
obtained by using cheap Global Navigation Satellite System; however, the

The work of Z. Peng was supported in part by the National Natural Science Foun-
dation of China under Grant 51579023, and in part by the Hong Kong Scholars
Program under Grant XJ2015009, and in part by the China Post-Doctoral Science
Foundation under Grant 2015M570247, and in part by High Level Talent Innovation
and Entrepreneurship Program of Dalian under Grant 2016RQ036.
The work of J. Wang was supported in part by the Research Grants Council of the
Hong Kong Special Administrative Region, China, under Grant 14207614, and in
part by the National Natural Science Foundation of China under Grant 61673330.
The work of D. Wang was supported in part by the National Natural Science Founda-
tion of China under Grant 61673081, and in part by the Fundamental Research Funds
for the Central Universities under Grant 3132016313, and in part by the National
Key Research and Development Program of China under Grant 2016YFC0301500.

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 127–134, 2017.
DOI: 10.1007/978-3-319-59072-1 16

128 Z. Peng et al.

velocity information may not be readily measured. Therefore, the development
of a stable observer to achieve a state estimation is essential for a marine vehicle.
In the literature, a variety of stable observers have been proposed, for instances,
wave-filtering observer [1–3], high-gain observer [4,6,8], linear observer [5], neural
network-based observers [7,10], disturbance observer [9]. It is worth mentioning
that the observers proposed in [4–6,8] are not able to identify the uncertainty.
In addition, the model parameters in [1–3,9] are assumed to known. These may
limits their applications.

In this paper, we aim to address the state estimation problem of autonomous
surface vehicles (ASVs) in the presence of unknown dynamics, and unmeasured
surge velocity, sway velocity, and yaw rate. The unknown dynamics stems from
parametric model uncertainty, unmodelled hydrodynamics, and external distur-
bances such as wind, waves and ocean currents. A nonlinear adaptive observer is
developed where echo state networks are employed to approximate the unknown
kinetics using measured position-yaw information. With the proposed observer,
the unmeasured states and unknown dynamics can be simultaneously estimated
in real time. The stability of the echo-state-network-based observer is analyzed
based on linear matrix inequality and Lyapunov theory. The proposed observer
can be used in various applications, such as target tracking [14,15], trajectory
tracking [17–19], path following [16,22,23], formation control [21], and sideslip
angle estimation, not only for fully-actuated marine vehicles but also for under-
actuated marine vehicles.

The paper is organized as follows: The problem formulation and preliminar-
ies are introduced in Sect. 2. The echo-state-network-based observer design and
analysis is presented in Sect. 3. Conclusions are drawn in Sect. 4.

2 Preliminaries and Problem Formulation

2.1 Echo State Network

Echo State Network (ESN) is widely used to model dynamical systems [13], and
consists of a hidden layer and a memoryless output layer. Let X ∈ R

n be a
reservoir state, U ∈ R

k be an input, Y ∈ R
l be its output vector, Wu ∈ R

n×k

and Wx ∈ R
n×n be weight matrices, b ∈ R be a leaking decay rate, c ∈ R be a

time constant, and σ(·) be an activation function vector. Then, the dynamical
equation of an ESN with k inputs, n neurons in the hidden layer, and l neurons
in the memoryless output layer, is expressed as

Ẋ =
1
c

{−bX + σ(WuU + WxX)}, (1)

and the output vector

Y = g(WT X), (2)

where W ∈ R
n×l represents the output weight matrix and g(·) denotes the

output activation function.

State Estimation for Autonomous Surface Vehicles 129

ESN holds the universal approximation property of recurrent neural net-
works. That is, given an arbitrary positive number ε∗, a continuous function
f(ξ),Rn → R

l can be approximated by an ESN as [13]

f(ξ) = WT σf (ξ) + ε,∀ξ ∈ Ω ⊂ R
n, (3)

where Ω is a sufficiently large compact set and ε is the approximation error
satisfying ‖ε‖ ≤ ε∗. Besides, there exists positive constants W ∗ ∈ R and σ∗

f ∈ R

such that ‖W‖F ≤ W ∗ and ‖σf (ξ)‖ ≤ σ∗
f .

The optimal weight W is given by

W = arg min
Ŵ∈Rn×l

{sup
ξ∈Ω

f(ξ) − ŴT σf (ξ)}, (4)

where Ŵ is an estimation of W .

2.2 Problem Formulation

In marine practice, the position, altitude and velocity information of a marine
surface vehicle are described in body-fixed and earth-fixed reference frames. Let
η = [x, y, ψ]T ∈ R

3 be a position-yaw vector in the earth-fixed frame, and
ν = [u, v, r]T ∈ R

3 be a velocity vector in the body-fixed frame. Then, the
kinematics and kinetics of ASVs can be expressed by [11]

η̇ = R(ψ)ν, (5)

and

Mν̇ = −C(ν)ν − D(ν)ν + g(ν, η) + τw(t) + τ, (6)

where M = MT ∈ R
3×3 is an inertial matrix; C(ν) = −C(ν) ∈ R

3×3 is a Coriolis
matrix;D(ν) ∈ R

3×3 is adampingmatrix;g(ν, η) represents theunmodelledhydro-
dynamics;τw = [τwu, τwv, τwr]T ∈ R

3 isadisturbancevector;τ = [τu, τv, τr]T ∈ R
3

is a control input; R(ψ) ∈ R
3×3 is defined as

R(ψ) =

⎡
⎣

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

⎤
⎦ . (7)

In this paper, we aim to develop an adaptive observer for ASVs (5) and (6)
using the position-yaw information of η.

3 ESN-Based Observer Design and Analysis

The vehicle dynamics contains parametric model uncertainty, unmodelled
dynamics, and external disturbances caused by wind, waves and ocean currents.
Besides, the velocity information of ASVs may not be available. In this paper,

130 Z. Peng et al.

an ESN-based observer is developed to estimate the unknown dynamics, and
unmeasured velocity information, simultaneously.

To facilitate the observer design, rewrite the Eqs. (5) and (6) as
{

η̇ = R(ψ)ν,
ν̇ = M−1[τ − f(·)], (8)

where f(·) = C(ν)ν + D(ν)ν + g(ν, η) − τw(t).
Because the velocity information ν is not available, f(·) cannot be directly

reconstructed by ESN. Here, the recorded output data η and input data τ are
used to reconstruct the unknown function f(·).
Lemma 1. Given a positive constant ε∗, there exists a set of bounded weights
W ∈ Rn×3, such that the continuous function f(·) can be approximated by an
ESN as

f(·) = WT σf (ξ) + ε(ξ), (9)

using the input vector ξ = [ηT (t), ηT (t − td), ηT (t − 2td), τT]T with td > 0, and
‖ε(ξ)‖ ≤ ε∗ provided there exists a suitable basis of activation function σ(·) over
a compact set Ω.

In implementations, the incremental information Δ1 = R(ψ)[η(t)− η(t− td)]
and Δ2 = R(ψ(t − td))[η(t − td) − η(t − 2td)] can be used as NN inputs for
reducing the input dimension of ESN. When choosing ξ = [ΔT

1 ,ΔT
2 , τT]T or

ξ = [ΔT
1 − ΔT

2 , τT]T , the input dimension of ESNs is reduced to nine or six,
respectively. The ESN can be replaced by static neural network [20].

Let η̂ = [x̂, ŷ, ψ̂]T and ν̂ = [û, v̂, r̂]T be the estimates of η and ν. Then, an
ESN-based full-state observer is designed as

{ dη̂
dt = −K1η̃ + R(ψ)ν̂,
dν̂
dt = −K2R

T (ψ)η̃ + M−1[−ŴT σf (ξ) + τ],
(10)

and Ŵ is updated as follows

˙̂
W = Γ [σf (ξ)η̃T R(ψ) − kW Ŵ], (11)

where η̃ = η̂ − η; K1 ∈ R
3×3 and K2 ∈ R

3×3 are design parameters; Γ ∈ R and
kW ∈ R are positive constants.

Letting the velocity estimation error be ν̃ = ν̂ − ν and recalling (8) and (10),
it follows that

{
dη̃
dt = −K1η̃ + R(ψ)ν̃,
dν̃
dt = −K2R

T (ψ)η̃ + M−1[−W̃T σf (ξ) + ε],
(12)

where ‖ε‖ ≤ ε∗ with ε∗ being a positive constant. Letting X̃ = [η̃T , ν̃T]T , the
Eq. (12) can be further put into

{
dX̃
dt = AX̃ + B[−W̃T σf (ξ) + ε],
η̃ = C0X̃,

(13)

State Estimation for Autonomous Surface Vehicles 131

where

A =
(−K1 R(ψ)

−K2R
T (ψ) 03

)
, B =

(
03×3

M−1

)
, C0 = (I3, 03). (14)

In order to eliminate the dependence of A on ψ, a block-diagonal transformation
Z = TX̃ with

T = diag(RT (ψ), I3), (15)

is applied to (13), and it follows that
⎧
⎨
⎩

˙̃X = TT A0TX̃ + B{−W̃T σf (ξ) + ε},

η̃ = C0X̃, A0 =
(−K1 I3

−K2 03×3

)
.

(16)

Using a mapping Z = TX̃, it follows that
{

Ż = (A0 + rST)Z + B[−W̃T σf (ξ) + ε],
˙̃W = Γ [σf (ξ)η̃T R(ψ) − kW Ŵ],

(17)

where ST = diag(ST , 03) and

S =

⎛
⎝

0 −1 0
1 0 0
0 0 0

⎞
⎠ . (18)

By exploiting the minimal and maximal bound of r, the stability of (17) is
analyzed by concerning the following simultaneous inequalities

{
AT

0 P + PA0 + Q + PBBT P + �FFT + r̄∗(ST
T P + PST) ≤ 0,

AT
0 P + PA0 + Q + PBBT P + �FFT − r̄∗(ST

T P + PST) ≤ 0,
(19)

where F = CT −PB; Q is a positive definite matrix; � ∈ R is a positive constant;
r̄∗ is an upper bound for r satisfying |r| ≤ r̄∗; The stability property of the error
dynamics (17) is stated as follows.

Theorem 1. If there exists a positive definite matrix P satisfying (19) and the
control parameters are selected as

kW

2
− σ∗2

f

2�
> 0, (20)

the error dynamics (17) is input-to-state stable, and all error signals in the
closed-loop observer system are uniformly ultimately bounded.

Proof. Consider the Lyapunov function as

V =
1
2

{
ZT PZ + Γ−1tr(W̃T W̃)

}
. (21)

132 Z. Peng et al.

Using the inequalities
⎧
⎪⎨
⎪⎩

−kW tr(W̃T Ŵ) ≤ −kW

2 ‖W̃‖2F + kW

2 ‖W‖2F ,

−ZT EW̃T σf (ξ) ≤ �
2ZT EET Z + W̃T σf (ξ)σ

T
f (ξ)W̃

2� ,
ZT PBε ≤ 1

2ZPBBT PZ + 1
2ε2,

(22)

it follows from (19) that the time derivative of V is

V̇ ≤ − λmin(Q)‖Z‖2 −
(

kW

2
− σ∗2

f

2�

)
‖W̃‖2F

+
kW ‖W‖2F

2
+

‖ε‖2
2

. (23)

Letting c = min
{
λmin(Q), kW

2 − σ∗2
f

2�

}
> 0 and noting that c > 0 under the

condition (20), one has

V̇ ≤ −c‖E‖2
2

−
(c‖E‖2

2
− kW ‖W‖2

2
− ‖ε‖2

2

)
, (24)

where E = [ZT , W̃T].
Noting that

‖E‖ ≥
√

kW ‖W‖√
c

+
‖ε‖√

c
≥

√
kW ‖W‖2 + ‖ε‖2

c
, (25)

renders

V̇ ≤ − κ3(‖E‖) (26)

with κ3(s) = c
2s2, it follows that the system (17) is input-to-state stable [12].

Choosing κ1(s) = λmin(P)
2 s2 and κ2(s) = λmax(P)

2 s2 with P = diag{P, Γ−1},
there exists a class KL function β such that

‖E‖ ≤β(‖E(0)‖, t) + κ1 ◦ κ2

(√
kW√
c

‖W‖
)

+ κ1 ◦ κ2

(1√
c
‖ε‖

)
,

≤β(‖E(0)‖, t) + κW (‖W‖) + κε(‖ε‖),

≤β(‖E(0)‖, t) + κW (W ∗) + κε(ε∗), (27)

where the the gain functions given by

κW (s) =

√
λmax(P)
λmin(P)

√
kW√
c

s, κε(s) =

√
λmax(P)
λmin(P)

1√
c
s. (28)

Remark 1. Note that the vehicle model (6) becomes an under-actuated configu-
ration when setting τv = 0. Therefore, the developed observer can be applied to
both under-actuated and fully-actuated marine surface vehicles.

State Estimation for Autonomous Surface Vehicles 133

4 Conclusions

In this paper, an echo-state-network-based observer is developed for state esti-
mation of autonomous surface vehicles with unknown dynamics, and unmeasured
surge velocity, sway velocity, and yaw rate. By using the developed echo-state-
network-based observer, the unmeasured states and unknown dynamics can be
simultaneously estimated, using the measured position-yaw information only.
Based on Lyapunov analysis, the error signals in the closed-loop estimation sys-
tem are proved to be uniformly ultimately bounded.

References

1. Fossen, T., Grovlen, A.: Nonlinear output feedback control of dynamically posi-
tioned ships using vectorial observer backstepping. IEEE Trans. Control Syst. Tech-
nol. 6(1), 121–128 (1998)

2. Fossen, T., Strand, J.: Passive nonlinear observer design for ships using Lya-
punov methods: full-scale experiments with a supply vessel. Automatica 35(1),
3–16 (1999)

3. Ihle, I., Skjetne, R., Fossen, T.: Output feedback control for maneuvering systems
using observer backstepping. In: Proceedings of the 13th Mediterrean Conference
on Control and Automation Intelligent Control (2005)

4. Tee, K., Ge, S.: Control of fully actuated ocean surface vessels using a class of
feedforward approximators. IEEE Trans. Control Syst. Technol. 14(4), 750–756
(2006)

5. Zhang, L., Jia, H., Qi, X.: NNFFC-adaptive output feedback trajectory tracking
control for a surface ship at high speed. Ocean Eng. 38(13), 1430–1438 (2011)

6. Dai, S.L., Wang, M., Wang, C., Li, L.: Learning from adaptive neural network
output feedback control of uncertain ocean surface ship dynamics. Int. J. Adapt.
Control Signal Process. 28(3–5), 341–365 (2012)

7. Peng, Z., Wang, D., Liu, H.H., Sun, G., Wang, H.: Distributed robust state and
output feedback controller designs for rendezvous of networked autonomous surface
vehicles using neural networks. Neurocomputing 115, 130–141 (2013)

8. He, W., Yin, Z., Sun, C.: Adaptive neural network control of a marine vessel with
constraints using the asymmetric barrier Lyapunov function. IEEE Trans. Cybern.
(2016). doi:10.1109/TCYB.2016.2554621

9. Peng, Z., Wang, D., Wang, J.: Cooperative dynamic positioning of multiple marine
offshore vessels: a modular design. IEEE/ASME Trans. Mechatron. 31(3), 1210–
1221 (2016)

10. Peng, Z., Wang, D., Shi, Y., Wang, H., Wang, W.: Containment control of net-
worked autonomous underwater vehicles with model uncertainty and ocean distur-
bances guided by multiple leaders. Inf. Sci. 316(20), 163–179 (2015)

11. Fossen, T.: Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley,
Hoboken (2011)

12. Sontag, E.D., Wang, Y.: On characterizations of the input-to-state stability prop-
erty. Syst. Control Lett. 24(5), 351–359 (1995)

13. Sun, G., Li, D., Ren, X.: Modified neural dynamic surface approach to output
feedback of MIMO nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst.
26(2), 224–236 (2015)

http://dx.doi.org/10.1109/TCYB.2016.2554621

134 Z. Peng et al.

14. Peng, Z.,Wang,D.:Robust adaptive formation control of underactuated autonomous
surface vehicles with uncertain dynamics. IET Control Theory A. 5(12), 1378–1387
(2011)

15. Peng, Z., Wang, D., Chen, Z., Hu, X., Lan, W.: Adaptive dynamic surface con-
trol for formations of autonomous surface vehicles with uncertain dynamics. IEEE
Trans. Control Syst. Technol. 21(2), 513–520 (2013)

16. Xiang, X., Lapierre, L., Jouvencel, B.: Smooth transition of AUV motion control:
from fully-actuated to under-actuated configuration. Robot. Auton. Syst. 67, 14–
22 (2015)

17. Chen, M., Ge, S.S., How, B.V.E., Choo, Y.S.: Robust adaptive position mooring
control for marine vessels. IEEE Trans. Control Syst. Technol. 21(2), 395–409
(2013)

18. Yin, S., Xiao, B.: Tracking control of surface ships with disturbance and uncer-
tainties rejection capability. IEEE/ASME Trans. Mechatron. (2016). doi:10.1109/
TMECH.2016.2618901

19. Cui, R., Yang, C., Li, Y., Sharma, S.: Adaptive neural network control of auvs
with control input nonlinearites using reinforcement learning. IEEE Trans. Syst.
Man Cybern. Syst. (2016). doi:10.1109/TSMC.2016.2645699

20. Peng, Z., Wang, D., Zhang, H., Sun, G.: Distributed neural network control for
adaptive synchronization of uncertain dynamical multiagent systems. IEEE Trans.
Neural Netw. Learn. Syst. 25(8), 1508–1519 (2014)

21. Peng, Z., Wang, J., Wang, D.: Containment maneuvering of marine surface vehicles
with multiple parameterized paths via spatial-temporal decoupling. IEEE/ASME
Trans. Mechatron. (2016). doi:10.1109/TMECH.2016.2632304

22. Zheng, Z., Sun, L.: Path following control for marine surface vessel with uncertain-
ties and input saturation. Neurocomputing 177, 158–167 (2016)

23. Xiang, X., Yu, C., Zhang, Q., Xu, G.: Path-following control of an AUV: fully
actuated versus under-actuated configuration. Mar. Technol. Soc. J. 50(1), 34–47
(2016)

http://dx.doi.org/10.1109/TMECH.2016.2618901
http://dx.doi.org/10.1109/TMECH.2016.2618901
http://dx.doi.org/10.1109/TSMC.2016.2645699
http://dx.doi.org/10.1109/TMECH.2016.2632304

Using Neural Network Formalism to Solve
Multiple-Instance Problems

Tomáš Pevný1,2(B) and Petr Somol1,3

1 Cisco Systems, Charles Square 10, Prague, Czech Republic
pevnak@gmail.com

2 Faculty of Electrical Engineering, Czech Technical University,
Prague, Czech Republic

3 UTIA, Czech Academy of Sciences, Prague, Czech Republic

Abstract. Many objects in the real world are difficult to describe by
means of a single numerical vector of a fixed length, whereas describing
them by means of a set of vectors is more natural. Therefore, Multi-
ple instance learning (MIL) techniques have been constantly gaining in
importance throughout the last years. MIL formalism assumes that each
object (sample) is represented by a set (bag) of feature vectors (instances)
of fixed length, where knowledge about objects (e.g., class label) is avail-
able on bag level but not necessarily on instance level. Many standard
tools including supervised classifiers have been already adapted to MIL
setting since the problem got formalized in the late nineties. In this
work we propose a neural network (NN) based formalism that intuitively
bridges the gap between MIL problem definition and the vast existing
knowledge-base of standard models and classifiers. We show that the
proposed NN formalism is effectively optimizable by a back-propagation
algorithm and can reveal unknown patterns inside bags. Comparison to
14 types of classifiers from the prior art on a set of 20 publicly avail-
able benchmark datasets confirms the advantages and accuracy of the
proposed solution.

1 Motivation

The constant growth of data sizes and data complexity in real world problems
has increasingly put strain on traditional modeling and classification techniques.
Many assumptions cease to hold; it can no longer be expected that a complete set
of training data is available for training at once, models fail to reflect information
in complex data unless a prohibitively high number of parameters is employed,
availability of class labels for all samples can not be realistically expected, and
particularly the common assumption about each sample to be represented by a
fixed-size vector seems to no longer hold in many real world problems.

Multiple instance learning (MIL) techniques address some of these concerns
by allowing samples to be represented by an arbitrarily large set of fixed-sized
vectors instead of a single fixed-size vector. Any explicit ground truth informa-
tion (e.g., class label) is assumed to be available on the (higher) level of samples

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 135–142, 2017.
DOI: 10.1007/978-3-319-59072-1 17

136 T. Pevný and P. Somol

but not on the (lower) level of instances. The aim is to utilize unknown patterns
on instance-level to enable sample-level modeling and decision making. Note that
MIL does not address the Representation Learning problem [3]. Instead it aims
at better utilization of information in cases when ground truth knowledge about
a dataset may be granular and available on various levels of abstraction only.

From a practical point of view MIL promises to (i) save ground truth acqui-
sition cost – labels are needed on sample-level, i.e., on higher-level(s) of abstrac-
tion only, (ii) reveal patterns on instance level based on the available sample-level
ground truth information, and eventually (iii) achieve high accuracy of models
through better use of information present in data.

Despite significant progress in recent years, the current battery of MIL tools is
still burdened with compromises. The existing models (see next Sect. 2 for a brief
discussion) clearly leave open space for more efficient utilization of information in
samples and for a clearer formalism to provide easily interpretable models with
higher accuracy. The goal of this paper is to provide a clean formalism bridging
the gap between the MIL problem formulation and classification techniques of
neural networks (NNs). This opens the door to applying latest results in NNs to
MIL problems.

2 Prior Art on Multi-instance Problem

The pioneering work [10] coined multiple-instance or multi-instance learning as
a problem where each sample b (called bag in the following) consists of a set of
instances x, i.e., b = {xi ∈ X |i ∈ {1, . . . , |b|}}, equivalently b ∈ B = ∪k>1{xi ∈
X |i ∈ {1, . . . , k}} and each instance x can be attributed a label yx ∈ {−1,+1},
but these instance-level labels are not known even in the training set. The sample
b is deemed positive if at least one of its instances had a positive label, i.e., label
of a sample b is y = maxx∈b yx. Most approaches solving this definition of MIL
problem belong to instance-space paradigm, in which the classifier is trained on
the level of individual instances f : X �→ {−1,+1} and the label of the bag b is
inferred as maxx∈b f(x). Examples of such methods include: Diverse-density [16],
EM-DD [22], MILBoost [21], and MI-SVM [2].

Later works (see reviews [1,11]) have introduced different assumptions on
relationships between labels on the instance level and labels of bags or even
dropped the notion of instance-level labels and considered only labels on the
level of bags, i.e., it is assumed that each bag b has a corresponding label y ∈ Y,
which is for simplicity assumed to be binary, i.e., Y = {−1,+1} in the following.
Most approaches solving this general definition of the problem follow either the
bag-space paradigm and define a measure of distance (or kernel) between bags [12,
13,17] or the embedded-space paradigm and define a transformation of the bag
to a fixed-size vector [5,6,20].

Prior art on neural networks for MIL problems is scarce and aimed for
instance-space paradigm. Reference [18] proposes a smooth approximation of
the maximum pooling in the last neuron as 1

|b| ln
(∑

x∈b exp(f(x))
)
, where

f(x) : X �→ R is the output of the network before the pooling. Reference [23]

Using Neural Network Formalism to Solve Multiple-Instance Problems 137

drops the requirement on smooth pooling and uses the maximum pooling func-
tion in the last neuron. Both approaches optimize the L2 error function.

Due to space limits, the above review of the prior art was brief. The Interested
reader is referred to [1,4,11] for a more thorough discussion of a problem and
algorithms.

3 Neural Network Formalism

The proposed neural network formalism is intended for a general formulation
of MIL problems introduced in [17]. It assumes a non-empty space X where
instances live with a set of all probability distributions PX on X . Each bag cor-
responds to some probability distribution pb ∈ PX with its instances being
realizations of random a variable with distribution pb. Each bag b is there-
fore assumed to be a realization of a random variable distributed according
to P (pb, y), where y ∈ Y is the bag label. During the learning process each con-
crete bag b is thus viewed as a realization of a random variable with probability
distribution pb that can only be inferred from a set of instances {x ∈ b|x ∼ pb}
observed in data. The goal is to learn a discrimination function f : B �→ Y,
where B is the set of all possible realizations of distributions p ∈ PX , i.e.,
B =

{
xi|p ∈ PX , xi ∼ p, i ∈ {1, . . . l}, l ∈ N

}
. This definition includes the origi-

nal used in [10], but it also includes the general case where every instance can
occur in positive and negative bags, but some instances are more frequent in one
class.

The proposed formalism is based on the embedded-space paradigm represent-
ing bag b in an m-dimensional Euclidean space R

m through a set of mappings

(φ1(b), φ2(b), . . . , φm(b)) ∈ R
m (1)

with φ : B �→ R. Many existing methods implement embedding function as

φi = g
({k(x, θi)}x∈b

)
, (2)

where k : X × X �→ R
+
0 is a suitably chosen distance function, g : ∪∞

k=1R
k �→ R

is the pooling function (e.g. minimum, mean or maximum), and finally Θ =
{θi ∈ X |i ∈ {1, . . . , m}} is the dictionary with instances as items. Prior art meth-
ods differ in the choice of aggregation function g, distance function k, and finally
in the selection of dictionary items, Θ. A generalization was recently proposed
in [6] defining φ using a distance function (or kernel) over the bags k : B×B �→ R

and dictionary Θ containing bags rather instances. This generalization can be
seen as a crude approximation of kernels over probability measures used in [17].

The computational model defined by (1) and (2) can be viewed as a neural
network sketched in Fig. 1. One (or more) lower layers implement a set of distance
functions {k(x, θi)}mi=1 (denoted in Fig. 1 in vector form as k(x, θ)) projecting
each instance xi from the bag {xi}mi=1 from the input space R

d for R
m. The

pooling layer implementing the pooling function g produces a single vector x̄
of the same dimension R

m. Finally subsequent layers denoted in the figure as

138 T. Pevný and P. Somol

x1 ∈ R
d

x2 ∈ R
d

x3 ∈ R
d

xl ∈ R
d

...

k(x1, θ)

k(x2, θ)

k(x3, θ)

k(xl, θ)

x̃1 ∈ R
m

x̃2 ∈ R
m

x̃3 ∈ R
m

x̃l ∈ R
m

...

g {x̃i}li=1

)
x̄ ∈ R

m f (x̄, θf)

One vector per instance (connection)

One vector per sample

Fig. 1. Sketch of the neural network optimizing the embedding in embedding-space
paradigm.

f(x̄) implement the classifier that already uses a representation of the bag as a
feature vector of fixed length m. The biggest advantage of this formalism is that
with a right choice of pooling function g(·) (e.g. mean or maximum) all para-
meters of the embedding functions k(x, θ) can be optimized by the standard
back-propagation algorithm. Therefore embedding at the instance-level (layers
before pooling) is effectively optimized while requiring labels only on the bag-
level. This mechanism identifies parts of the instance-space X with the largest
differences between probability distributions generating instances in positive and
negative bags with respect to the chosen pooling function. This is also the most
differentiating feature of the proposed formalism to most prior art, which typi-
cally optimizes embedding parameters θi regardless of the labels.

The choice of a pooling function depends on the type of the MIL problem. If
the bag’s label depends on a single instance, as it is the case for the instance-level
paradigm, then the maximum pooling function is appropriate, since its output
also depends on a single instance. On the other hand if a bag’s label depends on
properties of all instances, then the mean pooling function is appropriate, since
its output depends on all instances and therefore it characterizes the overall
distribution.

Remark: the key difference of the above approach to the prior art [23] is in
performing pooling inside the network as opposed to after the last neuron or
layer as in the cited reference. This difference is key to the shift from instance-
centric modeling in prior art to bag-centric advocated here. However the pro-
posed formalism is general and includes [23] as a special case, where instances
are projected into the space of dimension one (m = 1), pooling function g is set
to maximum, and layers after the pooling functions are not present (f is equal
to identity).

4 Experimental Evaluation

The evaluation of the proposed formalism uses publicly available datasets
from a recent study of properties of MIL problems [7], namely BrownCreeper,

Using Neural Network Formalism to Solve Multiple-Instance Problems 139

CorelAfrican, CorelBeach, Elephant, Fox, Musk1, Musk2, Mutagenesis1, Muta-
genesis2, Newsgroups1, Newsgroups2, Newsgroups3, Protein, Tiger, UCSB-
BreastCancer, Web1, Web2, Web3, Web4, and WinterWren. The supplemental
material [8] contains equal error rate (EER) of 28 MIL classifiers (and their
variants) from prior art implemented in the MIL matlab toolbox [19] together
with the exact experimental protocol and indexes of all splits in 5-times repeated
10-fold cross-validation. Therefore the experimental protocol has been exactly
reproduced and results from [8] are used in the comparison to prior art.

The proposed formalism has been compared to those algorithms from prior
art that has achieved the lowest error on at least one dataset. This selection
yielded 14 classifiers for 20 test problems, which demonstrates diversity of MIL
problems and difficulty to choose suitable method. Selected algorithms include
representatives of instance-space paradigm: MIL Boost [21], SimpleMIL, MI-
SVM [2] with Gaussian and polynomial kernel, and prior art in Neural Networks
(denoted prior NN) [23]; bag-level paradigm: k-nearest neighbor with citation
distance [20] using 5 nearest neighbors; and finally embedded-space paradigm:
Miles [5] with Gaussian kernel, Bag dissimilarity [6] with minmin, meanmin,
meanmean, Hausdorff, and Earth-moving distance (EMD), cov-coef [8] embed-
ding bags by calculating covariances of all pairs of features over the bag, and
finally extremes and mean embedding bags by using extreme and mean values
of each feature over instances of the bag. All embedded space paradigm methods
except Miles used a logistic regression classifier.

The proposed MIL neural network consists of a single layer of rectified lin-
ear units (ReLu) [14] with transfer function max{0, x}, followed by a mean-
pooling layer and a single linear output unit. The training minimized a hinge
loss function using the Adam [15] variant of stochastic gradient descend algo-
rithm with mini-batch of size 100, maximum of 10 000 iterations, and default
settings. L1 regularization on weights of the network was used to decrease over-
fitting. The topology had two parameters — the number of neurons in the first
layer defining the dimension of bag representation, m, and the strength of the
L1 regularization, λ. Suitable parameters were found by estimating equal error
rates by five-fold cross-validation (on training samples) on all combinations of
k ∈ {2, 4, 8, 12, 16, 20} and λ ∈ {10−7, 10−6, . . . , 10−3} and using the combi-
nation achieving the lowest error. The prior art of [23] was implemented and
optimized exactly as the proposed approach with the difference that the max
pooling layer was after the last linear output unit.

Figure 2 summarizes results in critical difference diagram [9] showing the
average rank of each classifier over the problems together with the confidence
interval of corrected Bonferroni-Dunn test with significance 0.05 testing whether
two classifiers have equal performance. The critical diagram reveals that the
classifier implemented using the proposed neural net formalism (caption proposed
NN) achieved overall the best performance, having the average rank 4.3. In fact,
Table 1 shows that it provides the lowest error on nine out of 20 problems. Note
that the second best, Bag dissimilarity [6] with minmin distance and prior art
in NN [23], achieved the average rank 6.4 and was the best only on three and
one problems respectively.

140 T. Pevný and P. Somol

2.0 3 4 5 6 7 8 9 10 11 12 13

proposed NN

meanmin

prior NN

minmin

MI-SVM r=10

MILES r=10

mean-inst

cov-coef cov-coef

emd

extremes

MILBoost

Citation

meanmean

MI-SVM p=1

haussd

Fig. 2. Critical difference diagram shows average rank of each method over 20 problems.
The thick black line shows the confidence interval of corrected Bonferroni-Dunn test
with significance 0.05 testing whether two classifiers have equal performance.

Table 1. Average equal error rate of the proposed NN formalism on training and
testing set and average equal error rate on the testing set of the best prior art for the
given problem. Abbreviations of the prior art are as introduced in Sect. 4.

Error of NN on Prior art

Training set Testing set Error Algorithm

BrownCreeper 0 5.0 11.2 MILBoost

CorelAfrican 2.6 5.5 11.2 minmin

CorelBeach 0.2 1.2 17 extremes

Elephant 0 13.8 16.2 minmin

Fox 0.4 33.7 36.1 meanmin

Musk1 0 17.5 12.8 Citation

Musk2 0 11.4 11.8 Hausdorff

Mutagenesis1 7.5 11.8 16.9 cov-coef

Mutagenesis2 14.9 10.0 17.2 emd

Newsgroups1 0 42.5 18.4 meanmean

Newsgroups2 0 35 27.5 prior NN

Newsgroups3 0 37.5 31.2 meanmean

Protein 2.5 7.5 15.5 minmin

Tiger 0 20.0 19 MILES

UCSBBreastCancer 0 25 13.6 MI-SVM g

Web1 0 40.6 20.9 MILES

Web2 0 28.1 7.1 MI-SVM p

Web3 0 25 13.6 MI-SVM g

Web4 0 18.8 1.5 mean-inst

WinterWren 0 5.9 2.1 emd

Using Neural Network Formalism to Solve Multiple-Instance Problems 141

Exact values of EER of the best algorithm from the prior art and that of the
proposed NN formalism is summarized in Table 1. From the results it is obvious
that the proposed neural network formalism have scored poorly on problems
with a large dimension and a small number of samples, namely Newsgroups and
Web (see Table 1 of [7] for details on the data). The neural network formalism
has easily overfit to the training data, which is supported by zero errors on the
training sets.

5 Conclusion

This work has presented a generalization of neural networks to multi-instance
problems. Unlike the prior art, the proposed formalism embeds samples con-
sisting of multiple instances into vector space, enabling subsequent use with
standard decision-making techniques. The key advantage of the proposed solu-
tion is that it simultaneously optimizes the classifier and the embedding. This
advantage was illustrated on a set of real-world examples, comparing results to
a large number of algorithms from the prior art. The proposed formalism seems
to outperform the majority of standard MIL methods in terms of accuracy. It
should be stressed though that results were compared to those published by
authors of survey benchmarks; not all methods in referred tests may have been
set in the best possible way. However, as many such cases would be very compu-
tationally expensive, the proposed formalism becomes competitive also due to
its relatively modest computational complexity that does not exceed that of a
standard 3-layer neural network. The proposed formalism opens up a variety of
options for further development. A better and possibly more automated choice
of pooling functions is one of the promising ways to improve performance on
some types of data.

Acknowledgements. This work has been partially supported by Czech Science Foun-
dation project 15-08916S.

References

1. Amores, J.: Multiple instance classification: review, taxonomy and comparative
study. Artif. Intell. 201, 81–105 (2013)

2. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for
multiple-instance learning. In: Becker, S., Thrun, S., Obermayer, K. (eds.)
Advances in Neural Information Processing Systems 15, pp. 577–584. MIT Press
(2003)

3. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives. arXiv preprint arXiv:1206.5538v2 (2012)

4. Carbonneau, M.-A., Cheplygina, V., Granger, E., Gagnon, G.: Multiple instance
learning: a survey of problem characteristics and applications. arXiv preprint
arXiv:1612.03365 (2016)

5. Chen, Y., Bi, J., Wang, J.Z.: Miles: multiple-instance learning via embedded
instance selection. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1931–1947
(2006)

http://arxiv.org/abs/1206.5538v2
http://arxiv.org/abs/1612.03365

142 T. Pevný and P. Somol

6. Cheplygina, V., Tax, D.M., Loog, M.: Multiple instance learning with bag dissim-
ilarities. Pattern Recogn. 48(1), 264–275 (2015)

7. Cheplygina, V., Tax, D.M.J.: Characterizing multiple instance datasets. In: Fera-
gen, A., Pelillo, M., Loog, M. (eds.) SIMBAD 2015. LNCS, vol. 9370, pp. 15–27.
Springer, Cham (2015). doi:10.1007/978-3-319-24261-3 2

8. Cheplygina, V., Tax, D.M.J., Loog, M.: Supplemental documents to characterizing
multiple instance datasets

9. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7(Jan), 1–30 (2006)

10. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance
problem with axis-parallel rectangles. Artif. Intell. 89(1), 31–71 (1997)

11. Foulds, J., Frank, E.: A review of multi-instance learning assumptions. Knowl.
Eng. Rev. 25(01), 1–25 (2010)

12. Gärtner, T., Flach, P.A., Kowalczyk, A., Smola, A.J.: Multi-instance kernels. In:
ICML, vol. 2, pp. 179–186 (2002)

13. Haussler, D.: Convolution kernels on discrete structures, Raport instytutowy, Uni-
versityof California at Santa Cruz (1999)

14. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-stage
architecture for object recognition? In: 2009 IEEE 12th International Conference
on Computer Vision, pp. 2146–2153, September 2009

15. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

16. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: Jor-
dan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Process-
ing Systems 10, pp. 570–576. MIT Press (1998)

17. Muandet, K., Fukumizu, K., Dinuzzo, F., Schölkopf, B.: Learning from distribu-
tions via support measure machines. In: Advances in Neural Information Processing
Systems, pp. 10–18 (2012)

18. Ramon, J., De Raedt, L.: Multi instance neural networks (2000)
19. Tax, D.M.J., Cheplygina, V.: MIL, A Matlab Toolbox for Multiple Instance Learn-

ing, version 1.2.1, June 2016. http://prlab.tudelft.nl/david-tax/mil.html
20. Wang, J., Zucker, J.-D.: Solving the multiple-instance problem: a lazy learning app-

roach. In: Proceedings of the Seventeenth International Conference on Machine
Learning, ICML 2000, pp. 1119–1126. Morgan Kaufmann Publishers Inc., San
Francisco (2000)

21. Zhang, C., Platt, J.C., Viola, P.A.: Multiple instance boosting for object detection.
In: Weiss, Y., Schölkopf, B., Platt, J.C. (eds.) Advances in Neural Information
Processing Systems 18, pp. 1417–1424. MIT Press (2006)

22. Zhang, Q., Goldman, S.A.: EM-DD: an improved multiple-instance learning tech-
nique. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural
Information Processing Systems 14, pp. 1073–1080. MIT Press (2002)

23. Zhou, Z.-H., Zhang, M.-L.: Neural networks for multi-instance learning. In: Pro-
ceedings of the International Conference on Intelligent Information Technology,
vol. 182. Citeseer (2002)

http://dx.doi.org/10.1007/978-3-319-24261-3_2
http://arxiv.org/abs/1412.6980
http://prlab.tudelft.nl/david-tax/mil.html

Many-Objective Optimisation of Trusses
Through Meta-Heuristics

Nantiwat Pholdee1, Sujin Bureerat1, Papot Jaroenapibal2,
and Thana Radpukdee1(&)

1 Aircraft Multidisciplinary Optimisation Research Unit,
Department of Mechanical Engineering, Faculty of Engineering,

Khon Kaen University, Khon Kaen 40002, Thailand
tthanar@gmail.com

2 Department of Industrial Engineering, Faculty of Engineering,
Khon Kaen University, Khon Kaen 40002, Thailand

Abstract. A truss is one of the most used engineering structures in daily life
due to several advantages. A process for truss optimisation is usually set to
minimise its mass while structural safety constraints are imposed. This design
problem always leads to structures with less reliability since the solution is
generally on the borderline of structural failure. Such a phenomenon can be
alleviated by adding effects of all possible load cases with safety factors to
design constraints. Alternatively, the design problem should be many-objective
optimisation assigned to optimise mass and reliability indicators for all load
cases. This paper is the first attempt to study such a design process. A number of
many-objective meta-heuristics are employed to solve the test problems for
many-objective truss optimization where their performances are compared.

Keywords: Many-objective optimisation � Truss design � Meta-heuristics �
Evolutionary computation � Constrained optimisation

1 Introduction

Over the last few decades, Meta-heuristics (MHs), also known as Evolutionary
Algorithms (EAs), havearguably been the mostprominent optimisation toolswidely
applied for solving various practical optimisation problems. The advantages of MHs
are global optimisation capability without requirement of function derivatives, there-
fore, they can deal with almost any kind of function and design variables [1–4]. In
addition, they are very effective when dealing with multi-objective optimisation
problems as they can explore a Pareto front within one optimisation run [2–4]. The
methods are simple to understand, code, and implement. However, a lack of search
consistency and convergence of MHs due to their random search is still an issue,
particularly when the number of objective functions is more than three, which is
usually called “many objective optimisation” [5]. Also, a large-scale design problem (a
problem with a great many of design variables) may cause difficulty in using MHs
[6, 7]. As a result, numerous MHs on solving many-objective optimisation problems
have been developed in the past few years [5–14].

© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 143–152, 2017.
DOI: 10.1007/978-3-319-59072-1_18

Development of MHs for design problems with many objectives can be done in
several ways such as: improving the search convergence by means of modifying the
selection and/or updating mechanisms [10, 12–14], reducing the spaces of objective
functions [5, 8], and a preference approach [9, 11]. Although many-objective MHs
have been proposed successfully, researchers in the field are usually focused on
implementing them for the unconstrained test functions. Therefore, the performance of
MH algorithms for real engineering design with many objectives and design constraints
needs to be investigated.

A truss is one of the most applied structures amid various engineering applications
which require a lightweight design, such as bridges, roofs, electric towers, billboard
structures, industrial structures etc. Under working conditions, the truss is subject to
several mechanical phenomena such as stress, buckling, and vibration [1, 4, 15, 16].
Over the years, there has been a great amount of work related to truss optimisation
studies. Design problems can be single-objective [16–18] or multi-objective [1, 2, 4].
Design variables can be categorised as topology, shape, and size where they can be
determined separately [16, 18] or simultaneously [1, 2, 4, 17]. In cases of statically
indeterminate trusses, stress and local buckling constraints can cause a non-convex
feasible region which is often difficult to solve. Truss optimisation with natural fre-
quency constraints also poses the same difficulty. It has been shown that using MHs for
solving such problems can be successful [1, 2, 4, 16–19]. A typical single-objective
truss optimisation is traditionally set to minimise mass subject to stress, displacement,
buckling, and/or natural frequency constraints. It has been found that the obtained
design results are too unreliable to be used. This is due to the fact that the optimum
solution will lie on the constraint boundaries; the borderline between failure and safety.
One way to prevent such a problem is by adding all possible load cases to the design
problem. The factor of safety is also employed to increase design reliability. An
alternative approach is to perform multi-objective optimisation to minimise mass and at
the same time maximise structural reliability [1, 2, 4]. One indicator for truss reliability
is structural compliance [1, 2] where minimising such a parameter is equivalent to
maximising static structural global stiffness. Due to many load cases being applied for
the real-world truss design, there are thus many compliance indicators. Other reliability
indicators can be buckling factor and natural frequencies maximisation. The structural
natural frequencies can be regarded as dynamic structural stiffness. The aforementioned
objectives lead the design problem to many-objective optimisation. To our knowledge,
such a design problem type is yet to be investigated in the literature. The baseline or
benchmark results for future investigation need to be established.

Therefore, this paper presents a comparative performance study of various recently
proposed many-objective meta-heuristic algorithms on solving many-objective opti-
misation of trusses. Five six-objective constrained optimisation of trusses are proposed
where the employed MHs include multi-objective evolutionary algorithm based on
decomposition (MOEA/D) [20], an improved two-archive algorithm (Two_Arch2)
[10], a preference-inspired co-evolutionary algorithm using goal vectors (PICEA-g)
[11], a knee point driven evolutionary algorithm for many-objective optimization
(KnEA) [12], and KnEA with an approximate efficient non-dominated sorting approach
(KnEA-A-ENS) [12, 13]. The C-indicator as detailed in [4, 21] is applied as a per-
formance indicator of the methods.

144 N. Pholdee et al.

2 Many-Objective Optimisation of Truss Structure

In this study, the many-objective optimisation problem for a truss structure can be
stated as follows:

min
x

fðxÞ ¼ ff1; f2; f3; f4; f5; f6g
subjected to

dmaxj j
dall

� 1;
rmax

rall
� 1;

Pi

Pcr;i
� 1

Amin �Ai �Amax m2 xmin � xi � xmax m ; ymin � yi � ymax m

where f(x) is a vector of objective functions to be minimised. The functions f1, f2, f3, are
structural mass, compliance and the ratio of the maximum compressive load to the
critical buckling load (Pmaxs/Pcr), respectively. The functions f4, f5, and f6 are the first
lowest three modes of natural frequencies. xT={x1, …, xn} is the vector of design
variables including the cross-sectional areas of the truss elements (Ai) and nodal
positions in x-direction (xi) and y-direction (yi). The variables dmax and rmax are the
maximum nodal displacement and the maximum stress developed in the structure
respectively, while dall and rall are the allowable limits on nodal displacement and
stress constraints. Pi is the compressive load in the i-th element of the truss with the
corresponding buckling load limit while Pcr.i. Amin and Amax are the lower and upper
limits of element cross-sectional areas respectively.

For bars subjected to compressive forces, the critical buckling load Pcr.i is deter-
mined as:

Pcr;i ¼
Ai

p2E
ðli=riÞ2 ; if li

ri
\

ffiffiffiffiffiffiffiffi

2p2E
rall

q

Airall 1� rall
4p2E

li
ri

� �2
� �

; otherwise

8

>

<

>

:

where Li, Ai and ri are the effective length, cross-sectional area and cross-section radius
of gyration of the i-th element, respectively. E is the Young’s modulus. Truss structures
used in this study are detailed as follows:

2.1 Planar 10-Bar Truss Structure

The schematic drawing of the truss structure is illustrated in Fig. 1 [1, 16, 22]. The
structure is subject to non-structural mass of 454 kg at each free node and external

Fig. 1. Schematic of the planar 10-bar truss structure

Many-Objective Optimisation of Trusses Through Meta-Heuristics 145

force P1 and P2 where the force P1 is acted on nodes 2 and 4 while the force P2 is acted
on nodes 1 and 3. The force P1 = −5,000 N and P2 = 5,000 N are applied in
y-direction. The design variables include all bar element cross-sectional areas where
Amin and Amax are set to be 0.645 � 10−4 m2 and 0.005 m2 respectively. dall and rall
are set to be 0.05 and 68.95 � 106 N/m2 while material density and the modulus of
elasticity are 2770.0 kg/m3 and 6.98 � 1010 N/m2 respectively.

2.2 Planar 37-Bar Truss Structure

The schematic diagram of the truss structure is illustrated in Fig. 2 [1, 22]. The
structure is subject to non-structural mass of 10 kg and external force of −3,000 N in
y-direction at each free node of the lower chord. The elements of the lower chord were
set as bar elements with an unchanged cross-sectional area of 40 cm2 while the others
were set as bar elements with initial cross-sectional area 1 cm2. The design variables
include all bar element cross-sectional areas (except the lower chord bar elements) and
y-direction of nodal positions of the upper chord. The design variables are treated to
have a symmetrical structure with respect to the y axis. The cross-sectional areas are
assigned as the first 14 elements of the design vector while the nodal positions are
assigned as the 15th–19th elements of the design vector. Amin and Amax are set to be
1 � 10−4 m2 and 10 � 10−4 m2 respectively, while the y-direction nodal positions of
the upper chord nodes are limited to 0:1� Yi � 3 m (changes in Yi are symmetric to the
y axis). dall and rall are set to be 0.05 and 400 � 106 N/m2 while the material density
and the modulus of elasticity are 7800.0 kg/m3 and 2.1 � 1011 N/m2 respectively.

2.3 Spatial 72-Bar Truss Structure

The truss structure is illustrated in Fig. 3 [16, 22]. Four Non-structural masses of
2270 kg and the external force of −50 kN in z-direction are attached and applied to the
top nodes. The design variables include all bar element cross-sectional areas which
were divided into 16 groups according to Table 1. Amin and Amax are set to be
0.645 � 10−4 m2 and 0.003 m2, respectively. dall and rall are set to be 0.05 and
68.95 � 106 N/m2 while the material density and the modulus of elasticity are
2770.0 kg/m3 and 6.98 � 1010 N/m2 respectively.

Fig. 2. Schematic of the planar 10-bar truss structure

146 N. Pholdee et al.

2.4 Fifty-Two Bar Dome Truss (52barTruss)

The truss structure is illustrated in Fig. 4 [22]. The structure has non-structural masses
of 50 kg at each free node. External forces of −5,000 N, −3,000 N and −2,000 N are

Fig. 3. Schematic of the spatial 72-bar truss structure

Table 1. Element grouping adopted for the 72-bar truss structure

Element
groups

Element
numbers in
the groups

Element
groups

Element
numbers in
the groups

Element
groups

Element
numbers in
the groups

Element
groups

Element
numbers in
the groups

1 1–4 5 19–22 9 37–40 13 55–58
2 5–12 6 23–30 10 41–48 14 59–66
3 13–16 7 31–34 11 49–52 15 67–70
4 17–18 8 35–36 12 53–54 16 71–72

Fig. 4. Fifty-two bar dome truss (initial shape)

Many-Objective Optimisation of Trusses Through Meta-Heuristics 147

acted in z-direction on all nodes in level C, B, and A respectively. The design variables
include all bar element cross-sectional areas which are divided into 8 groups according
to Table 2 and all free nodes which are allowed to move ±2 m in all directions in a
symmetrical manner. Amin and Amax are set to be 1 � 10−4 m2 and 0.001 m2 respec-
tively. dall and rall are set to be 0.05 and 400 � 106 N/m2 while the material density
and the modulus of elasticity are 7800.0 kg/m3 and 2.1 � 1011 N/m2 respectively.

2.5 One Hundred Twenty Bar Dome Truss (120barTruss)

The schematic drawing of the truss structure is illustrated in Fig. 5 [1, 22]. The
structure has non-structural masses and external forces as 3000 kg and −150 kN in z-
direction at all nodes at the level height of 7 m, 500 kg and −100 kN in z-direction at
all nodes at the level height of 5.85 m, and 100 kg −75 kN in z-direction at the rest.
The design variables include all bar element cross-sectional areas which are divided
into 7.

Groups as shown in Fig. 5a. Amin and Amax are set to be 1 � 10−4 m2 and
0.01293 m2 respectively. dall and rall are set to be 0.05 and 400 � 106 N/m2 while the
material density and the modulus of elasticity are 7971.810 kg/m3 and 2.1 �
1011 N/m2 respectively.

3 Numerical Experiment

Five many-objective meta-heuristics (MnMHs) including, MOEA/D, Two-Arch2,
PICEA-g, KnEA, and KnEA-A-ENS are employed to solve the many-objective design
problems regarding the truss. The methods are said to be wellestablished and some are

Table 2. Element groups of the 3D 52 bar dome truss

Element group 1 2 3 4 5 6 7 8
Element number in group 1–4 5–8 9–16 17–20 21–28 29–36 37–44 45–52

Fig. 5. One hundred twenty bar dome truss

148 N. Pholdee et al.

currently considered the best optimisers amid solving unconstrained many objective
test problems. The MnMHs and their optimisation parameter settings used in this study
(details of notations can be found in the corresponding references of each method) are
detailed as follows:

– MOEA/D: The code was coded by Pholdee and Bureerat [2] based on reference
[20]. The number of neighbouring weight vectors, crossover and mutation proba-
bilities being 6, 1.0, and 0.1 respectively.

– Two-Arch2: Used the code from Wang et al. [10]. The crossover probability and
mutation probability are set to be 1 and 0.1, respectively.

– PICEA-g: employed the code from Wang et al. [11]. All optimization parameters
such as the simulated binary crossover (SBX) parameter, type of crossover, prob-
ability of crossover between a pair of individuals, probability of internal crossover,
etc. are set as default values from [11].

– KnEA: used the default code and parameter setting from Zhang et al. [12].
– KnEA-A-ENS: used the default code and parameter setting from Zhang et al.

[12, 13].

Each optimiser is applied to uncover a Pareto optimal front amid the problems as
detailed in Sect. 2 for 10 optimisation runs. For all design problems, the population
number is set to 50, while the number of generations is set at 200. The Pareto archive
number is set at 50. For the optimisers employing different population size, their search
processes are terminated with the total number of function evaluations (FEs) equal to
50 � 200 FEs. Also, as the majority of the MnMHs used in this study are
box-constrained many-objective optimisers, to deal with the constrained problems, the
penalty function technique which was efficient for truss design with natural frequencies
constraints in [23] is used.

4 Results and Discussion

After performing 10 optimisation runs of five many-objective optimisers on solving
five truss many-objective optimisation test problems, the search performances are
evaluated based on the C-indicator [4, 21]. The C-indicator compares each pair of
optimisers from using the non-dominated fronts obtained. Such an indicator compares
two particular non-dominated fronts and can be defined as:

CðA;BÞ ¼ b 2 B; 9a 2 A : a dominate or equal to bf gj j
Bj j

where |B| is the total number of members in the set B. If C(A, B) = 1, it means all
members in B are dominated by or equal to some members in A. If C(A, B) > C(B, A), it
implies that the front A is better than the front B or vice-versa.

Figure 6 shows the box-plots of the C-values comparing all pairs of all optimisers
for the test problems 1–5. In the figure, the upper and lower lines show the maximum
and minimum C-values while the middle line shows median of the C-values from 10
optimisation runs. The box-plot at row i and column j give the results of C(optimiser_i,

Many-Objective Optimisation of Trusses Through Meta-Heuristics 149

optimiser_j). The quantitative assessment is given in Tables 3, 4, 5, 6 and 7 where each
value on row i and column j is the average value of C (optimiser_i, optimiser_j). For
example in Table 3 (test problem 1), average C (MOEA/D, Two_arch2) = 0.0466
while average C (Two_arch2, MOEA/D) = 0.2481. This means Two_arch2 is better
than MOEA/D. Tables 3, 4, 5, 6 and 7 show the average C-values of all optimisers on
solving truss problems 1–5 respectively. From the tables, it is revealed that
KnEA-A-ENS is the best optimiser for all design problems. KnEA is the second best
optimiser for the planar 37-bar truss structure and the 120-bar dome truss. For the
spatial 72-bar truss structure and 52-bar dome truss, the second best performers are
Two-Arch2 and PICEA-g respectively.

Fig. 6. Show box plot of C-value for all design problems

Table 3. Mean C-values for planar 10-bar truss structure

MOEA/D 0.0466 0.0028 0.0110 0.0022

0.2481 Two-Arch2 0.0100 0.0210 0.0048
0.1168 0.1200 PICEA-g 0.0104 0.0032
0.2049 0.0706 0.0030 KnEA 0.0084
0.2875 0.0926 0.0054 0.1498 KnEA-A-ENS

Table 4. Mean C-values for planar 37-bar truss structure

MOEA/D 0.0120 0.0040 0.0000 0.0000

0.2296 Two-Arch2 0.1594 0.0236 0.0000
0.1086 0.0332 PICEA-g 0.0018 0.0000
0.0828 0.0468 0.1224 KnEA 0.0004
0.1418 0.0218 0.0574 0.0804 KnEA-A-ENS

150 N. Pholdee et al.

5 Conclusions

The test problems for 6-objective optimisation of trusses are proposed. Five many-
objective meta-heuristics are implemented to solve the various problems. Comparative
results show that KnEA-A-ENS gives the best results for all five test problems. The
design results of many-objective optimisation of trusses, in practice, provide the
optimal choices for better decision making. Future work will be directed to the
development of a new powerful meta-heuristic for solving this new type of truss design
problems. More objective functions can be added if the trusses are subject to multiple
load cases.

Acknowledgements. The authors are thoroughly grateful for the financial support provided by
the KKU Engineering Research Fund, the Faculty of Engineering, Khon Kaen University.

References

1. Pholdee, N., Bureerat, S.: Hybrid real-code population-based incremental learning and
approximate gradients for multi-objective truss design. Eng. Opt. 64, 1032–1050 (2013)

2. Pholdee, N., Bureerat, S.: Hybridisation of real-code population-based incremental learning
and differential evolution for multiobjective design of trusses. Inform. Sci. 23, 136–152
(2013)

Table 5. Mean C-values for spatial 72-bar truss structure

MOEA/D 0.0250 0.0036 0.0264 0.0030

0.1116 Two-Arch2 0.1488 0.1838 0.0334
0.0442 0.0230 PICEA-g 0.0052 0.0006
0.0632 0.0348 0.0758 KnEA 0.0140
0.1498 0.0616 0.0654 0.1946 KnEA-A-ENS

Table 6. Mean C-values for fifty-two bar dome truss

MOEA/D 0.0426 0.0014 0.0096 0.0000

0.7344 Two-Arch2 0.0160 0.0468 0.0092
0.4320 0.2526 PICEA-g 0.0658 0.0126
0.7110 0.1526 0.0148 KnEA 0.0334
0.7728 0.1882 0.0212 0.2124 KnEA-A-ENS

Table 7. Mean C-values for one hundred twenty bar dome truss

MOEA/D 0.1094 0.0070 0.0092 0.0048

0.1006 Two-Arch2 0.0076 0.0102 0.0046
0.1014 0.2374 PICEA-g 0.0274 0.0064
0.0982 0.1738 0.0342 KnEA 0.0078
0.0966 0.1702 0.0380 0.0698 KnEA-A-ENS

Many-Objective Optimisation of Trusses Through Meta-Heuristics 151

3. Bureerat, S., Srisomporn, S.: Optimum plate-fin heat sinks by using a multi-objective
evolutionary algorithm. Eng. Opt. 42, 305–343 (2010)

4. Noilublao, N., Bureerat, S.: Simultaneous topology, shape, and sizing optimisation of plane
trusses with adaptive ground finite elements using MOEAs. Math. Probl. Eng. 838102, 9
(2013). doi:10.1155/2013/838102

5. Bandyopadhyay, S., Mukherjee, A.: An algorithm for many-objective optimization with
reduced objective computations: a study in differential evolution. IEEE T. Evolut. Comput.
19, 400–413 (2015)

6. Ma, X., Liu, F., Qi, Y., Wang, X., Li, L., Jiao, L., Yin, M., Gong, M.: A multiobjective
evolutionary algorithm based on decision variable analyses for multiobjective optimization
problems with large-scale variables. IEEE Trans. Evol. Comput. 20, 275–298 (2016)

7. Zhang, X., Tian, Y., Cheng, R., Jin, Y.: A decision variable clustering-based evolutionary
algorithm for large-scale many-objective optimization. IEEE Trans. Evol. Comput. (2017, in
press)

8. Murata, T., Taki, A.: Examination of the performance of objective reduction using
correlation-based weighted-sum for many objective knapsack problems. In: 10th International
Conference on Hybrid Intelligent Systems (HIS), pp. 175–180. IEEE press, New York (2010)

9. Cheng, R., Jin, Y., Sendhoff, B.: A reference vector guided evolutionary algorithm for
many-objective optimization. IEEE Trans. Evol. Comput. 20, 773–791 (2016)

10. Wang, H., Jiao, L., Yao, X.: Two_Arch2: an improved two-archive algorithm for
many-objective optimization. IEEE Trans. Evol. Comput. 19, 524–541 (2015)

11. Wang, R., Purshouse, R.C., Fleming, P.J.: Preference-inspired coevolutionary algorithms for
many-objective optimization. IEEE Trans. Evol. Comput. 17, 474–494 (2013)

12. Zhang, X., Tian, Y., Jin, Y.: A knee point-driven evolutionary algorithm for many-objective
optimization. IEEE Trans. Evol. Comput. 19, 761–776 (2015)

13. Zhang, X., Tian, Y., Jin, Y.: Approximate non-dominated sorting for evolutionary
many-objective optimization. Inform. Sci. 369, 14–33 (2016)

14. Deb, K., Jain, H.: Handling many-objective problems using an improved NSGA-II
procedure. In: WCCI 2012 IEEE World Congress on Computational Intelligence. IEEE
press, New York (2012)

15. Kaveh, A., Ghazaan, M.I.: Hybridized optimization algorithms for design of trusses with
multiple natural frequency constraints. Adv. Eng. Softw. 79, 137–147 (2015)

16. Bureerat, S., Pholdee, N.: Optimal truss sizing using an adaptive differential evolution
algorithm. J. Comput. Civil Eng. 30, 04015019 (2015)

17. Dede, T., Ayvaz, Y.: Combined size and shape optimization of structures with a new
meta-heuristic algorithm. Appl. Soft Comput. 28, 250–258 (2015)

18. Kaveh, A., Sheikholeslami, R., Talatahari, S., Keshvari-Ilkhichi, M.: Chaotic swarming of
particles: a new method for size optimization of truss structures. Adv. Eng. Softw. 67, 136–
147 (2014)

19. Kaveh, A., Bakhshpoori, T., Afshari, E.: An efficient hybrid particle swarm and swallow
swarm optimization algorithm. Comput. Struct. 143, 40–59 (2014)

20. Qingfu, Z., Hui, L.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)

21. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms:
empirical results. Evol. Comput. 8, 173–195 (2000)

22. Pholdee, N., Bureerat, S.: Comparative performance of meta-heuristic algorithms for mass
minimisation of trusses with dynamic constraints. Adv. Eng. Softw. 75, 1–13 (2014)

23. Kaveh, A., Zolghadr, A.: Truss optimization with natural frequency constraints using a
hybridized CSS-BBBC algorithm with trap recognition capability. Comput. Struct. 102–103,
14–27 (2012)

152 N. Pholdee et al.

http://dx.doi.org/10.1155/2013/838102

Clustering with Multidimensional Mixture
Models: Analysis on World Development

Indicators

Leonard K.M. Poon(B)

Department of Mathematics and Information Technology,
The Education University of Hong Kong, Hong Kong, China

kmpoon@eduhk.hk

Abstract. Clustering is one of the core problems in machine learning.
Many clustering algorithms aim to partition data along a single dimen-
sion. This approach may become inappropriate when data has higher
dimension and is multifaceted. This paper introduces a class of mix-
ture models with multiple dimensions called pouch latent tree models.
We use them to perform cluster analysis on a data set consisting of 75
development indicators for 133 countries. We further propose a method
that guides the selection of clustering variables due to the existence of
multiple latent variables. The analysis results demonstrate that some
interesting clusterings of countries can be obtained from mixture models
with multiple dimensions but not those with single dimensions.

Keywords: Multidimensional clustering · Pouch latent tree models ·
Mixture models · World development indicators · Clustering variables
selection

1 Introduction

Clustering [8] is a core problem in machine learning. Many clustering algo-
rithms aim to partition data along a single dimension [2,16]. To handle data
with higher dimensions, feature selection and subspace clustering approaches are
often adopted. The former approach selects a subset of relevant features on data
in which a clustering can be found [5,14]. The latter approach considers dense
regions as clusters and tries to identify all dense subspaces (with reduced dimen-
sion) for partitioning the data [9,11]. Both approaches partition data along only
a single dimension, in the sense that each data point belongs to at most one
partition.

The above approach becomes inappropriate when data is multifaceted and
multiple meaningful clusterings can be obtained. Suppose we want to cluster
countries into different groups. We may partition them based on their land sizes
and populations, systems of government, income levels, levels of freedom, etc.
To obtain clusterings on different aspects, one may perform cluster analysis
on data sets with different attributes. However, sometimes one may not know
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 153–160, 2017.
DOI: 10.1007/978-3-319-59072-1 19

154 L.K.M. Poon

which aspect of data will yield to meaningful clusterings and sometimes the
attributes in different aspects are interdependent. Hence it is more appropriate
to perform cluster analysis that produces clustering along multiple dimensions
simultaneously.

In our previous work [12,13], we propose a class of probabilistic graphical
models called pouch latent tree models (PLTMs) for multidimensional clustering.
The models are similar to Gaussian mixture models. However, they can contain
multiple latent variables and hence can produce multiple clusterings.

In this paper, we present the results of a cluster analysis on countries based
on the world development indicators. The indicators are statistics provided by
the World Bank about the development and human lives for different countries.
The data set we used includes 75 indicators relevant to risk management in the
context of development for 133 countries. The data obviously represent different
aspects of countries and our study aims to show the usefulness of multidimen-
sional clustering. Due to the existence of multiple latent variables, we propose
a method that guides the selection of clustering variables. Before we show the
results, we review model-based clustering and introduce PLTMs.

2 Model-Based Clustering

Gaussian mixture models (GMMs) are commonly used in model-based clustering
for numeric data [10]. GMMs assume that the population is be made up from a
finite number of clusters. Suppose a variable Y is used to indicate this cluster,
and variables X represent the attributes in the data. The variable Y is referred
to as a latent (or unobserved) variable, and the variables X as manifest (or
observed) variables. The manifest variables X is assumed to follow a mixture
distribution

P (x) =
∑

y

P (y)P (x |y),

where P (x |y) is known as the component distribution and in GMMs is assumed
to be a multivariate Gaussian distribution N (x |μy,Σy), with mean vector μy

and covariance matrix Σy conditional on the value of Y .

3 Pouch Latent Tree Models

There is only one single latent variable in GMMs and hence can produce one
clustering. To allow having multiple clusterings, we previously propose pouch
latent tree models (PLTMs) [12,13]. A PLTM is a tree-structured probabilis-
tic graphical model, where each internal node represents a latent variable, and
each leaf node represents a set of manifest variables. All the latent variables
are discrete, while all the manifest variables are continuous. A leaf node, also
called pouch node, may contain a single manifest variable or several of them. An
example is shown in Fig. 2.

In PLTMs, the dependency of a discrete latent variable Y on its parent Π(Y)
is characterized by a conditional discrete distribution P (y|π(y)). Let W be the

Clustering with Multidimensional Mixture Models 155

variables of a pouch node with a parent node Y = Π(W). We assume that,
given a value y of Y , W follows the conditional Gaussian distribution P (w |y) =
N (w |μy,Σy) with mean vector μy and covariance matrix Σy. Denote the sets
of pouch nodes and latent nodes by W and Y, respsectively. The whole model
defines a joint distribution over all observed variables X and latent variables Y

P (x ,y) =
∏

W∈W
P (w |π(W))

∏

Y ∈Y
P (y|π(Y)) (1)

Given a model structure m, the parameters can be estimated by the EM
algorithm [4]. To learn the model structure, we use a greedy search that aims to
maximize the BIC score [15]: BIC(m|D) = log P (D|m,θ∗) − d(m)

2 log N, where
D is the data set, θ∗ are the parameters estimated by the EM algorithm, d(m)
is the number of parameters in the model, and N is the data size. Interested
readers are referred to [13] for details of the learning algorithm.

After we have learned a PLTM, we can partition data using each of the latent
variables Y . Each data point d can be classified to one of the states of Y by
computing the probability P (y|d) based on the joint distribution (Eq. 1).

4 Analysis on World Development Indicators

Here we present the results of a cluster analysis on world development indicators
using PLTM aiming to show its effectiveness for multidimensional clustering.

4.1 Data Set

In our experiment, we used the data set called World Development Report
(WDR) 2014 provided by the World Bank.1 The data set includes 75 indicators
relevant to risk management in the context of development for 133 countries. The
indicators are grouped into seven categories, namely key indicators of develop-
ment, selected risk indicators, selected indicators related to risk management at
the household level, enterprise sector level, financial sector level, macroeconomy
level, respectively, and natural disasters and climate change indicators. For some
indicators, the data set includes multiple values at different time periods. Some
statistics are not available for some countries. In summary, the data set has 93
attributes and 133 samples with 15% of missing data.

4.2 Empirical Comparison

We included three methods based on GMMs for comparison in our experiment.
The first method is mclust [6], which is an implementation of the parsimonious
Gaussian mixture models [1]. The second method is the GS method [7]. It mod-
els the data using a collection of independent GMMs, each on a distinct subset

1 http://data.worldbank.org/data-catalog/world-development-report-2014.

http://data.worldbank.org/data-catalog/world-development-report-2014

156 L.K.M. Poon

Table 1. Comparison of methods on the World Development Report 2014 data set.
The table shows the numbers of latent variables (#LV), numbers of parameters (dim),
and BIC scores of the models obtained. It also shows the NMI and number of clusters
(#C) of the clustering closest to the given classifcation.

Method #LV dim BIC NMI #C

mclust 1 1109 −51965 0.41 6

GS model 40 2125 (−37422) 0.52 4

PLTM 28 1043 −46706 0.62 4

of attributes. The third method is PLTMs. The first method produces unidi-
mensional clusterings, whereas the other two method produce multidimensional
clusterings. Since mclust and the GS method cannot handle missing data, we
impute the missing data using the R package mice [18] before training them.

Table 1 shows the results obtained by the three methods. The mclust model
contains one latent variable, whereas the GS model and PTLM contains 40 and
28 latent variables, respectively. In terms of model complexity, PLTM has the
lowest number of parameters. This happens even though PLTM has more latent
variables than mclust model and it has connections between latent variables
unlike GS model.

To evaluate the model quality, we compute the BIC score of the models. We
use the completed data as the test data set for consistency. The parameters of
PLTM were re-estimated on the complete data after learning the model structure
on the incomplete data. This should not be unfair to other methods since mclust
and GS method used the same test data set for training while PTLM optimized
its the structure using a data set different from the test data set.

The BIC scores in Table 1 show that PLTM has a higher quality than the
mclust model. The BIC of GS model is even higher. However, this was possibly
due to spurious clusters [10]. Those clusters have component distributions with
very small variance and hence can attain very high likelihood on data. This can
be seen from the fact that although the smallest variance in the data is 0.32,
the smallest scale of variance of the component distribution in the GS model is
much smaller at 2.8 × 10−16.

The WDR includes a classification of countries based on four income levels,
namely low, lower middle, upper middle, and high. The classification is used
as a class variable for evaluating the clusterings given by the models. To eval-
uate the similarity between the partition given by a latent variable Y and the
class variable C, we use the normalized mutual information NMI(C;Y) [17]:
NMI(C;Y) = MI(C;Y)√

H(C)H(Y)
, where MI(C;Y) is the mutual information between

C and Y and H(V) is the entropy of a variable V [3].
Table 1 shows the NMI attained by the three methods. Among the multiple

clusterings given by GS method and PLTM, only the ones with the highest NMI
are reported. The result shows that PLTM performed best in recovering the
classification based on income levels.

Clustering with Multidimensional Mixture Models 157

4.3 Selection of Clustering Variables

Figure 2 shows the PLTM obtained from the WDR data set. The latent nodes
are represented by the oval nodes. Each of them produces a partition of data.
They partition the data along different facets of data as can be seen from the
different attributes connected to them. For example, the latent variable Y1 is
connected to three attributes, namely gross national income per capita (gni pc),
PPP gross national income per capita (ppp gni pc), and worldwide government
indicator (worldwide government indicator). The three observed variables are
put inside a pouch node meaning that they are not independent conditionally on
Y1. The partition given by Y1 happens to be the one closest to the classification
based on income level given by WDR.

The PLTM obtained contains 28 latent variables and thus provides 28 ways
to partition data. One issue arising from multidimensional clustering is how
to select clustering among those available. In practice, there may not be any
reference clustering for selection as we do in the previous subsection. Therefore,
we propose a method for selecting clustering variables below.

Due to the model structure, each latent variable partitions data based on a
different subset of attributes. To quantify this, we compute the NMI between
a latent variable and each of the attributes.2 After obtaining a vector of NMI
values for each latent variable, we normalize them such that each one has unit
magnitude. We then cluster the variables using hierarchical clustering.

The clustering of variables can help us look for a clustering of interest. We
illustrate the idea using the PLTM obtained as an example. Figure 1 shows the
hierarchical clustering result. We see that some latent variables (e.g. Y1, Y21–Y25)
are closer to each other, while some latent variables (e.g. Y6, Y7, Y16, Y27) are fur-
ther away from the others. We cut off the tree at the red horizontal line in Fig. 1.
There are four groups of latent variable below the line and they are indicated by
different colors in Fig. 2. The grouping of variables is consistent with the model
structure. It shows which latent variables partition data along a similar subset of

Y
27

Y
16

Y
6

Y
7

Y
25

Y
24

Y
23

Y
22

Y
1

Y
21

Y
4

Y
5

Y
17

Y
3

Y
19

Y
15

Y
18 Y

2

Y
13 Y

8 Y
28

Y
10

Y
14 Y
9

Y
11

Y
12

Y
20

Y
26

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 1. Hierarchical clustering on latent variables based on the subset of attributes on
which they partition the data. We cut off the tree at the red horizontal line. (Color
figure online)

2 The NMI can be computed using the empirical distribution after discretizing the
continuous attributes.

158 L.K.M. Poon

F
ig
.
2
.

P
o
u
ch

la
te

n
t

tr
ee

m
o
d
el

s
o
b
ta

in
ed

fr
o
m

th
e

W
o
rl

d
D

ev
el

o
p
m

en
t

R
ep

o
rt

2
0
1
4

d
a
ta

se
t.

L
a
te

n
t

n
o
d
es

a
re

re
p
re

se
n
te

d
b
y

ov
a
l

n
o
d
es

.
E

a
ch

o
f

th
em

p
ro

d
u
ce

s
a

p
a
rt

it
io

n
o
f

d
a
ta

.
P
o
u
ch

n
o
d
es

w
it

h
m

u
lt

ip
le

o
b
se

rv
ed

va
ri

a
b
le

s
a
re

sh
ow

n
a
s

te
x
t

in
re

ct
a
n
g
u
la

r
b
o
rd

er
,
w

h
er

ea
s

th
o
se

w
it

h
si

n
g
le

o
b
se

rv
ed

va
ri

a
b
le

s
a
re

sh
ow

n
a
s

te
x
t

w
it

h
o
u
t

b
o
rd

er
s.

T
h
e

w
id

th
o
f
a
n

ed
g
e

in
d
ic

a
te

s
th

e
st

re
n
g
th

o
f

p
ro

b
a
b
il
is

ti
c

d
ep

en
d
en

cy
in

te
rm

s
o
f
N

M
I

b
et

w
ee

n
tw

o
n
o
d
es

.
T

h
e

la
te

n
t

va
ri

a
b
le

Y
1

(b
lu

e)
y
ie

ld
s

a
cl

u
st

er
in

g
o
f
co

u
n
tr

ie
s

cl
o
se

st
to

th
e

in
co

m
e

le
v
el

cl
a
ss

ifi
ca

ti
o
n

g
iv

en
b
y

th
e

re
p
o
rt

.
T

h
e

co
lo

rs
o
f
la

te
n
t

n
o
d
es

in
d
ic

a
te

th
ei

r
g
ro

u
p
in

g
.
(C

o
lo

r
fi
g
u
re

o
n
li
n
e)

Clustering with Multidimensional Mixture Models 159

●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

loan_dollarisation_10

de
po

si
t_

do
lla

ris
at

io
n_

10

● s1 (10%)
s2 (20%)
s3 (19%)
s4 (19%)
s5 (23%)
s6 (11%)

(a) mclust

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0 20 40 60 80 100

0
20

40
60

80
10

0

loan_dollarisation_10

de
po

si
t_

do
lla

ris
at

io
n_

10

● s0 (55%)
s1 (45%)

(b) PLTM (Y8)

Fig. 3. Clusterings along two dollarization attributes obtained from unidimensional
clustering method mclust and multidimensional clustering method PLTM. PLTM par-
titions data neatly along this facet while mclust does not.

attributes. On the other hand, the ungrouped latent variables partition data along
a relatively distinct subset of attributes.

We now take a look at the four groups of latent variables. The first group, Y1

and Y21–Y25, depends on attributes related to general development level, such
as GNI, life expectancy, mortality and poverty. The second group, Y2, Y3, Y15,
Y17 and Y18, depends mainly on attributes related to the financial sector. The
third group, Y9–Y12 and Y14, is mainly related to deaths and damages from
natural disasters. The fourth group of variables Y4 and Y5 partition data based
on number of recessions and GDP and household volatility.

The ungrouped variables also partition data based on meaningful subsets of
attributes. For example, Y8 partitions data based on dollarization, Y19 partitions
based on flexibility of exchange rate, Y20 partitions based on gross public debt,
and Y26 partitions based on international reserves.

The grouping of latent variables allows us to have an overview on the aspects
of attributes from which we obtain a clustering. We can look for the attributes in
which we are interested and select the latent variable connected to it to partition
the data. As an example, suppose we are interested in dollarization. We can use
the latent variable Y8 in PLTM for clustering. Figure 3(b) shows the different
countries projected on two dollarization attributes. The countries are classified
into two groups neatly by Y8. For comparison, we show the clustering obtained by
mclust in Fig. 3(a). The comparison shows that the multidimensional clustering
method PLTM can obtain some meaningful clusterings that cannot be obtained
by the unidimensional clustering method mclust.

5 Conclusion

In this paper, we introduce a class of multidimensional mixture models called
pouch latent tree models and use them for cluster analysis on world development

160 L.K.M. Poon

indicators. PLTM is shown to recover the given classification better. It is also
shown to produce meaningful clusterings that another unidimensional method
cannot. We illustrate how to use hierarchical clustering on latent variables to
guide the selection of clustering variables. The source code of algorithms for
PLTMs can be found online: https://github.com/kmpoon/pltm-east.

References

1. Banfield, J.D., Raftery, A.E.: Model-based Gaussian and non-Gaussian clustering.
Biometrics 49(3), 803–821 (1993)

2. Bouveyrona, C., Brunet-Saumard, C.: Model-based clustering of high-dimensional
data: a review. Comput. Stat. Data Anal. 71, 52–78 (2014)

3. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, Hoboken
(2006)

4. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–38 (1977)

5. Dy, J.G., Brodley, C.E.: Feature selection for unsupervised learning. J. Mach.
Learn. Res. 5, 845–889 (2004)

6. Fraley, C., Raftery, A.E., Murphy, T.B., Scrucca, L.: MCLUST version 4 for R:
normal mixture modeling for model-based clustering, classification, and density
estimation. Department of Statistics, University of Washington, Technical report
(2012)

7. Galimberti, G., Soffritti, G.: Model-based methods to identify multiple cluster
structures in a data set. Comput. Stat. Data Anal. 52, 520–536 (2007)

8. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. 31(3), 264–323 (1999)

9. Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high dimensional data: a survey
on subspace clustering, pattern-based clustering, and correlation clustering. ACM
Trans. Knowl. Discov. Data 3(1), 1–58 (2009)

10. McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000)
11. Parsons, L., Haque, E., Liu, H.: Subspace clustering for high dimensional data: a

review. ACM SIGKDD Explor. Newsl. 6(1), 90–105 (2004)
12. Poon, L.K.M., Zhang, N.L., Chen, T., Wang, Y.: Variable selection in model-

based clustering: to do or to facilitate. In: Proceedings of the 27th International
Conference on Machine Learning, pp. 887–894 (2010)

13. Poon, L.K.M., Zhang, N.L., Liu, T., Liu, A.H.: Model-based clustering of high-
dimensional data: variable selection versus facet determination. Int. J. Approx.
Reason. 54(1), 196–215 (2013)

14. Raftery, A.E., Dean, N.: Variable selection for model-based clustering. J. Am.Stat.
Assoc. 101(473), 168–178 (2006)

15. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)
16. Shirkhorshidi, A.S., Aghabozorgi, S., Wah, T.Y., Herawan, T.: Big data clustering:

a review. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8583, pp. 707–720.
Springer, Cham (2014). doi:10.1007/978-3-319-09156-3 49

17. Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for com-
bining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)

18. van Buuren, S., Groothuis-Oudshoorn, K.: MICE: multivariate imputation by
chained equations in R. J. Stat. Softw. 45(3), 1–67 (2011)

https://github.com/kmpoon/pltm-east
http://dx.doi.org/10.1007/978-3-319-09156-3_49

Logic Calculation Based on Two-Domain DNA
Strand Displacement

Xiaobiao Wang, Changjun Zhou, Xuedong Zheng,
and Qiang Zhang(&)

Key Laboratory of Advanced Design and Intelligent Computing (Dalian
University), Ministry of Education, Dalian 116622, China

zhangq@dlu.edu.cn

Abstract. DNA strand displacement technology has become one of the most
commonly used in biological computing technology. In this paper, we design a
calculation model of the basic logic unit based on two-domain DNA strand
displacement and logical relation, including AND, OR logic gates. The calcu-
lation process is simple and easy to understand, because of the unified single
strand structure. The process of the reaction is more thorough and more easy to
control. The model is used to construct a converter of a four-bit binary into BCD
code. The whole reaction process can be programmed and simulated in the
software Visual DSD, and the result also verifies the correctness of the design of
the basic logic calculation model.

Keywords: DNA strand displacement � Logic gate � Calculation model

1 Introduction

With the development of large data in recent years, the pressure of traditional com-
puters is growing; more researchers gradually pay close attention to the biological
computation. The biological computation is composed of science, biology, medicine
and so on [1–3]. A lot of theoretical and computational models has been raised [4–6].
DNA strand displacement technology [7] is one of the most commonly used and the
most important technical means for molecular computing.

Since Adleman [1] using DNA to solve a 7-city of Hamiltion path problem, DNA
computation is used for solving a wide variety of application. In recent years, the
research of the logic circuits and neural network is popular [8–11]. In 2010, Cardelli
[11] proposed a structure of two-domain strand to investigate the computing power of a
restricted class of DNA strand displacement structures. In 2011, Winfree et al. [2]
achieved a four-neuron Hopfield associative memory experimental by using cascade
the DNA strand displacement. In 2013, Zhang et al. [8] proposed the calculation model
of logic AND, OR gate, and detected the experimental results by gel electrophoresis.

In this paper, we introduced the Luca Cardelli’s join and fork gate model based on
two-domain DNA strand displacement [11], and design AND, OR gate calculation
model. We analyze and verify the correctness of the model by the software of
Visual DSD [12]. Finally, on the basis of the established logic basic calculation model,
we design a four-binary conversion BCD code computation model and verify it.

© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 161–169, 2017.
DOI: 10.1007/978-3-319-59072-1_20

2 Methods and Materials

2.1 Two-Domain DNA Strand Displacement

The technology of strand displacement is used to simulation of chemical reaction and
the Petri net. In general, single strand is signal strand, double strand is gate structure;
once signals and gates are mixed together, they will automatically react without further
intervention until the gate or signal is completely exhausted. In this work, we construct
the model structure by using two-domain strand structure [11].

In the structure of two-domain strand model, the single strand is composed of two
parts, toehold (short) domain and recognition (long) domain. Double strand is gate
structure and composed of the top strand and the bottom strand. The top strand of
double strand is broken into segments by the nicks; the bottom strand is a complete
strand generally. When the short toehold domain binding between a double strand and
a single strand, if the long domain of single strand and double strand meet the principle
of base pairing, the long domain of the single strand will gradually replace the top
strand of the double strand by branch migration and replace the corresponding strand,
otherwise no replacement reaction. As shown in Fig. 1, it is the strand displacement
process. Here the single strand can only react with double strand.

2.2 AND Gate and OR Gate Based on Two-Domain

As we know, the most basic logical relationship is AND, OR, and NOT. In the logic
circuit, the basic logic gate is AND gate, OR gate, NOT gate, the three basic forms.
Other logical structure is replaced by the combination of AND gate and OR gate. The
relationship types of the logic AND and OR are as follows:

Y ¼ A � B ð1Þ

Y ¼ AþB ð2Þ

In the formula (1) and (2), A and B are the input signal; Y is the output signal. From
(1), we can know that Y will be produced by A and B; from (2), for A and B, any one
occurs, it will generate Y. The logic AND is meaningful when A and B are exist; the
logic OR is meaningful when one of A and B is exist at least.

We use the two-domain strand to construct the AND gate and OR gate. As shown
in Fig. 2, the input strand Input1and the input strand Input2 react with other strand, and

Fig. 1. DNA strand displacement.

162 X. Wang et al.

produce the output strand tw. To reduce intermediates product, the double strand Gate
b3 is designed to take in the waste product strand tb, vt. These recycling structures can
increase the reaction rate and make the reaction more thoroughly.

The principle of join gate reaction is similar to the logical AND, the whole process
can meet a logic AND relationship expression. We design a two-domain structure AND
gate based on join gate structure, as shown Fig. 3. In the initial state of system, the
single strand tx, ty are the input signal single strand, the intermediate consumption
strands are ta, zt; each gate structures are different from the gate structure of the join
gate. We increase the concentration of intermediate strand at in the Gate b1, which
makes the recycling waste strand Gate b3 and Gate b2 reaction at same time in order to
increase the reaction rate. The Gate b3 structure can not only recycle strand yt, but also
can produce Fuel b1. It slows down the rate of Fuel b1reduction of intermediate
reaction in the system. Garbage accumulated will slow down the reaction system. Our
design can not only reduce the produce of waste, but also reduce the reaction time and
the reaction rate when make the system reach a steady state. To demonstrate this
advantage, we make a test using Visual DSD software in the same environment and
compare with the results of join gate. The result is shown in Fig. 4 and Table 1 (the
horizontal coordinate is the time; the vertical coordinate is the concentration in this
paper).

In the Fig. 4, the blue line represents the final output strand <t^ z> of AND gate; the
purple line represents the final output strand <t^ w> of join gate. The AND gate and the
join gate are same initial input in the Fig. 4.

Fig. 2. 2-input 1-output join gate initial state

Fig. 3. 2-input 1-output AND gate initial state based on two-domain strand displacement.

Logic Calculation Based on Two-Domain DNA Strand Displacement 163

In the Table 1, the strand tx, ty tu, tv letter indicate the initial species; the strand tz
and tw indicate output species. We set the same initial input amount,
tx ¼ ty ¼ tu ¼ tv ¼ 1. The generation of the AND gate is 7.6% higher than the join
gate. The AND gate reaction is more relatively complete, more product at the same
initial concentration of the input strand.

Another important logical relationship is logic OR. According to the formula (2)
shows that, in all conditions, as long as there is only one condition which is satisfied,
the system will be able to react. For logic OR in the logical circuit, as long as the circuit
receives any one signal from all input signal, it will be connected. With this property,
we design an OR gate computation model. The initial state of overall system is shown
in Fig. 5.

When we input the single strand tx, the strand tx together with single strand Fuel b1
will react with double strand Gate b1, and produce the single strand at; then the strand
at together with single strand Fuel b3 react with double strand Gate b3 to generate the
final single strand Output tz The needed strand in the this reaction is shown in the left
part of Fig. 5. When we input the single strand ty, the all reaction processes is similar to
the processes of input strand tx. The needed strand in this reaction is shown in the right
part of Fig. 5. Of course, we can also input strand tx and ty at same time, and the
reaction system can also get the final Output strand tz. The whole process can display
the relationship of logical OR.

We simulate the process by Visual DSD software. Figure 6(a) is shown the OR gate
in the case of only input signal strand tx and reaction results; Fig. 6(b) is shown the OR
gate in the case of only input signal strand ty and reaction results; Fig. 6(c) is shown in
the case of input signal strand tx and ty; tz is final output signal stand.

Fig. 4. The results of join gate and AND gate. (Color figure online)

Table 1. The species variation of AND gate and join gate

Species tx ty tz tu tv tw

Initial amount 1 1 0 1 1 0
Final amount 0.0048 0.0054 0.9565 0.0077 0.0083 0.8805
Consumption/generating 0.9952 0.9946 0.9565 0.9923 0.9917 0.8805

164 X. Wang et al.

Through learning the two-domain strand structure, we design AND gate, OR gate
for logic operation. The two domain strand is relatively simple and can meet the
requirement of Boolean logic operation [15]. The number of strand in the computation

Fig. 5. The initial state of OR gate based on two-domain strand displacement

Fig. 6. The result of OR gate reaction. (a) The result when only strand tx exist; (b) the result
when only strand ty exist; (c) the result when both strand tx and ty exist.

Logic Calculation Based on Two-Domain DNA Strand Displacement 165

process is not large. As we know in the reaction process, less accumulation of inter-
mediates, the reaction process will faster and more thoroughly. The intermediates
products are less and the recovery device can quickly absorb intermediate products so
that reduce the influence on the reaction rate, so as to increase the reaction rate and
reduce the reaction time.

Through understanding of logic relation, we design the structure of AND, OR gate
to express the logical relationship. Using these models, we can construct the basic
logical circuit to build computation models of some more complex logic circuit.

3 Experiments

In the computer, we are generally save data and computation in binary, but sometimes
we need other code to save data, for example BCD code. BCD code [13] is also called
8421 code, which store a decimal using four bits. It can save the value of precision, and
make easier to binary conversion to decimal. In order to verify the computing power of
the designed logic model, this paper constructs a four-bit binary conversion BCD code
calculation model, and uses the software Visual DSD to validate the simulation.

A ¼ A 0

A ¼ A 0

B ¼ A 3 A 1 þ A 3 A 2 A 1

B ¼ A 3 A 1 þ A 3 A 2 þ A 3 A 2 A 1

C ¼ A 3 A 2 þ A 3 A 2 A 1

C ¼ A 2 þ A 3 A 2 A 1

D ¼ A 3 A 2 A 1

D ¼ A 3 þ A 3 A 2 þ A 3 A 2 A 1

C 0 ¼ A 3 A 2 þ A 3 A 2 A 1

C 0 ¼ A 3 þ A 3 A 2 A 1

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ð3Þ

By the logic relationship show in the formula (3), we can design the corresponding
AND-OR gate structure. There is three input logic AND and OR from the formula. In
order to reduce reaction steps, we design the structure of 3-input AND gate and 3-input
OR gate based on 2-input AND gate and OR gate. The principle is the same as the
2-input AND gate and OR gate. In the strand displacement simulation process, we
often need to transmit a signal to a number of gate structures, so we learn from the fan
gate which was designed by Winfree et al. [14]. We design a fan gate based on
two-domain strand so that make a signal to split into multiple signal and react with
corresponding strand.

We know logical relation could be expressed by the combination of AND and OR.
In this work, we construct the logic circuit consists of AND gate and OR gate. The
circuit diagram as shown in Fig. 7. The signal A does not need to go through the gate

166 X. Wang et al.

Fig. 7. The circuit diagram of a four-bit binary into BCD code.

Fig. 8. The simulate result of DSD. (a) The result when the input signal A3A2A1A0 = 0000;
(b) the result when the input signal A3A2A1A0 = 1001; (c) the result when the input signal
A3A2A1A0 = 1010; (d) the result when the input signal A3A2A1A0 = 1111.

Logic Calculation Based on Two-Domain DNA Strand Displacement 167

structure, directly into the signal A0, so there is no representation on the circuit dia-
gram. Others need to go through the gate structure combination.

We know the circuit logic signal has two ways, ‘0’ and ‘1’. In order to distinguish
between signal ‘0’ and signal ‘1’, we use different strand to show that signaler
respectively. The logic circuit constructed in this way is called Dual-rail logic circuit
[2], which can be simply and clearly reflect the whole process of the reaction.

We use Visual DSD to carry on simulation, and the partial results are shown in
Fig. 8. We use single strand <t^ A00> represents the value ‘0’ of the input signal A0,
single strand <t^ A01> represents the value ‘1’ of the input signal A0; We use single
strand <t^ BCDA0> represents the value ‘0’ of the input signal A, single strand <t^
BCDA1> represents the value ‘1’ of the input signal A. Other input, the output signal is
similar to the modification. For showing more dynamic process, the stochastic is
selected. The horizontal coordinate is the time; the vertical coordinate is the concen-
tration. In the Fig. 8, (a) when the input signal A3A2A1A0 = 0000, the output signal
BCD–DCBA = 0000, carry signal Carry = 0; (b) when the input signal
A3A2A1A0 = 1001, theoutput signal BCD–DCBA = 1001, carry signal Carry = 0;
(c) when the input signal A3A2A1A0 = 1010, the output signal BCD–DCBA = 0000,
carry signal Carry = 1; (b) when the input signal A3A2A1A0 = 1111, the output signal
BCD–DCBA = 0101, carry signal Carry = 1.

From the results, we can see that the results calculated by the DNA strand dis-
placement that are consistent with the true value table, which also proves the cor-
rectness of the design. The time is shorter when the reaction reaches a stable state and
the final product is higher.

4 Conclusions

We have designed the calculation model of AND gate, OR gate based on two-domain
structure. In the calculation model, the needed strand is relatively small and can express
well for the logical process. The whole reaction process is more thorough and not easy
to produce more intermediate products. BCD code is encoding which use a four bit
binary to save a decimal, and it can be quickly converted between binary and decimal.
In the paper, we have designed a binary conversion into BCD code converter by using
the AND gate, OR gate which based on the structure of two-domain strand. The whole
system is a fully autonomous and do not need to add extra power, depends only on the
DNA strand displacement. It shows that the DNA strand displacement has a good
computing power at the same time. In the future, we will learn more complex com-
putation, such as neural network computation model, and use the DNA strand dis-
placement to achieve it.

Acknowledgements. This work is supported by the National Natural Science Foundation of
China (Nos. 61425002, 61672121, 61672051, 61572093, 61402066, 61402067, 61370005,
31370778), Program for Changjiang Scholars and Innovative Research Team in University
(No. IRT_15R07), the Program for Liaoning Innovative Research Team in University
(No. LT2015002), the Basic Research Program of the Key Lab in Liaoning Province Educational
Department (Nos. LZ2014049, LZ2015004), Scientific Research Fund of Liaoning Provincial

168 X. Wang et al.

Education (Nos. L2015015, L2014499), and the Program for Liaoning Key Lab of Intelligent
Information Processing and Network Technology in University.

References

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. J. Sci. 266,
1021–1024 (1994)

2. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement
cascades. J. Nat. 475, 368–372 (2011)

3. Zhao, H., Gao, L., Luo, J.F., Zhou, D.R., Lu, Z.H.: Massively parallel display of genomic
DNA fragments by rolling-circle amplification and strand displacement amplification on
chip. J. Talanta 82, 477–482 (2010)

4. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic
circuits. J. Sci. 314, 1585–1588 (2006)

5. Murieta, I.S., Patón, A.R.: Probabilistic reasoning with a Bayesian DNA device based on
strand displacement. J. Nat. Comput. 13, 549–557 (2014)

6. Condon, A., Kirkpatrick, B., Maňuch, J.: Reachability bounds for chemical reaction
networks and strand displacement systems. J. Nat. Comput. 13, 449–516 (2014)

7. Zhang, D.Y., Seeling, G.: Dynamic DNA nanotechnology using strand displacement
reactions. J. Nature Chem. 3, 103–113 (2011)

8. Zhang, C., Ma, L.N., Dong, Y.F., Yang, J., Xu, J.: Molecular logic computing model based
on DNA self-assembly strand branch migration. J. Chin. Sci. Bull. 58, 32–38 (2013)

9. Ogihara, M., Ray, A.: Simulating boolean circuits on a DNA computer. J. Algorithmic 25(2–
3), 239–250 (1999)

10. Liu, W., Wang, S., Xu, J.: A new DNA computing model for the NAND gate based on
induced hairpin formation. J. Bio Syst. 77(1–3), 87–92 (2004)

11. Cardelli, L.: Two-Domain DNA Strand Displacement. J. Math. Struct. Comput. Sci. 26(2),
247–271 (2010)

12. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a Universal Substrate for Chemical
Kinetics. J. PNAS 107, 5393–5398 (2012)

13. Babu, H.M.H., Chowdhury, A.R.: Design of a compact reversible binary coded decimal
adder circuit. J. Syst. Archit. 52(5), 272–282 (2006). Elsevier

14. Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits. In:
Goel, A., Simmel, F.C., Sosík, P. (eds.) DNA 2008. LNCS, vol. 5347, pp. 70–89. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03076-5_7

15. Shi, X.L., Wang, Z.Y., Deng, C.Y., Song, T.S., Pan, Q., Chen, Z.H.: A novel bio-sensor
based on dna strand displacement. J. PLoS One 9(10), e108856 (2014)

Logic Calculation Based on Two-Domain DNA Strand Displacement 169

http://dx.doi.org/10.1007/978-3-642-03076-5_7

Several Logic Gates Extended from
MAGIC-Memristor-Aided Logic

Lin Chen1, Zhong He2(B), Xiaoping Wang1, and Zhigang Zeng1

1 Huazhong University of Science and Technology, Road Luoyu, Hubei 1037, China
2 Chongqing Cigarette Factory, China Tobacco Chongqing Industrial Co., Ltd.,

Road Tushan, 589, Chongqing, China
hzriver@163.com

Abstract. Recently, it has been demonstrated that memristors can be
utilized as logic operations and memory elements. In this paper, sev-
eral logic gates extended from MAGIC–Memristor-Aided Logic, includ-
ing IMP, XNOR, NAND and OR logic gates, are presented. The extended
logic gates (except for the OR logic gate) are not only used as stand-
alone logic but also can be performed within a crossbar array, provid-
ing opportunities for novel non-von Neumann computer architectures.
Another logic gate (OR gate) is presented to alleviate the issue where
the logic state of the output memristor can not fully switch to the desired
state in the previous designs.

Keywords: Memristor · Stateful logic · In-memory computing ·
Nanocrossbar memory

1 Introduction

As it has become increasingly difficult to overcome various physical limits of
the traditional CMOS technology [1], alternative elements are desired for higher
performance. An element called memristor (short for “memory resistor”) is a
promising candidate. The concept of a memristor was firstly theoretically pos-
tulated by Chua in 1971 [2], and later, Williams’s team presented a resistance
variable device as a memristor at HP Labs in 2008 [3]. A memristor is a two-
terminal device, where the resistance of the device is changed by the electrical
current, as shown in Fig. 1. As an emerging nanoscale device, memristor has a
lot of advantageous features, such as non-volatility, high-density, low-power, and
good-scalability [4].

Recently, researchers have demonstrated memristor’s potential applications
to programmable analog circuits [5–7], neural networks [8–10]. In addition, mem-
ristors have drawn researchers interests in logic circuits [11–13] and logic arrays

This work was supported by the National Natural Science Foundation of China
(Grant Nos. 61374150 and 11271146), the State Key Program of the National Nat-
ural Science Foundation of China (Grant No. 61134012), and the Doctoral Fund of
Ministry of Education of China (Grant No. 20130142130012).

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 170–179, 2017.
DOI: 10.1007/978-3-319-59072-1 21

Several Logic Gates Extended from MAGIC-Memristor-Aided Logic 171

Fig. 1. Memristor symbol. Fig. 2. Initialization circuit of the
extended logic gates.

[14,15]. A memristor-based material implication (IMP) logic gate was proposed
in [11] as stateful logic, which can process the data on the memory in situ with-
out reading it out or writing back explicitly.

2 Operation Principle of the Logic Gates Extended from
MAGIC

Like MAGIC gates in [12], the extended logic gates are also performed by
memristive-only logic structure. Here, the states of input and output memristors
are presented as memristance, where the high memristance ROFF and low mem-
ristance RON are considered as state 0 and state 1 respectively. To perform a
logic operation, the inputs of the logic gate are the initial logic state of the input
memristors (in1, in2, · · ·), and the output is the final logic state of the output
memristor (out).

Operations for the extended logic gates (except for the XNOR logic gate)
consists of two sequential steps. In step-1, we initialize the output memristor
to a known logic state. In step-2, a voltage V0 is applied across the logic gates.
For the XNOR logic gate, it needs 3 sequential steps to complete logic function.
In this paper, VTEAM model [16] is adopted. For VTEAM model, voltages
VT,ON and VT,OFF are both the threshold voltages of a memristor. When the
applied positive voltage is larger than VT,OFF , the memristor switches to the
high resistance state. When the applied negative voltage is less than VT,ON , the
memristor switches to the low resistance state. For the case where the applied
voltage is larger than VT,ON and less than VT,OFF (within threshold voltage),
the memristor remains at the initial state.

Like MAGIC, we also choose the circuit in [6] for the initialization of the
memristors. In order to make the circuit simple, we make some modifications to
it. We use two voltages Vwrite and Ven, as shown in Fig. 2. In the next section,
the extended logic gates are described.

172 L. Chen et al.

3 IMP Logic Gate and the Extension to XNOR Logic
Gate

Same with MAGIC, the extended IMP logic gate consists of two input mem-
ristors (in1, in2) and an additional memristor (out) as the output, as shown in
Fig. 3(a). In step-1, memristor out is written to state 1, and if necessary, memris-
tors in1 and in2 are written to the input values. In step-2, voltage V0 is applied
at the gateway of the logic gate. The applied voltage produces a current that
passes through the circuit and appears at memristor out. Now, we analyse the
four input cases and the operation process.

Case 1. in1 is logic 0, in2 is logic 0. For this case, the voltage of the output
memristor is lower than the memristor threshold voltage. Hence, the logic
state of the output memristor does not change and remain at logic 1. In
order not to change the logic state of in1, the voltage across in1 should be
less than |VT,ON |. Assuming ROFF � RON , the constraint is

V0 < |VT,ON |. (1)

Case 2. in1 is logic 0, in2 is logic 1. For this case, it is the same with case 1, the
logic state of the output memristor remains at logic 1. The voltage across
in1 should be less than |VT,ON |.

Case 3. in1 is logic 1, in2 is logic 0. For this case, the voltage of the output
memristor is greater than the memristor threshold voltage. Hence, the logic
state of the output memristor switches to logic 0. Since in1 is at logic 1, the
positive voltage V0 does not change the logic state of in1. The constraint is

2VT,OFF < V0. (2)

Case 4. in1 is logic 1, in2 is logic 1. For this case, like case 3, since in1 is
at logic 1, the positive voltage V0 does not change the logic state of in1.
The voltage of the output memristor is lower than the memristor threshold
voltage. Hence, the logic state of the output memristor does not change and
remain at logic 1. The constraint is

V0 < 3VT,OFF . (3)

Taking into account the above four cases, we can get the final constraint, the
constraint is

2VT,OFF < V0 < min
[|VT,ON |, 3VT,OFF

]
. (4)

IMP logic gate (in1 IMP in2 → out) can be performed, the corresponding
truth table is shown in Fig. 3(b) and the behavior of IMP operation is shown in
Fig. 3(c).

Several Logic Gates Extended from MAGIC-Memristor-Aided Logic 173

Fig. 3. IMP logic gate extended from MAGIC. (a) Schematic of IMP logic gate.
(b) Truth table of IMP logic gate (in1 IMP in2 → out). (c) Simulations of IMP
logic gate.

4 XNOR Logic Gate Extended from IMP Logic Gate

In Sect. 3, we have analysed IMP logic gate which can be implemented within
2 steps. Now, we extend IMP logic gate to XNOR logic gate. The schematic of
the XNOR logic gate is shown in Fig. 4(a). Similar to IMP logic gate, in step-1,
memristor out is initialized to state 1. In step-2, switch S1 is set to V0 position,
at the same time, switch S2 is set to Gnd position. Voltage V0 is constrained
to Eq. 4, so IMP operation (in1 IMP in2 → out) is performed successfully. In
step-3, switch S1 is set to Gnd position, and switch S2 is set to V0 position
at the same time. For the cases where in1 and in2 are the combinations of
{(0, 0), (0, 1), (1, 1)}, memristor out remains at the original state, namely state
1 after step-2. However, for the case where in1 and in2 are state 1 and state 0
respectively, out switches from state 1 to state 0 after step-2. So, during step-3,
for the cases where in1 and in2 are the combinations of {(0, 0), (0, 1), (1, 1)},
IMP operation (in2 IMP in1 → out) is performed. Therefore for the case where
in1 is state 0, and in2 is state 1, out switches from state 1 to state 0, as to
other two combinations of {(0, 0), (1, 1)}, out still remains at its original state.
Now, we discuss the last case where in1 is state 1, in2 is state 0, and out is
state 0 after step-2. When switch S1 is set to Gnd position and switch S2 is
set to V0 position, most of voltage V0 is dropped across memristor in2. For the
fact that V0 is constrained to Eq. 4, so in2 is still in state 0, and out is not
also changed. Based on IMP logic gate, we have extended XNOR logic gate
within 3 steps successfully. Same with IMP logic gate, XNOR logic gate is not
only used as standalone logic but also can be placed within a crossbar array.
A circuit structure is also proposed to implement XNOR logic gate in [7]. In [7],
the states of two input variables x and y are represented by voltage level value

174 L. Chen et al.

Fig. 4. XNOR logic gate extended from IMP logic gate. (a) Schematic of IMP logic
gate. (b) The truth table of XNOR logic gate. (c) Simulations of XNOR logic gate.

VX and memristance RY , and it is not easy to be applied to massive crossbar
arrays. Different from [7], we choose the states of memristors (memristance) as
the states of input variables, which highlights the nonvolatility of memristors in
memory. The comparison of IMP and XNOR logic gates is shown in Table 1.

Table 1. Comparison of IMP and XNOR logic gates.

IMP in [11] IMP here XNOR in [7] XNOR here

No. of voltages 2 (VSET , VCOND) 1 (V0) 3 (VX , VP , VQ) 1 (V0)

Separate input and output No Yes Yes Yes

No. of circuit elements 2M1R 3M 3M, 1R5S 3M

No. of steps for logic gates 1 2 3 3

Within crossbar? Yes Yes No Yes

5 IMP Logic Gate Within a Crossbar Array

In [12], as to perform a two-input MAGIC NOR gate in a crossbar array, in1 and
in2 are, respectively, in columns j + 1 and j, and out is in column j − 1. While
applying V0 to columns j +1 and j, grounding column j −1, all rows potentially
perform NOR operation, it is not just a certain row. This issue can be addressed
to isolate unselected rows using half-selected cells. Here, we adopt the structure
of a crossbar array shown in Fig. 5. We choose a row of configuration memristors
as the output memristors. Different from MAGIC, we can perform IMP, XNOR
and NAND operations within a crossbar array. In Sect. 7, we will describe NAND
gate in detail.

Several Logic Gates Extended from MAGIC-Memristor-Aided Logic 175

Fig. 5. IMP logic gate within a crossbar array. (a) Schematic of a memristive crossbar
structure. IMP logic gate is achieved in column j, where in1 and in2 are, respectively,
in rows i and i+1, and out is the load memristor in column j, as marked by an red oval.
(b) Schematic of IMP logic gate within a crossbar array. The voltage at the gateway
V0 is the applied voltage at row i, where row i+1 and column j are connected ground.
(Color figure online)

6 Evaluation and Design Considerations for the IMP
Operation Extended from MAGIC

The speed of the IMP logic gate extended from MAGIC is evaluated in Vitu-
oso. Same with MAGIC, VTEAM model [16] is used in the simulations, several
important parameters are: RON = 1kΩ, ROFF = 300 kΩ, VT,ON = −1.5V,
VT,OFF = 0.3V. The behavior of IMP logic gate for different values of V0 is
shown in Fig. 6. The case 3 of inputs is chosen to evaluate the delay of the IMP
operation. From (4), V0 can vary from 0.6 to 0.9 V according to the parameters
listed above.

7 Additional Logic Gates Extended from MAGIC

In [12], the NAND logic gate can not be applied within a crossbar array. Under
the similar operation principle to IMP, a NAND logic gate which can be used
in memory is presented. As shown in Fig. 7, out is initialized to logic 1 prior to
execution. For correct circuit behavior, assuming ROFF � RON , the constraint
is

3
2
VT,OFF < V0 < 2VT,OFF . (5)

176 L. Chen et al.

Fig. 6. Simulations of IMP logic gate. (a) Output memristor for the case where in1 is
logic 1 and in2 is logic 0, V0 = 0.85 V. (b) Delay for different values of V0.

When an input memristor is logic 0, the operation of the NAND logic gate can
be destructive. Therefore the maximum applied voltage for a two-input NAND
logic gate is

V0 < min
[
2VT,OFF , |VT,ON |]. (6)

As shown in Fig. 7(c), for χ input memristors, the design constraint is

VT,OFF · (
1 +

1
χ

)
< V0 <

VT,OFF

RON
·
[
RON +

(RON

χ − 1
) ‖ ROFF

]
.

For nondestructive operation of a χ-input NAND, the maximum applied
voltage is

V0 < min
{

VT,OFF

RON
· [

RON +
(RON

χ − 1
) ‖ ROFF

]
, |VT,ON |

}
. (7)

For the case where one of the input memristors is logic 1, the voltage of out
is greater than |VT,ON |. As the resistance of out decreases, the voltage of out
decreases. When the voltage of out is less than or equal to |VT,ON |, the resistance
does not decrease. So in this case, out can not switch fully from logic 0 to logic 1.
Here, an improved OR logic gate is proposed, shown in Fig. 8(a). out is initialized
to logic 0 prior to execution. For correct circuit behavior, for the combination of
{0, 0}, the constraint of the OR gate is

|VT,ON | < V0 < 2|VT,ON |. (8)

Several Logic Gates Extended from MAGIC-Memristor-Aided Logic 177

Fig. 7. NAND logic gate extended from MAGIC. (a) Schematic of a two-input NAND
gate. (b) Simulation results for a two-input NAND gate. (c) Schematic of an N -input
NAND gate.

Fig. 8. The improved OR logic gate extended from MAGIC. (a) Schematic of a two-
input OR gate. The logic gate consists of two input memristors in1 and in2 and
an additional structure which includes an output memristor out and a memristor m
connected in parallel. The resistance of memristor m is equal to ROFF , which keeps
unchanged during execution. (b) Simulations of a two-input OR gate. (c) Schematic of
a N -input OR gate.

178 L. Chen et al.

Fig. 9. Simulations of a two-input OR gate. For the case where one of the input mem-
ristors is logic 0 and the other is logic 1, as the applied voltage V0 changes, the resistance
of the output memristor out also changes. The blue line represents the change of the
resistance of out in [12], while the red dash line represents the improved OR gate.
(Color figure online)

As shown in Fig. 8(c), for χ input memristors, the design constraint is

|VT,ON | < V0 < (1 +
2
χ

)|VT,ON |. (9)

For OR logic gate, for the case where one of two input memristor is logic 1, then
memristor out can not fully switch from logic 0 to logic 1. To evaluate the state
switching of out, the worst input case, namely {0, 1} or {1, 0}, is considered. For
MAGIC OR logic gate, the applied V0 can vary from 1.5 to 2.25 V, while V0

varies from 1.5 to 3 V for the improved OR logic gate, as is shown in Fig. 9. The
resistance of out decreases to 2.02 kΩ in MAGIC, while it decreases to 1.01 kΩ
in the improved OR logic gate. A summary of several logic gates extended from
MAGIC, is listed in Table 2 (at the bottom of the last page).

Table 2. Summary of several logic gates extended from MAGIC.

Function Constraints Within crossbar

IMP 2VT,OFF < V0 < min
[|VT,ON |, 3VT,OFF

]
Yes

XNOR 2VT,OFF < V0 < min
[|VT,ON |, 3VT,OFF

]
Yes

NAND
VT,OFF · (1 + 1

χ

)
< V0

< min

{
VT,OFF

RON
· [RON +

(
RON
χ−1

) ‖ ROFF

]
, |VT,ON |

}
Yes

OR |VT,ON | < V0 < (1 + 2
χ
)|VT,ON | No

Several Logic Gates Extended from MAGIC-Memristor-Aided Logic 179

8 Conclusion

In this paper, several logic gates extended from MAGIC are presented. The
extended logic gates (except for the OR gate) can be performed within a crossbar
array. Another logic gate (OR gate) is presented to alleviate the issue where the
logic state of the output memristor can not fully switch to the desired state in
the previous designs.

References

1. Kuhn, K.J.: Considerations for ultimate CMOS scaling. IEEE Trans. Electron
Devices 59, 1813–1828 (2012)

2. Chua, L.O.: Memristor - the missing circuit element. IEEE Trans. Circuit Theory
18, 507–519 (1971)

3. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor
found. Nature 453, 80–83 (2008)

4. Junsangsri, P., Lombardi, F.: Design of a hybrid memory cell using memristance
and ambipolarity. IEEE Trans. Nanotechnol. 12, 71–80 (2013)

5. Shin, S., Kim, K., Kang, S.M.: Memristor applications for programmable analog
ICs. IEEE Trans. Nanotechnol. 10, 266–274 (2011)

6. Pershin, Y.V., Ventra, M.D.: Practical approach to programmable analog circuits
with memristors. IEEE Trans. Circuits Syst. I: Reg. Papers 57, 1857–1864 (2010)

7. Shin, S., Kim, K., Kang, S.M.: Resistive computing: memristors-enabled signal
multiplication. IEEE Trans. Circuits Syst. I: Reg. Papers 60, 1241–1249 (2013)

8. Wu, A., Zhang, J., Zeng, Z.: Dynamic behaviors of a class of memristor-based
Hopfield networks. Phys. Lett. A 375, 1661–1665 (2011)

9. Pershin, Y.V., Di Ventra, M.: Experimental demonstration of associative memory
with memristive neural networks. Neural Netw. 23, 881–886 (2010)

10. Ebong, I.E., Mazumder, P.: CMOS and memristor-based neural network design for
position detection. Proc. IEEE 100, 2050–2060 (2012)

11. Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams,
R.S.: Memristive switches enable stateful logic operations via material implica-
tion. Nature 464, 873–876 (2010)

12. Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman, E.G.,
Kolodny, A., Weiser, U.C.: Magic-memristor-aided logic. IEEE Trans. Circuits
Syst. II: Exp. Briefs 61, 895–899 (2014)

13. Shin, S., Kim, K., Kang, S.M.: Reconfigurable stateful NOR gate for large-scale
logic-array integrations. IEEE Trans. Circuits Syst. II: Exp. Briefs 58, 442–446
(2011)

14. Kim, K., Shin, S., Kang, S.M.: Field programmable stateful logic array. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 30, 1800–1813 (2011)

15. Kvatinsky, S., Satat, G., Wald, N., Friedman, E.G., Kolodny, A., Weiser, U.C.:
Memristor-based material implication (imply) logic: design principles and method-
ologies. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22, 2054–2066 (2014)

16. Kvatinsky, S., Ramadan, M., Friedman, E.G., Kolodny, A.: VTEAM: a general
model for voltage-controlled memristors. IEEE Trans. Circuits Syst. II: Exp. Briefs
62, 786–790 (2015)

Static Hand Gesture Recognition Based
on RGB-D Image and Arm Removal

Bingyuan Xu(&), Zhiheng Zhou, Junchu Huang, and Yu Huang

School of Electronic and Information Engineering,
South China University of Technology, Guangzhou, China

xu.bingyuan@mail.scut.edu.cn

Abstract. A novel hand gesture recognition algorithm is proposed for
human-computer interaction, which is based on RGB-D image (RGB image and
Depth image) and arm removal. The hand is firstly extracted from the back-
ground based on depth data and skin-color features. Then the arm area is
removed by using distance transformation operations, and gesture composed of
palm and fingers is obtained. Finally Hu moments of the gesture are calculated
and entered into Support Vector Machine (SVM) for recognition. Experimental
results demonstrate that the proposed algorithm can recognize 8 gestures with an
accuracy of 95.83% in the complex background.

Keywords: RGB-D image � Distance transformation � Arm removal � Static
hand gesture recognition � SVM

1 Introduction

With the gradual transfer of human-computer interface towards user-orientated, gesture
recognition as a natural and intuitive mode, has gradually developed into a research
hotspot in the field of human-computer interaction, and has been widely used in
somatosensory games, robot control and computer control. Compared with gesture
recognition based on data glove, vision-based gesture recognition has the advantages of
low requirement for equipment, interactive nature and so on, and becomes the main-
stream of gesture recognition.

In recent years, more and more scholars have participated in the study of static
gesture recognition based on vision [1–3]. Vision-based gesture recognition uses a
single camera or multiple cameras to collect gesture information. The gestures are
segmented by computer programs, and identified by specific methods. How to segment
gesture accurately from complex background and identify its meaning are the key
problems that static hand gesture recognition systems need to solve.

As the first step of gesture recognition, hand segmentation is the most critical step,
and its accuracy directly affects the recognition effect. In gesture recognition based on
monocular vision, it is difficult to separate the hand from the background. The com-
monly used methods of hand segmentation are: (1) the use of hand features, such as
skin color, hand contour, fingertip, hand size, etc. The hand is usually segmented using
skin-color features and geometric features, but this method is susceptible to external
light intensity and to skin-like regions in the background. (2) by wearing a marked

© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 180–187, 2017.
DOI: 10.1007/978-3-319-59072-1_22

gloves or simplifying complex background, create an environment where hand and
background are easily separated. This method can solve the interference of the skin-like
regions, but the environmental requirements become more harsh that it cannot meet the
needs of human-computer interaction under the realistic conditions. With the popularity
of the Kinect camera, many researchers choose to use depth information to solve the
problem of hand segmentation in complex backgrounds [4–7]. Kinect includes a RGB
camera, an infrared camera and an infrared transmitter, can be used to capture RGB
image and Depth image. Using the Depth image alone can segment hand quickly, but
the hand detection accuracy is still low in complex background. In [7], it is proposed to
combine RGB image and Depth image for hand segmentation, and the depth infor-
mation and skin color information are used to achieve accurate hand segmentation.
A combination of color and depth information can make the system more robust [5, 6].

Static hand gesture refers to the form of the palm and fingers, that is, the gesture
information can be expressed only by the palm and fingers. As shown in Fig. 1, the arm
existing after hand segmentation is redundant information, whose length will interfere
with the gesture recognition results. Since the removal of arm disturbances can improve
the recognition rate of the system, some algorithms for arm-area remov-ing have been
studied. The arm removal algorithm proposed in [8] is based on the characteristics of
narrower wrist, which is not suitable for special situations such as hand tilted. Distance
transformation and vector dot product operations are used to determine the cutting line
for arm removal [9]. This algorithm is not affected by the rotation of the hand, but it
cannot quickly remove the arm area because of the high time complexity. In [1], the
method of using structural elements is studied. This me-thod cannot effectively remove
the arm, which will affect the recognition results.

In order to solve the above problems, a static gesture recognition algorithm
com-bined with RGB-D image and arm removal is proposed in this paper. The main
con-tributions include: firstly, a method of hand segmentation based on depth infor-
mation and skin-color features is proposed, which can overcome the interference of
complicated background and extract the hand accurately; secondly, an arm removal
method based on distance transformation is proposed, which can effectively and
quickly remove the arm area, and solve the problem that the recognition rate of the
system is not high when the arm exists; finally, it is proved that the static gesture

Fig. 1. The composition after hand segmentation

Static Hand Gesture Recognition Based on RGB-D Image 181

recognition system constructed by this algorithm is robust, and has high recognition
rate in complex environment.

2 The Proposed Static Gesture Recognition Algorithm

The flow of the static gesture recognition algorithm in this paper is shown in Fig. 2, and
includes the following main steps: first, RGB image and Depth image are acquired
simultaneously by Kinect camera, and then the depth threshold is used to segment the
hand from the background; second, the skin color information is used to further extract
the hand, and a binary image is obtained; third, the arm removal algorithm based on
distance transformation is used to remove the arm area, and a binary image composed
of fingers and palm is obtained; finally, we calculate the Hu moments of the gesture
image and use SVM to obtain the recognition result. The above depth threshold seg-
mentation and skin color segmentation constitute the hand segmentation algorithm in
this paper.

2.1 Image Acquisition and Hand Segmentation

As we know, Kinect camera can simultaneously capture RGB image and Depth image.
Depth image is a grayscale image, where the pixel value represents the relative distance
from the point within the scene to Kinect. If the point is closer to Kinect, the corre-
sponding pixel will be brighter. In practical applications, it is considered that the hand
closest to Kinect. Therefore, Depth image can be used to locate the hand. According to
the appropriate depth threshold, the corresponding pixels in the RGB image can be
extracted and a RGB image containing hand is obtained. The above method avoids the
influence of background environment, but the image obtained by depth threshold seg-
mentation may contain other regions except the hand (such as sleeves), which will affect
the subsequent operation. Therefore, the skin color information is used to further extract
the hand. YCr’Cb’ color space [10] has the advantages of strong skin color clustering
and little influence by external illumination, and is widely used in skin color segmen-
tation. By converting the image from RGB color space to YCr’Cb’ color space and

Fig. 2. The proposed static gesture recognition algorithm

182 B. Xu et al.

using threshold segmentation method, the skin color region in the image can be accu-
rately detected. After the depth threshold segmentation and skin color segmentation, a
binary image is obtained, which successfully separates the hand from background.

2.2 Arm Removal

The distance transformation of binary image is defined as: if the current pixel value is
0, it is still 0 after distance transformation; if the current pixel value is 1, it is the
distance from the current pixel to the nearest 0 value pixel after distance transforma-
tion. The Euclidean distance between two pixels is calculated as formula (1), where (r1,
c1), (r2, c2) are the coordinate values of pixel 1 and pixel 2 respectively. If the pixel in
the foreground target is farther away from the boundary, the pixel value would be
larger after distance transformation.

d ¼
ffi
ðr1 � r2Þ2 þðc1 � c2Þ2

q
ð1Þ

Figure 3 shows the complete flow of arm removal algorithm based on distance
transformation. It includes the following steps:

• Step 1: Take a distance transformation operation on the binary image, which is
obtained after hand segmentation. Then the distance from the pixel inside the hand
to the hand boundary can be obtained, the maximum of which is generally located at
the center of the palm (position Pc in Fig. 3) and is taken as the radius R0 of the
inscribed circle of the palm.

• Step 2: Draw a circle on the image obtained in step 1. In order to keep the palm
inside the circle (the blue circle in the Fig. 3), Pc is chosen as the center and
R1 ¼ 1:35� R0 is chosen as the radius, and the pixels within the circle are all 0.
And then the largest pixel value in the remaining regions is detected, which is taken
for Pmax and corresponding to the pixel P. When the arm area exists, P is usually
located at the midline of the arm (position P in Fig. 3), and Pmax is large; When
there is no arm area, P is generally located at the midline of the finger, and Pmax is
relatively small.

• Step 3: Calculate Ratio ¼ Pmax

R0
. If Ratio is greater than T, the image obtained in step

2 is judged to have an arm area, and the following steps are executed to remove the
arm area. Otherwise, it is determined that there is no arm area and the hand seg-
mentation image can be used directly for feature extraction. In this paper, the
experimental value T ¼ 0:35.

• Step 4: Use eight-connected discrimination algorithm to mark the remaining
regions. If the label value of a connected region is the same as that of the pixel P,
the region is removed and a binary image containing only fingers is obtained.

• Step 5: XOR the result of step 4 with the result of step 3 to obtain a binary image
containing only the arm area.

• Step 6: XOR the result of step 5 with the hand segmentation image to obtain the
gesture image.

Static Hand Gesture Recognition Based on RGB-D Image 183

Based on hand segmentation, distance transformation is innovatively used to locate
the center of the palm precisely, and palm-based circle combined with eight-connected
discrimination algorithm is used to remove the arm interference. Compared with other
arm removal algorithms, the proposed algorithm has low computational complexity
and can effectively and quickly remove the arm without the influence of the rotated
hand.

2.3 Feature Extraction and Recognition

Hu moments are used to capture the shape and spatial information of images, and can
solve the problems of scale change, image translation change, coordinate transforma-
tion and rotation transformation in the process of gesture feature matching. In addition,
the static hand gesture recognition problem in this paper belongs to the small sample
and nonlinear classification problem, so SVM with excellent classification performance
is selected as the classifier. In this paper, the Hu moments of the gesture image are
extracted and selected as input feature vector of SVM. In the training phase, we
complete selection of kernelfunction and optimization parameters, and finally obtain a
SVM model. In the test phase, the Hu moments are extracted and input into the SVM
model to obtain the final recognition result.

3 Experimental Results

In order to verify the effectiveness of this algorithm, the 8 gestures shown in Fig. 4 are
used for experiments, which represent number 0 to 7.

All the experiments are performed in MATLAB2013b and Microsoft Visual Studio
2010 on a computer with Intel (R) Core (TM) i5-4440 (3.10 GHz), 8G memory, and
Windows 7 operating system. A Microsoft Kinect is used to collect 8 hand gesture

Fig. 3. The proposed arm removal algorithm (Sample image with arm area, � represents XOR
operation)

184 B. Xu et al.

images of 3 people in complex background of the laboratory, thus 720 test samples (90
images for each gesture) and 2400 training samples (300 images for each gesture) are
created.

Figure 5 shows the processing of the 8 hand gesture images using this algorithm.
Firstly, the depth threshold is used to extract the corresponding pixels in the RGB
image, thus a RGB image containing the hand is obtained. Since the obtained image
contains the sleeve region that satisfies the depth threshold, the skin-color features are
used to further extract the hand. The experimental results show that, even in complex
background, the proposed hand segmentation method can accurately detect hands,
which lays a foundation for gesture recognition. The arm removal algorithm proposed
in this paper can effectively and quickly remove the arm area and meet the require-
ments of real-time gesture recognition system. On this basis, we extract the Hu
moments of the gesture images, train and test the extracted feature vectors by using
SVM. The SVM model implements gesture recognition and classification, and achieves
good recognition results. As shown in Table 1, the static hand gesture recognition
system constructed in this paper has a recognition rate of 95.83% for 8 gestures.

Fig. 4. Eight gestures used for experiments

Fig. 5. The processing of the 8 hand gesture images using this algorithm

Static Hand Gesture Recognition Based on RGB-D Image 185

In order to verify the contribution of the proposed arm removal algorithm in
improving the system recognition rate, this algorithm (excluding the arm removal
algorithm) is used to deal with the same sample set. As shown in Table 1, the
recognition rate of the system is only 65.42% without removing the arm interference.

In order to verify the advantages of this algorithm in dealing with complex envi-
ronments, the same 8 images are processed only using skin color information, and the
results are shown in Fig. 6. The binary image obtained by skin color segmentation
contains the skin regions and the skin-like regions of the original image, and we need to
use other features to further extract the hand. However, this method is not robust
enough and is easily influenced by the background, and cannot solve the problem that
the hand and skin region (such as face, neck and so on) or skin-like region overlap.

4 Conclusion

In this paper, a new hand gesture recognition algorithm is proposed, which shows good
performance on a dataset including multiple users. The combination of skin-color
features and depth information is shown to realize accurate hand tracking, which can
effectively solve the problem of hand segmentation in complex background. In addi-
tion, a new arm removal method is used to remove the arm interference effectively,
which is proved to improve the system recognition rate by 30.41%. Experimental
results show that the gesture recognition system constructed in this paper is robust
against complex backgrounds and reaches a recognition rate of 95.83%.

Acknowledgements. The work is supported by National Natural Science Foundation of China
(61372142, U1401252, U1404603), Guangdong Province Science and technology plan
(2013B010102004, 2013A011403003), Guangzhou city science and technology research pro-
jects (201508010023).

Table 1. The performance of different algorithms

Recognition rate (%) This algorithm This algorithm excluding the arm removal algorithm

The training set 99.58 99.33
The testing set 95.83 65.42

Fig. 6. Only use the skin color information for hand segmentation

186 B. Xu et al.

References

1. Priyal, S.P., Bora, P.K.: A robust static hand gesture recognition system using geometry
based normalizations and Krawtchouk moments. Pattern Recogn. 46(8), 2202–2219 (2013)

2. Modanwal, G., Sarawadekar, K.: Corrigendum to “towards hand gesture based writing
support system for blinds”. Pattern Recogn. 57(C), 50–60 (2016)

3. Lei, J., Han-Fei, Y.I.: A hand gesture recognition method based on SVM. Comput. Aided
Drafting Des. Manufact. (English Version) 20(2), 85–91 (2010)

4. Chan, C., Mirfakhraei, S.S.: Hand gesture recognition using kinect. Bachelor thesis, Boston
University, Boston (2013)

5. Pugeault, N., Bowden, R.: Spelling it out: real-time ASL fingerspelling recognition. In: IEEE
International Conference on Computer Vision Workshops, vol. 28, pp. 1114–1119 (2011)

6. Dong, L., Wang, H., Hao, Z., Liu, J.: Robust hand posture recognition based on RGBD
images. In: Chinese Control and Decision Conference, pp. 2735–2740 (2014)

7. Dominio, F., Donadeo, M., Zanuttigh, P.: Combining multiple depth-based descriptors for
hand gesture recognition. Pattern Recogn. Lett. 50, 101–111 (2014)

8. Gao, J.Y.: Research on gesture recognition technology in the human-computer interaction.
M.S. Thesis, Xidian University, Xi’an (2013)

9. Cheng, X.Y.: Number-sign hand posture recognition based on arm-area removing. M.S.
Thesis, Southwest University, Chongqing (2014)

10. Cao, J.Q., Wang, H.Q., Lan, Z.L.: Skin color division base on modified YCrCb color space.
J. Chongqing Jiaotong Univ. (Nat. Sci.) 29(3), 488–492 (2010)

Static Hand Gesture Recognition Based on RGB-D Image 187

Real-Time Classification Through a Spiking
Deep Belief Network with Intrinsic Plasticity

Fangzheng Xue1,2, Xuyang Chen1,2, and Xiumin Li1,2(B)

1 Key Laboratory of Dependable Service Computing in Cyber Physical
Society of Ministry of Education, Chongqing University,

Chongqing 400044, China
xuefangzheng@cqu.edu.com

2 College of Automation, Chongqing University, Chongqing 400044, China
xmli@cqu.edu.cn

Abstract. Deep Belief Networks (DBNs) has made a good effect in
machine learning and object classification. However, the current question
is how to reduce the computational cost without detrimental to accuracy.
To solve this problem, this paper is undertaken to convert the Siegert
neuron into LIF neuron in DBNs and analyze the effects of changing
the value of parameters for spiking neurons such as thresholds and firing
rates. Besides, we also add intrinsic plasticity (IP) into the network to
render better adaptive capability. Besides, the most exciting results is
the spiking DBN with intrinsic plasticity submits its first correct guess
of the output label within an average of 2.5 ms after the onset of the
simulated Poisson spike train input with the initial firing rates beyond
200Hz, and the recognition accuracy is still more than 94 percent.

Keywords: DBNs · Spiking neural network · Intrinsic plasticity ·
Numeral recognition

1 Introduction

Over the past few years, some science and technology developed by deep learning
have a significant impact on all aspects of signal and information processing,
which is not only exist with traditional field, also exists in machine learning
and artificial intelligence [12,22,23]. Deep belief networks, as a kind of deep
neural network, is a part of deep learning. DNBs and the unsupervised layer-
by-layer pre-training with Contrastive Divergence(CD) algorithm are bring up
in 2006 [9,10], which are widely used in natural language processing [1,10,11]
and patterns recognition [3,5]. SNNs are often regarded as the 3rd generation
of neural networks, spiking neuron model and synaptic plasticity are the main
characteristics of it. Besides, it also taking into account the time of spike firing
[17]. However, its far from enough to study the above two neural networks in
separately. Combining with the advantages of both, we can get some different
results. Besides, other than synaptic plasticity, a single neuron also has the ability

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 188–196, 2017.
DOI: 10.1007/978-3-319-59072-1 23

Real-Time Classification Through a Spiking Deep Belief Network 189

to change its intrinsic excitability to match its synaptic input. This mechanism
is referred to as neuronal intrinsic plasticity (IP) [7,13,14,21]. With this IP
mechanism, a single neuron can strengthen the excitability when its input is
deprived for a period of time and weaken the excitability when the input is
boosted and a spiking DBN has the adaptive ability for the different intensity
of the input.

With the background of big data, lots and lots of data are produced on the
internet every day. So that how to speed up the computation is a very important
problem with computational accuracy changed little. In this paper, we aimed at
reducing the time to identify a handwritten number through a spiking deep belief
network with self-adaptive capacity.

In this article, we first train the DBN with a time-stepped model and CD
algorithm. And then with the network structure remain unchanged and the
changed neuron model, the learned parameters are transferred to a functionally
equivalent spiking neural network. We add intrinsic plasticity [2] to make it
has self-adaptive ability at last. Using DBN, we can regard it as a probability
generation model and its efficient to use the unlabeled data to learn. On the other
hand, based on dynamic event-driven processing of SNNs, the spiking DBN can
process data at a high rate of speed in real time. With using the MNIST dataset
[24], we evaluate the spiking DBN by analyzing the parameters such as thresholds
and firing rates. Besides, adding intrinsic plasticity is efficient to optimize the
network.

This paper is divided into five major sections as follows: Section one of this
paper opens with the background of DBNs and spiking neural networks(SNNs)
and intrinsic plasticity, it points out the research purpose and research methods
of this paper. The basic knowledge and application of DBNs, SNNs and IP are
presented in Sect. 2. In this paper, the experimental data and process are intro-
duced in detail under the major heading of experimental setup. In the following,
the results are given in Sect. 4.

2 Materials and Methods

2.1 Deep Belief Networks

DBNs can be constructed by stacking Restricted Boltzmann Machines(RBMs)
which is a kind of special Markov Random Filed [8]. A RBM consists of two
layers, one is called visible layer which is usually used as input layer and the
other is called hidden layer. There is fully connected between the random units
of the two layers, but no connection within in each single layer (Fig. 1).

For a Bernoulli distribution RBM, we can define the energy function of it as
follows:

E (v,h;θ) = −
m∑

i=1

n∑

j=1

wijvihj −
m∑

i=1

bivi −
n∑

j=1

cjhj , (1)

where θ = (w,b,c). The encoded joint probability can be written as:

p (v,h; θ) =
exp (−E (v,h; θ))

Z
, (2)

190 F. Xue et al.

Fig. 1. Restricted Boltzmann machines. Denoting the states of visible units with vi,
the states of hidden units with hj , the biases of visible units and hidden units with bi
and cj respectively, and wij represents the weights connecting these units.

where Z is a partition function, Z =
∑
v

∑
h

exp(−E(v,h; θ)), so we can get the

conditional probability:

p (hj = 1 |v; θ) = σ

(
m∑

i=1

wijvi + ci

)
(3)

p (vi = 1 |h; θ) = σ

⎛

⎝
n∑

j=1

wijhi + bi

⎞

⎠ (4)

We can get the rule of updating weights of RBM through computing the
gradient of log likelihood function that is log p (v; θ):

Δwij = Edata (vihj) − E model (vihj) (5)

In the above equation, Edata (vihj) is the expectation of observational data in
train dataset. However, its complicated to compute the value of E model (vihj),
so we can approximately calculate the value by using CD algorithm (Fig. 2).

Fig. 2. Process of contrastive divergence. The first step is to initialize v0 using training
data, then to sample h0 ∼ p (h |v0), the next two steps is to sample v1 and h1.

Real-Time Classification Through a Spiking Deep Belief Network 191

2.2 Neuron Model

In order to smoothly transform a DBN model to a spiking DBN model, we
replaced the sigmoid neurons with Siegert neurons [19] which have the mathe-
matically equivalent transfer functions of Leaky Integrate-and-Fire(LIF) neurons
[20] with Poisson-process inputs. And Siegert neurons have the similar dynamics
with LIF neurons.

A Siegert neuron receiving excitatory and inhibitory rates and corresponding
input weights (−→w e,

−→w i). For accurate approximation of LIF rates the input rates
have to be independent Poisson spike trains. And the principle of Siegert neuron
can be compute as [6]:

μQ = τm

∑(−→w e
−→
λ e + −→w i

−→
λ i

)
Υ = Vrest + μQ

σ2
Q = τm

2

∑(−→w 2
e

−→
λ e + −→w 2

i

−→
λ i

)
Γ = σQ

λout = Φ (Υ, Γ)

=
(
tref + τm

Γ

√
π
2

∫ Vth+kγΓ

Vreset+kγΓ
du · exp

[
(u−Υ)
2Γ 2

2] ·
[
1 + erf

(
(u−Υ)

Γ
√
2

)]
du

)−1

(6)
where k =

√
τsyn/τm and γ = |ζ (1/2)| for ζ being the Riemann zeta function.

The leaky integrate-and-fire neuron is probably the best-known example of a
formal spiking neuron model. The standard form is as follows:

τm
du

dt
= −u (t) + RI (t) (7)

Where u (t) is the membrane potential of the single neuron, R is the membrane
resistance and I (t) is the total injected current as the input of the neuron. τm

is the membrane time constant and it is the product of the membrane resis-
tance and the membrane capacity τm = RC. When the membrane reached the
threshold, then the neuron makes a spike and the membrane is reset to a new
value ur.

2.3 Intrinsic Plasticity

As we known, in biological visual neural system, we can reduce the size of our
pupils when the light is too strong so that the amount of light in our pupils is
reduced. On the contrary, when the light is too weak, we can get more light in
our eyes with increasing pupil size so that we can see things clearly. Similarly, it
has been found that single neurons also have the ability to change their intrin-
sic excitability over time to match different synaptic input levels. The intrinsic
excitability of a neuron will increase when its synaptic input is deprived and
decrease when the input is boosted significantly. This long-term learning ability
is referred to as neuronal intrinsic plasticity [4,14,18], which makes the spiking
DBNs has self-adaptive ability to the different inputs.

192 F. Xue et al.

The differential equations of the proposed IP learning rule are presented as
follows:

τip
drC
dt = 1

rC − yI + β (1 − y) I
τip

drR
dt = −rR + y − β (1 − y)

(8)

where rC = 1/C and rR = 1/R, τip denotes the relative integration resolution
of the IF model and the IP learning rule, and the output y of the neuron in
response to the input I is described by a summation of impulsive functions to
denote spikes.

y = ε
∑

f

δ
(
t − t(f)

)
(9)

where δ
(
t − t(f)

)
is a Dirac delta function representing a spike fired at time t(f)

and ε indicates the strength of a spike (Fig. 3).

Fig. 3. Architecture of the DBN for handwritten digit recognition.

3 Experimental Setup

We used MNIST dataset of handwritten digits to train and test the network.
This set consists of two parts, the training set with 60000 gray-scale images of
handwritten digits and the test set with 10000 digits. The spiking BDN includes
four layers: the visual input layer with 784 units, the hidden layer I with 500
units, the hidden layer II with 500 units, and the label layer with 10 units. WI ,
WII , WIII represent the weights of RBMs.

The experiment is divided into recognition mode and generation mode due
to the bi-directional weights. In recognition mode the 784-500-500-10 network
is used to recognize the digits received by the bottom layer. On the contrary,
in generation mode the network architecture is turn to 10-500-500-784, and this
mode provide a way to visualize and reconstruct what has been learned in the
network. Before the above processing, we have to get the weights through training
the DBN with Siegert neurons, which means to use Siegert neurons to calculate
the outputs of the hidden neurons with CD algorithm.

Real-Time Classification Through a Spiking Deep Belief Network 193

As for spiking input, the intensity values of the MNIST images were nor-
malized to values between 0 and 1. And Poisson distributed spike trains were
generated for each image pixel with firing rates proportional to the pixels inten-
sity value [15].

4 Results

This section covers the results of accuracy, cost of time and self-adaptive ability
of the spiking DBN with IP and without IP in recognition mode and generation
mode. Without the condition of adding IP in the spiking DBN, we analyzed the
threshold (Vth) and τm of LIF spiking neuron. Finally, we set threshold to be
1.5 and τm to be 9.

4.1 Recognition Mode

In recognition mode (Vreset = 0, Vth = 1.5, τm = 9), the Visual Input Layer
receives the external Poisson spike trains and activity spreads in down-top direc-
tion through the network. And there are three RBMs in this kind of network
architecture, in the first RBM, we can get the probability model from the energy
model and get the maximum likelihood form the probability model. So the
last question is to solve the maximum likelihood by Gibbs-sampling procedure
(Fig. 4).

Fig. 4. Recognition mode of the spiking DBN. This is a screen capture of the net-
work while recognizing samples of input activations corresponding to digit 1. With
the Poisson spike trains of digit 1 simulating in the Visual Input Layer (left), activity
propagated through the whole network and finally the corresponding Label 1 showed
in the Label Layer (right).

As shown in Table 1, when the initial firing rate is greater than 700 Hz and
the accuracy is trending downward. However, this trend do not happen to the
situation of adding IP and the accuracy goes up and down. On the whole, 94

194 F. Xue et al.

Table 1. Accuracy of recognition mode with IP and without IP

Firing rate (Hz) 100 300 500 700 900 1100 1300 1500 1700 1900

With IP 94.2 94.7 94.4 94.2 94.4 94.4 94.2 94.3 94.2 94.3

Without IP 93.2 93.8 93.8 94.0 93.9 93.8 93.7 93.6 93.6 93.5

Table 2. Elapsed time of recognition mode with IP and without IP

Firing rate (Hz) 100 200 300 400 500 600 700 800 900 1000

With IP (ms) 14.2 3.1 2.7 2.5 2.4 2.5 2.4 2.4 2.3 2.3

Without IP (ms) 28 21.2 12.8 9.0 8.4 7.2 7.0 6.2 5.2 5.3

percent is the demarcation point of the two conditions, so we can get the relation
that the accuracy can be improved by adding IP mechanism in the spiking
DBN. Besides, Table 2 represents the elapsed time of the two cases. Under the
circumstance of adding IP, the network recognizes a single number within an
average of 2.5 ms when the firing rate is more than 200 Hz. On the other hand,
the network will spend more than 5 ms to recognize a single handwritten digits.

4.2 Generation Mode

In this mode, the network architecture is reversed and the Input Layer does not
receive the external input but the Label Layer is stimulated, and activity spreads
in top-down direction through the network shows in Fig. 5.

Fig. 5. Generation mode of spiking DBN.

Figure 5 shows that the neuron corresponding to Label 0 was simulated in the
Label Layer (left) and finally it was reconstructed to sample 0 by the encoded
probability distribution in the weights of the spiking DBN in 10 steps. But it
was reconstructed unsuccessfully in 70 steps without IP in the network. Which

Real-Time Classification Through a Spiking Deep Belief Network 195

means that the IP mechanism changed the inner firing rates of the network.
And under the same input, the number of spike in Hidden Layer II and Hidden
Layer I rises significantly after adding IP so that the network can reconstruct
the object in a short period.

5 Conclusion

In this paper, we proposed an optimized spiking DBN via adding IP to the net-
work, which makes the network has higher accuracy and less time cost comparing
with the results that the accuracy reaches 94.09 percent and time cost of 5.8 ms
for each sample presented by Daniel [16]. For the sake of this IP mechanism, this
spiking DBN has adaptive capability. It will increase the inner firing rates of the
network when the initial firing rates is too small to make the activity spread
precisely and quickly to the Label Layer. On the contrary, when the initial firing
rates is too big to accurately recognize the input sample, the IP mechanism will
decrease the value of inner firing rates to ensure accuracy.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China (Nos. 61304165 and 61473051) and Natural Science Foundation of
Chongqing (No. cstc2016jcyjA0015).

References

1. Mohamed, A.R., Yu, D., Deng, L.: Investigation of full-sequence training of deep
belief networks for speech recognition. In: Conference of the International Speech
Communication Association, Makuhari, Chiba, Japan, September, pp. 2846–2849.
INTERSPEECH (2010)

2. Li, C., Li, Y.: A review on synergistic learning. IEEE Access 4, 119–134 (2016)
3. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep, big, simple

neural nets for handwritten digit recognition. Neural Comput. 22(12), 3207–3220
(2010)

4. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why
does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11(3),
625–660 (2010)

5. Battenberg, E., Wessel, D.: Analyzing drum patterns using conditional deep belief
networks. In: Ismir (2012)

6. Jug, F., Lengler, J., Krautz, C., Steger, A., Lengler, J., Krautz, C.: Spiking net-
works and their rate-based equivalents: does it make sense to use siegert neurons?
Cadmo.ethz.ch

7. Daoudal, G., Debanne, D.: Long-term plasticity of intrinsic excitability: learning
rules and mechanisms. Learn. Mem. 10(6), 456–465 (2003)

8. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A., Jaitly, N., et al.: Deep
neural networks for acoustic modeling in speech recognition. IEEE Sig. Process.
Mag. 29(6), 82–97 (2012)

9. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Comput. 18(7), 1527–1554 (2006)

https://www.cadmo.ethz.ch/index.html

196 F. Xue et al.

10. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with
neural networks. Science 313(5786), 504–507 (2006)

11. Dahl, G.E., Dong, Y., Li, D., Acero, A.: Large vocabulary continuous speech recog-
nition with context-dependent DBN-HMMS. IEEE Int. Conf. Acoust. Speech Sig.
Process. 125, 4688–4691 (2011)

12. Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning - a new frontier in
artificial intelligence research [research frontier]. IEEE Comput. Intell. Mag. 5(4),
13–18 (2010)

13. Triesch, J.: A gradient rule for the plasticity of a neurons intrinsic excitability. Int.
Conf. Artif. Neural Netw.: Biol. Inspirations 3696, 65–70 (2005)

14. Desai, N.S., Rutherford, L.C., Turrigiano, G.G.: Plasticity in the intrinsic excitabil-
ity of cortical pyramidal neurons. Nature Neurosci. 2(6), 515–520 (1999)

15. Wallisch, P., Lusignan, M.E., Benayoun, M.D., Baker, T.I., Dickey, A.S.,
Hatsopoulos, N.G.: MATLAB for neuroscientists: an introduction to scientific com-
puting in MATLAB (2014)

16. O’Connor, P., Neil, D., Liu, S.C., Delbruck, T., Pfeiffer, M.: Real-time classification
and sensor fusion with a spiking deep belief network. Front. Neurosci. 7, 178 (2013)

17. Ponulak, F., Kasiński, A.: Supervised learning in spiking neural networks with
resume: sequence learning, classification, and spike shifting. Neural Comput. 22(2),
467–510 (2010)

18. Kourrich, S., Calu, D.J., Bonci, A.: Intrinsic plasticity: an emerging player in addic-
tion. Nat. Rev. Neurosci. 16(3), 173–184 (2015)

19. Siegert, A.J.F.: On the first passage time probability problem. Phys. Rev. 81(4),
617–623 (1951)

20. Andrew, A.M.: Spiking neuron models: single neurons, populations, plasticity.
Kybernetes 4(7/8), 277C–280 (2003)

21. Zhang, W., Linden, D.J.: The other side of the engram: experience-driven changes
in neuronal intrinsic excitability. Nat. Rev. Neurosci. 4(11), 885–900 (2003)

22. Bengio, Y.: Learning deep architectures for ai. Found. Trends Mach. Learn. 2(1),
1–127 (2009)

23. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

24. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

Hamiltonian-Driven Adaptive Dynamic
Programming Based on Extreme Learning

Machine

Yongliang Yang1(B), Donald Wunsch2, Zhishan Guo3, and Yixin Yin1

1 School of Automation and Electrical Engineering, University of Science and
Technology Beijing, Beijing 100083, People’s Republic of China

y.yang.2016@ieee.org
2 Department of Electrical and Computer Engineering, Missouri University of

Science and Technology, Rolla, MO 65409-0040, USA
3 Department of Computer Science, Missouri University of Science and Technology,

Rolla, MO 65409, USA

Abstract. In this paper, a novel frame work of reinforcement learning
for continuous time dynamical system is presented based on the Hamil-
tonian functional and extreme learning machine. The idea of solution
search in the optimization is introduced to find the optimal control pol-
icy in the optimal control problem. The optimal control search consists of
three steps: evaluation, comparison and improvement of arbitrary admis-
sible policy. The Hamiltonian functional plays an important role in the
above framework, under which only one critic is required in the adap-
tive critic structure. The critic network is implemented by the extreme
learning machine. Finally, simulation study is conducted to verify the
effectiveness of the presented algorithm.

Keywords: Reinforcement learning · Adaptive dynamic programming ·
Extreme learning machine · Hamiltonian functional · Optimization

1 Introduction

The centerpiece of the optimal control problem of dynamical systems falls into
the solution of the Hamilton-Jacobi-Bellman (HJB) equation [3,7]. For the linear
dynamical system, the HJB equation reduces to the Riccati equation, which is
quadratic in the solution [2]. For the nonlinear dynamical system, the HJB equa-
tion is a nonlinear partial differential equation, of which the analytical solution
is generally not available. Therefore, it is necessary to develop efficient method
to solve the HJB equation.

Since the exact solution of the HJB equation is difficult to obtain, there are
many works focus on solving the HJB equation approximately. [6] developed an
iterative approach to solve the Riccati equation for the optimal control problem
of linear dynamical systems. Similarly, [11] solved the HJB equation for nonlin-
ear systems in a successive way. Another kind of method to solve the optimal
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 197–205, 2017.
DOI: 10.1007/978-3-319-59072-1 24

198 Y. Yang et al.

control problem of dynamical systems is called approximate/adaptive dynamic
programming (ADP) [14] or adaptive critic designs [10], which consists of three
networks: the model network, the critic network and the action network. Since
then, ADP has attracted many attentions. [13] developed online implementation
for ADP. [15] analyzed the finite error property of ADP implemented by neural
networks (NNs). [5,9] introduced the idea of off-policy reinforcement learning to
ADP. Also, ADP has been extended to discrete-time systems in [8,17], complex
valued nonlinear systems in [12].

Inspired by [16], the idea of the solution search method in the optimization
problem is introduced to find the optimal control policy for the optimal control
problem. Consider the unconstrained optimization problem min

x
F (x), where X

is the decision space. Denote xk as the current estimate of the optimal decision
x∗ = arg min

x
F (x). In order to get a better successive estimation xk+1 which

satisfies F (xk+1) < F (xk), the condition 〈xk+1 − xk,∇F (xk)〉 < 0 is required.
Similarly, the optimal control can be search in the admissible control set as the
following frame work solution search problem can be split into the following
steps:

– To build a criterion that evaluates an arbitrary admissible control uk(·), i.e.
calculate the corresponding cost J(uk(·));

– To establish a rule that compares two admissible controls;
– To design a successive control uk+1(·) with a better cost J(uk+1(·)), depending

on the previous steps and current admissible control uk(·).
Steps one and three are identical to the policy evaluation and policy improve-
ment in policy iteration. Essentially, the framework above reinterpreted policy
iteration from the perspective of optimization. About the critic network train-
ing, the Hamiltonian-driven ADP is implemented by extreme learning machine
(ELM) [4].

The reminder of the paper is organized as follows. Section 2 gives the prob-
lem formulation. The Hamiltonian-driven framework is discussed in Sect. 3. The
neural network implementation of the Hamiltonian-driven ADP by extreme
learning machine is given in Sect. 4. Simulation studies for linear systems are
presented in Sect. 5. Section 6 gives the conclusions.

2 Problem Formulation

This paper considers the stabilizable time-invariant input affine nonlinear
dynamic system of the form:

ẋ = f (x) + g (x)u (1)

where x ∈ Ω ⊆ Rn is the state vector, u(·) ∈ Rm is the control policy, f(·) ∈ Rn

and f(·) ∈ Rn×m are locally Lipschitz functions with f(0) = 0. x(t0) = x0 is the
initial state and Ω is a compact set in Rn.

Hamiltonian-Driven Adaptive Dynamic Programming Based on ELM 199

The optimal control problem is to find a policy u∗(x) that minimizes the
cost:

J (u (·) ;x0) =
∫ ∞

t0

L (x, u) dt (2)

where the scalar utility function L(x, u) is differentiable and satisfies L(x, u) ≥
0, for ∀x, u. In this paper, L(x, u) is chosen as L(x, u) = Q(x) + ‖u‖R, with
‖u‖R = uT Ru. Q(x) is a positive semidefinite function and R is a symmetric
positive definite matrix. J(u(·);x0) can be viewed as a cost functional of policy
u(·) starting from state x0, which is an evaluation of the given policy.

The following definitions are required for the following discussions.

Definition 1. The control function is called admissible control if it satisfies:

– u(x) is continuous and u(0) = 0;
– u(x) can stabilize the modified nominal system;
– the cost functional (2) is finite for ∀x0 ∈ Ω.

Definition 2. Define the Hamiltonian functional of a given admissible policy
u(·) as

H (u;x, V (x)) = L (x, u) +
〈

∂V

∂x
, ẋ

〉
(3)

where 〈·, ·〉 denotes the inner product between two vectors of the same dimension.

In (3), both state x and the value function V (x) should be viewed as parameters
of the Hamiltonian.

Based on the Hamiltonian, a sufficient condition of optimality for optimal
control problems centers on the HJB equation [3,7]

0 = min
u

H (u;x, V (x)) (4)

Assuming that the minimum on the right-hand side of (4) exists and is unique,
then the optimal control is

u∗ (x) = −1
2
R−1gT ∂V ∗

∂x
(5)

Inserting this result into (4), an equivalent formulation of the HJB equation can
be found

0 = Q (x) +
〈

∂V ∗

∂x
, f (x)

〉
− 1

4

[
∂V ∗

∂x

]T

gR−1gT ∂V ∗

∂x
(6)

Note that the optimal control policy (5) depends on the solution of the HJB
equation (4). However, solving the HJB equation is challenging since it is a non-
linear PDE, quadratic in value function gradient, and does not have an analytical
solution for general nonlinear systems. In the next section, Hamiltonian-driven
ADP with convergence proofs is developed to approximate the solution of HJB
equation iteratively.

200 Y. Yang et al.

3 Hamiltonian-Driven ADP

In this section, a novel framework of ADP to find the optimal control policy of
the optimal control problem in the previous section will be described.

3.1 Evaluation Step

As shown in Sect. 1, the first step in the Hamiltonian-driven ADP is to set an
evaluation for a given admissible policy.

Let r = u + 1
2R−1gT ∂V ∗

∂x , then the Hamiltonian functional can be rewritten
as

H (u;x, V (x)) = Q (x) +
〈

∂V

∂x
, f (x)

〉
+ rT Rr − 1

4

[
∂V

∂x

]T

gR−1gT ∂V ∗

∂x
(7)

Therefore, the Hamiltonian functional is quadratic in the control policy u(·).
From (2), it can be seen that the cost functional depends on the state trajectory.
However, there is no closed-form solution of the general nonlinear dynamic sys-
tem (1), which makes the calculation of the cost functional difficult. Therefore,
an equivalent formulation to the cost functional which does not depend on the
state trajectory is introduced as follows.

Definition 3. The positive definite continuously differentiable scale-valued
function V (x) is called the value function of system (1) if it satisfies

{
H (u;x, V (x)) = 0,∀x ∈ Ω
V (x (∞) ;u (·)) = 0 (8)

The equation in (8) is called generalized HJB (GHJB) equation in [2]. The
value function in (8) does not depend on the state trajectory. The equivalence
between the value function in (8) and the cost functional in (2) is formulated as
the following lemma.

Lemma 1 [2]. Assume that x(t) is the state trajectory of system (1) when an
admissible policy u(x) is applied. Assume further that there exists a positive
definite continuously differentiable function V (x) that satisfies (8). Then the
value function V (x) is equivalent to the cost functional J(u(x)) in (2).

Lemma 1 shows that the Hamiltonian plays an important role in the calculation
of the value function V (x) with respect to an admissible policy u(x), as demon-
strated in Fig. 1. The horizontal and vertical axes represent the set of admissible
policy and the Hamiltonian respectively. Given an admissible, the value function
is the one that make the Hamiltonian identical to 0 for ∀x ∈ Ω.

Hamiltonian-Driven Adaptive Dynamic Programming Based on ELM 201

H u x V x

Fig. 1. The system trajectories of x1(t) (left) and x2(t) (right).

3.2 Comparison Step

In this subsection, the second step of the Hamiltonian-driven ADP is introduced.
In the previous section, the Hamiltonian helps to evaluate a given admissible
policy. Here, in order to compare the performance of two different policies, some
other aspects about the Hamiltonian functional is studied.

Consider the Hamiltonian in (7), then the minimum of the Hamiltonian func-
tional can be written as

h = min
u

H (u;x, V (x))

= Q (x) +
〈

∂V
∂x , ẋ

〉 − 1
4

[
∂V
∂x

]T
gR−1gT ∂V

∂x

(9)

and the control that attains the minimum in (9) is

u = min
v

H (v;x, V (x)) = −1
2
R−1gT ∂V

∂x
(10)

Based on (9) and (10), the second step of the Hamiltonian-driven ADP can be
described as the following lemma.

Lemma 2 [16]. Let ui(x) be two different admissible policies, with correspond-
ing value functions Vi(x). Denote the minimum of the Hamiltonian as hi =
min

u
H (u;x, Vi (x)) , i = 1, 2, ūi = − 1

2R−1gT ∂Vi

∂x , i = 1, 2 and di = ‖ūi − ui‖ , i =
1, 2. Then the following conditions hold:

(1) hi ≤ 0, i = 1, 2;
(2) h1 ≤ h2 → V1 (x) ≥ V2 (x) ,∀x ∈ Ω;
(3) d1 ≥ d2 → V1 (x) ≥ V2 (x) ,∀x ∈ Ω;

In Lemma 2, the minimum of the Hamiltonian and the control policy that
achieves the minimum is crucial to the comparison problem. Similar to Lemma 1,
Lemma 2 can be illustrated in Fig. 2, where the Hamiltonian is identical to 0
along the state trajectory, as shown by the intercept of the Hamiltonian curve
with the horizontal axis. We then investigate the properties about the minimum
of Hamiltonian to compare the performance.

202 Y. Yang et al.

Fig. 2. Admissible policy comparison. Fig. 3. Improvement of an admissible
policy.

3.3 Improvement Step

In the previous section, Lemma 2 only describes the comparison between two
admissible policies. However, it does not provide the explicit expression of the
improved policy when given an admissible policy. In this section, the third step
of the Hamiltonian ADP is discussed.

When given an admissible policy, the improved policy can be expressed by
the following Lemma.

Lemma 3 [16]. Suppose the admissible policy sequence {ui(·)} and the corre-
sponding value function sequence {Vi(·)} satisfies the GHJB equation in (8). Sup-
pose further that the policy sequence is generated by the following relationship:

ui+1 = −1
2
R−1gT ∂Vi (x)

∂x
(11)

then: (i) the value function sequence {Vi(·)} is non-increasing; (ii) both the value
function and the policy sequences {ui(·)} converge to the solution of the HJB
equation.

Note that Lemma 3 is a special case of Lemma 2. The improved policy is the
policy that attains the minimum of previous Hamiltonian functional, as shown
in Fig. 3.

4 Hamiltonian ADP Structure

In this section, the implementation details and network structure of the
Hamiltonian-driven ADP is illustrated.

As shown in Fig. 4, there is only one critic in the Hamiltonian-driven ADP.
The critic outputs the value function gradient. Since the Hamiltonian of a given

Hamiltonian-Driven Adaptive Dynamic Programming Based on ELM 203

x t

u t

V x

x

r x u

H u x V x

Fig. 4. Hamiltonian-driven ADP structure.

policy is required to be identical to 0, the norm of the Hamiltonian is the objec-
tive to be minimized for the critic network training. According to Lemma3,
the optimal control policy can be obtained by successive minimization of the
Hamiltonian. Therefore, the Hamiltonian is the target to be minimized for the
action network training.

In contrast to the adaptive critic structure for the optimal control of discrete-
time dynamical system, there is only one critic network. Therefore, the critic
network can be implemented by the ELM due to its fast training speed. In [1],
the critic is implemented by the neural network with polynomial basis. However,
the order of the value function and the value gradient is usually unknown for
general nonlinear systems with admissible policy. Due to the uniform approxima-
tion ability of ELM with random neurons has [4], the Hamiltonian-driven ADP
with critic network implemented by ELM can approximate the value gradient
in the probabilistic meaning. This is the motivation to introduce ELM into the
Hamiltonian-driven ADP.

5 Simulation

In this section, the presented Hamiltonian-driven ADP with critic network imple-
mented by the ELM is applied to the linear quadratic regulator problem. Con-
sider the linear system

[
ẋ1

ẋ2

]
=

[
0.5 1.5
2 −2

] [
x1

x2

]
+

[
4
1

]
u (12)

with the utility function r(x, u) = x2
1 + 2x2

2 + 0.05u2. The initial state is
x0 =

[−1 2
]T . The initial policy u = −2x1+x2 is obtained by the pole placement

technique. Since the value function of the linear system is quadratic, the opti-
mum condition results in the Riccati equation [7]. Solving the Riccati equation,

204 Y. Yang et al.

the optimal value function V ∗ (x) = xT

[
0.0623 −0.0337

−0.0337 0.3141

]
x and the optimal

control u∗ (x) =
[−4.3069 −3.5852

]
can be obtained.

Using the presented Hamiltonian-driven ADP with random neurons in the
critic network, the system trajectories in each iteration is shown in Fig. 5. It can
be seen that the approximated optimal control result is very close to the optimal
control.

Fig. 5. The system trajectories of x1(t) (left) and x2(t) (right).

6 Conclusion

A novel frame work of ADP based on the Hamiltonian for continuous time
dynamical system is presented based on the Hamiltonian functional and extreme
learning machine. The Hamiltonian based framework can be another interpre-
tation about ADP from the view of optimization. The Hamiltonian-driven ADP
consists of three steps: evaluation, comparison and improvement of the admis-
sible policy. The Hamiltonian functional plays an important role in the above
framework. With the Hamiltonian functional, only one critic is needed in the
adaptive critic structure. The critic network is implemented by the fast and effi-
cient ELM. A simulation is conducted to verify the effectiveness of the presented
algorithm at the end.

Acknowledgments. This work was supported in part by the Mary K. Finley Missouri
Endowment, the Missouri S&T Intelligent Systems Center, the National Science Foun-
dation, the National Natural Science Foundation of China (NSFC Grant No. 61333002)
and the China Scholarship Council (CSC No. 201406460057).

Hamiltonian-Driven Adaptive Dynamic Programming Based on ELM 205

References

1. Abu-Khalaf, M., Lewis, F.L.: Nearly optimal control laws for nonlinear systems
with saturating actuators using a neural network HJB approach. Automatica
41(5), 779–791 (2005)

2. Beard, R.W., Saridis, G.N., Wen, J.T.: Galerkin approximations of the generalized
Hamilton-Jacobi-Bellman equation. Automatica 33(12), 2159–2177 (1997)

3. Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific,
Belmont (1995)

4. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and appli-
cations. Neurocomputing 70(1), 489–501 (2006)

5. Jiang, Y., Jiang, Z.P.: Computational adaptive optimal control for continuous-time
linear systems with completely unknown dynamics. Automatica 48(10), 2699–2704
(2012)

6. Kleinman, D.: On an iterative technique for Riccati equation computations. IEEE
Trans. Autom. Control 13(1), 114–115 (1968)

7. Lewis, F.L., Syrmos, V.L.: Optimal Control. Wiley, New York (1995)
8. Liu, D., Wei, Q.: Policy iteration adaptive dynamic programming algorithm for

discrete-time nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 25(3),
621–634 (2014)

9. Modares, H., Lewis, F.L., Jiang, Z.P.: H∞ tracking control of completely unknown
continuous-time systems via off-policy reinforcement learning. IEEE Trans. Neural
Netw. Learn. Syst. 26(10), 2550–2562 (2015)

10. Prokhorov, D.V., Wunsch, D.C.: Adaptive critic designs. IEEE Trans. Neural Netw.
8(5), 997–1007 (1997)

11. Saridis, G.N., Lee, C.G.: An approximation theory of optimal control for trainable
manipulators. IEEE Trans. Syst. Man Cybern. 9(3), 152–159 (1979)

12. Song, R., Xiao, W., Zhang, H., Sun, C.: Adaptive dynamic programming for a
class of complex-valued nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst.
25(9), 1733–1739 (2014)

13. Vamvoudakis, K.G., Lewis, F.L.: Online actor-critic algorithm to solve the
continuous-time infinite horizon optimal control problem. Automatica 46(5), 878–
888 (2010)

14. Wang, F.Y., Zhang, H., Liu, D.: Adaptive dynamic programming: an introduction.
IEEE Comput. Intell. Mag. 4(2), 39–47 (2009)

15. Wei, Q., Wang, F.Y., Liu, D., Yang, X.: Finite-approximation-error-based discrete-
time iterative adaptive dynamic programming. IEEE Trans. Cybern. 44(12), 2820–
2833 (2014)

16. Yang, Y., Wunsch, D., Yin, Y.: Hamiltonian-driven adaptive dynamic program-
ming for continuous nonlinear dynamical systems. IEEE Trans. Neural Netw.
Learn. Syst. (2017, to be published)

17. Zhang, H., Qin, C., Jiang, B., Luo, Y.: Online adaptive policy learning algorithm
for H∞ state feedback control of unknown affine nonlinear discrete-time systems.
IEEE Trans. Cybern. 44(12), 2706–2718 (2014)

An Enhanced K-Nearest Neighbor
Classification Method Based on Maximal

Coherence and Validity Ratings

Nian Zhang1(&), Jiang Xiong2, Jing Zhong2, Lara Thompson3,
and Hong Ying2

1 Department of Electrical and Computer Engineering,
University of the District of Columbia, Washington, D.C. 20008, USA

nzhang@udc.edu
2 College of Computer Science and Engineering,

Chongqing Three Gorges University, Chongqing 404000, China
{xjcq123,zhongandy}@sohu.com, yinghok@163.com

3 Department of Mechanical Engineering,
University of the District of Columbia, Washington, D.C. 20008, USA

lara.thompson@udc.edu

Abstract. Traditional k-nearest neighbor methods couldn’t be able to correctly
classify objects when their k nearest neighbors are dominated by other classes.
This paper formulates a two-class classification problem, and applies a modified
k-nearest neighbors (KNN) classifier algorithm based on maximal coherence,
validity ratings, and k-fold cross validation to classify the test samples. We build
a validity score for the pairs of sample and their surroundings according to their
labels. The k nearest neighbors (including the unknown test object) of each
sample in the training set as well as the unknown test object itself will be
determined. The unknown test object will be tentatively assigned to a class
membership. Then we use the validity scores to quantify the degree to which a
pre-determined group of samples resemble their k nearest neighbors. A classifier
is designed which take into account the coherence and validity ratings. A nu-
merical example demonstrates the effectiveness of the algorithm in detail. The
enhanced KNN method is compared with the conventional KNN and the
modified KNN method on both real world wine data and photo-thermal infrared
imaging spectroscopy (PT-IRIS) data for up to 20 different k values. Classifi-
cation accuracy of KNN method and our method in terms of various combi-
nations of k-value and k-fold cross validation are compared. The experimental
results show that the proposed enhanced KNN method outperforms the con-
ventional KNN and the modified KNN method on both real world wine data and
PT-IRIS data. In addition, the classification accuracy of both the conventional
KNN and our method increase drastically when k = 5. The average classifica-
tion accuracy of our method on the PT-IRIS data featuring small sample size and
high overlap is 97.87%.

Keywords: K-nearest neighbors (KNN) classification � Modified k-nearest
neighbors (MKNN) � Supervised classification � K-fold cross validation

© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 206–214, 2017.
DOI: 10.1007/978-3-319-59072-1_25

1 Introduction

In security, identification of explosive materials on relevant substrates has become a
heightened priority for homeland security and counter-terrorism applications in recent
years. In addition, the detection of explosives is also used in many peaceful applica-
tions. For example, it can be relevant in environmental areas to monitor the quality of
soil, water, and groundwater suspected of being contaminated by explosives and their
degradation products, in order to prevent poisoning of populations of humans and
animals [1]. However the ability to detect small amounts of analytes across large
relevant substrates is complicated by the optical and thermal interactions between
analyte and substrate [2]. The primary challenge is to distinguish explosives from the
substrates, such as glass or clothing. While glass or clothing is chemically distinct from
explosives, they nonetheless have overlapping infrared absorption/emission features
with explosives. Further complications are the facts that polymeric materials tend to
absorb and emit throughout the IR. Therefore, the development of analytical tools that
can identify explosive remains is of tremendous importance in the forensic field for
crime-scene reconstruction [3].

Fix and Hodges proposed the k-nearest neighbors algorithm (i.e. KNN) in 1951
where the classification rules do not depend on the underlying distributions [4]. The
non-parametric methods meet the needs when the data distributions of are either
unknown or unavailable in many real world applications. The inputs contain k closest
training data, while the output of the classifier is a class membership. A test sample is
assigned to the same class as the majority of the labels of its k nearest neighbors. Various
modified KNN have been proposed to improve the accuracy rate of KNN. Wang et al.
presented an adaptive distance measure to significantly improve the performance of the
KNN rules [5]. Tang and He proposed an extended k-NN method (i.e. ENN), which not
only finds those who are the nearest neighbors of the test sample, but also those who
identify the test sample to be their nearest neighbor [6]. Parvin et al. generated some
kinds of similarities among the training data, and added this additional information to the
weight of each neighbor [7]. Taneja et al. proposed a fuzzy logic based KNN algorithm
where fuzzy clusters are obtained at pre-processing step while the class membership of
the training data is computed in reference with the centroid of the clusters [8].

Although these methods demonstrated that the classification accuracy performs
better than the conventional KNN, their performance is unknown when the sample
sizes are small or the data are highly overlapped. In addition, to date, there have been
insignificant efforts to analyze the photo-thermal infrared (IR) imaging spectroscopy
(PT-IRIS) data using computational intelligence and data mining techniques [9].
Therefore, it’s important to develop an advanced KNN method to further improve the
accuracy and compare with the previous variations. We propose an enhanced KNN
variation method by exploring the performance on not only the same datasets (i.e. wine
dataset) used by other researchers for the purpose of comparison, but also the PT-IRIS
datasets, which has small sample size versus much larger feature size [10]. Unlike the
conventional KNN method where only the nearest neighbors are used to determine the
class of the test object, we also include the test object to the training dataset to
maximize the intra-class coherence and then make a classification decision.

An Enhanced KNN Classification Method Based on Maximal Coherence 207

The remaining of the paper is organized as follows. In Sect. 2, a two-class clas-
sification problem is formulated. The enhanced k-nearest neighbor method is described.
In Sect. 3, we provide a numerical example on the two-class classification problem and
derive the output according to our method. In Sect. 4, experimental results are pre-
sented. In Sect. 5, the conclusions are provided.

2 The Enhanced K-Nearest Neighbor Method

Unlike the conventional KNN method, the idea of the enhanced KNN method is to find
out the k nearest neighbors (including the unknown test object) of each sample in the
training dataset, as well as the unknown test object. Then we use a concept of validity
rating to quantify the degree to which a pre-determined group of samples resemble their
k nearest neighbors. Finally, a classifier will assign the unknown test object to a class
membership based on the validity ratings.

In a highly overlapped dataset, it is extremely difficult to classify the data with high
accuracy. Part of the reasons is that data belonging to different classes mix with each
other or a single data is surrounded by large groups of data with different classes.
Figure 1 shows the above situations which would pose several great challenges for
classification. First of all, not only X1 is overlapped with Y2, but also X3 is overlapped
with Y3; second, a green unknown test object, P to be classified is closest to X1 (Class
1), but it is closer to Y1 and Y2 (Class 2) on the top left than X2 and X3 (Class 1) on the
bottom right.

Let T ¼ X1;X2; . . .;Xm;Y1;Y2; . . .;Ynf g be the training data, where
X1;X2; . . .;Xmf g has a given class label, C1, and {Y1, Y2, …, Yn} has a given class

label, C2. P is an unknown test candidate data that we want to classify.
A concept of validity rating is used to measure how similar a training data looks to

its k nearest neighbors. The validity of a training data is computed based on the label of

Y1

X2

X1

X3

Y3

X4

Y4

Y2

Class 1
Class 2
Candidate

P

Fig. 1. A two-class classification example. Not only X1 is overlapped with Y2, but also X3 is
overlapped with Y3; second, a green unknown test object, P to be classified is closest to X1
(Class 1), but it is closer to Y1 and Y2 (Class 2) on the top left than X2 and X3 (Class 1) on the
bottom right. (Color figure online)

208 N. Zhang et al.

the data and the labels of its k nearest neighbors, as defined in (1). The validity for data
x, V(x) counts the number of nearest neighbors that have the same labels as x.

VðxÞ ¼ 1
k

Xk
i¼1

SðlabelðxÞ; labelðNNiðx;TÞÞÞ ð1Þ

Where k is a pre-defined number of nearest neighbors. label(x) is the class mem-
bership of data x. labelðNNiðx; TÞÞ is the class membership of the ith nearest neighbor
of x. NNi(x, T) stands for the ith nearest neighbor of x inside T. S is a function
representing the similarity between x and its ith nearest neighbor. The function S is
defined in (2).

Sði; jÞ ¼ 1 i ¼ j
0 i 6¼ j

�
ð2Þ

After adding a validity attribute to the training samples, we are able to obtain a score
for each training sample based on the labels of the object and its surroundings. Then the
k nearest neighbors (including the unknown test object itself) of each sample in the
training set as well as the unknown test object will be determined. The unknown test
object will be tentatively assigned to a class membership based on some criteria, and
form a group. Then we calculate the validity ratings to quantify the degree to which the
aforementioned group of samples resembles their k nearest neighbors, as shown in (3).

M j
i ðxÞ ¼

1
Nþ k

X
x2C

Xk
i¼1

SðlabelðxÞ; labelðNNiðx;TÞÞÞ ð3Þ

Where N is the size of samples determined by criteria, C. k is a pre-defined number
of nearest neighbors. The criteria, C are defined in (4):

C ¼ Samples in Classif g [fPg; when i ¼ j
Samples in Classif g; when i 6¼ j

�
ð4Þ

P is the unknown test sample. label(x) is the class membership of data
x. labelðNNiðx; TÞÞ is the class membership of the ith nearest neighbor of x. NNi(x, T)
stands for the ith nearest neighbor of x inside T. S is a function representing the
similarity between x and its ith nearest neighbor. The function S is defined in (2).

A classifier will take into account the coherence and validity ratings, and assign the
class label associated to the maximum coherence to the unknown test sample, as
defined in (5).

Classifier ¼ argmax
j21;2

X2
i¼1

M j
i ðxÞ ð5Þ

An Enhanced KNN Classification Method Based on Maximal Coherence 209

3 Numerical Example

In this section, we provide a numerical example corresponding to the enhanced KNN
method described in Sect. 2 and demonstrate the effectiveness of the method.

First we find out the k nearest neighbors (including the unknown test object) of each
sample in the training dataset, as well as the unknown test object, as shown in (6). In
the training dataset T, {X1, X2, …, Xm} has a given class label, C1, and {Y1, Y2, …,
Yn} has a given class label, C2. P is an unknown test object that we want to classify.

NN1;2;3ðX1Þ ¼ ½Y2;P; Y1� NN1;2;3ðY1Þ ¼ ½Y2;X1;P�
NN1;2;3ðX2Þ ¼ ½P;X3; Y3� NN1;2;3ðY2Þ ¼ ½X1;P; Y1�
NN1;2;3ðX3Þ ¼ ½Y3;X4; Y4� NN1;2;3ðY3Þ ¼ ½X3;X4; Y4�
NN1;2;3ðX4Þ ¼ ½Y4;X3; Y3� NN1;2;3ðY4Þ ¼ ½X4;X3; Y3�
NN1;2;3ðPÞ ¼ ½X1; Y2;X2�

ð6Þ

Then the unknown test object will be tentatively assigned to a class membership based
on criteria C, and then get involved in the intra-class correlation computation. First we
assume P 2 C1, and then solve for M1

1
and M1

2
, respectively.

Solve for M1
1
: Given P 2 C1, i = 1, j = 1, NNiðx; TÞ ¼ C1 [C2 [Pf g, C ¼ C1 [P ¼

X1;X2;X3;X4;Pf g, N ¼ 5, k = 3.

According to (3), M j
i ðxÞ ¼ 1

Nþ k

P
x2C

Pk
i¼1

SðlabelðxÞ; labelðNNiðx;TÞÞÞ. The validity

ratings can be calculated using (1), (2), and (6). Thus,

M1
1
¼ 1

5þ 3

X
x2ðX1;X2;X3;X4;PÞ

X3
i¼1

SðlabelðxÞ; labelðNNiðx;TÞÞÞ

¼ 1
8
�

S1ðX1; Y2Þþ S2ðX1;PÞþ S3ðX1; Y1Þþ
S1ðX2;PÞþ S2ðX2;X3Þþ S3ðX2; Y3Þþ
S1ðX3; Y3Þþ S2ðX3;X4Þþ S3ðX3; Y4Þþ
S1ðX4; Y4Þþ S2ðX4;X3Þþ S3ðX4; Y3Þþ

S1ðP;X1Þþ S2ðP; Y2Þþ S3ðP;X2Þ

2
6666664

3
7777775
¼ 0:875

Similarly, M1
2
¼ 0:571.

Next we assume P 2 C2, and then solve for M2
1
and M2

2
, respectively.

Solve for M2
1
: Given P 2 C2, i = 1, j = 2, NNiðx; TÞ ¼ C1 [C2 [Pf g, C ¼ C1 ¼

X1;X2;X3;X4f g, N ¼ 4, k = 3.

210 N. Zhang et al.

M2
1
¼ 1

4þ 3

X
x2ðX1;X2;X3;X4Þ

X3
i¼1

SðlabelðxÞ; labelðNNiðx;TÞÞÞ

¼ 1
7

S1ðX1; Y2Þþ S2ðX1;PÞþ S3ðX1; Y1Þþ
S1ðX2;PÞþ S2ðX2;X3Þþ S3ðX2; Y3Þþ
S1ðX3; Y3Þþ S2ðX3;X4Þþ S3ðX3; Y4Þþ
S1ðX4; Y4Þþ S2ðX4;X3Þþ S3ðX4;Y3Þ

2
6664

3
7775 ¼ 0:429

Similarly, M2
2
¼ 0:875.

Classifier ¼ argmax
j21;2

X2
i¼1

M j
i ðxÞ

¼ argmax M1
1 þM1

2;M
2
1 þM2

2

� � ¼ arg max 0:875þ 0:571; 0:429þ 0:875f g
¼ 1:446; 1:304f g

Therefore, we assign P to Class 1.

4 Experimental Results

The photo-thermal infrared imaging spectroscopy (PT-IRIS) data set [11] is ideal to test
the proposed enhanced ENN method, as it features small sample size and much larger
feature size (i.e. 428 vs. 728). Each data has 728 features representing the temperature
increase for the laser pulse [12]. The labels for all explosive materials are +1, while the
non-explosives are set to −1.

First we compare our algorithm to the conventional KNN and the modified KNN
[7] on the wine data. We increase the k value from 3 to 7, and observe the classification
accuracy of the three algorithms. The result is shown in Fig. 2. The left blue column

Fig. 2. Comparison of the conventional KNN method, modified KNN method, and our
algorithm on the wine data in terms of different k values. (Color figure online)

An Enhanced KNN Classification Method Based on Maximal Coherence 211

represents the conventional KNN, the middle green column represents the MKNN, and
the right yellow column represents our method. The result shows that our algorithm
outperforms both of the conventional KNN and the modified KNN.

We then applied the proposed method on the PT-IRIS data. We compare the
classification accuracy of our algorithm to the ENN method. The k value increases
from 1 to 20. The result is shown in Fig. 3. The red curve represents the conventional
KNN, and the blue curve represents our method. It shows that our method has higher
classification accuracy than the conventional KNN except when k = 3. In addition, the
classification accuracy of both methods increase drastically when k = 5. At k = 5, the
classification accuracy of our method is 97.87%.

Moreover, when k is greater than 5, our method keeps high classification accuracy
with small scale fluctuation. However, the KNN method dropped twice at k = 6 and
k = 11, respectively. Furthermore, both methods have shown a declining trend when
k = 20.

We further study the classification performance of the proposed method on the
PT-IRIS data in terms of different combination of k values and k-fold values. We use
k-fold cross-validation method instead of using the conventional validation method
because the dataset has small sample size which results in insufficient data to be
partitioned into separate training, validation, and testing sets without losing significant
modeling competence. We also compare the result with the conventional KNN method.
The classification accuracy of KNN and our algorithm are shown in Figs. 4 and 5,
respectively. X-axis represents the number of k value, y-axis represents the number of
folds, and the z-axis represents the classification accuracy. Each ribbon corresponds to
the classification accuracy at a specific fold value. There are totally 19 folds (i.e. 2nd–
20th fold), so there are 19 ribbons. In addition, on each ribbon, we can observe the
classification accuracy on various k values (i.e. k = 1 to 20). From Fig. 4, we can
observe that the KNN method has the highest classification accuracy when k = 11 for
all folds. From Fig. 5, we find that when k = 5 and fold = 17, our method reaches the
peak of classification accuracy and remain at peak values when k increases.

Fig. 3. Comparison of KNN method and our algorithm on various k values from 1 to 20. (Color
figure online)

212 N. Zhang et al.

5 Conclusions

This paper formulates a two-class classification problem, and proposes an enhanced
k-nearest neighbors (KNN) method based on maximal coherence, validity ratings, and
k-fold cross validation. Unlike the conventional KNN method, our method finds out the
k nearest neighbors (including the unknown test object) of each sample in the training
dataset, as well as the unknown test object. Then we use a concept of validity rating to
quantify the degree to which a pre-determined group of samples resemble their k
nearest neighbors. Finally, a classifier will be designed to assign the unknown test
object to a class membership based on the coherence and the validity ratings. We
compare the results of our method to the conventional KNN and the modified KNN
method on different combination of k values and fold values. The experimental results
demonstrate that our method has significantly higher classification accuracy than the
conventional KNN and the modified KNN method on both wine dataset and PT-IRIS
dataset.

Acknowledgment. This work was supported by the National Science Foundation (NSF)
#1505509, #1533479, #1654474, and USGS Grant #2016DC181B.

References

1. Gheyas, I.A., Smith, L.S.: Feature subset selection in large dimensionality domains. Pattern
Recogn. 43(1), 5–13 (2010)

2. Kendziora, C.A., Furstenberg, R., Papantonakis, M.: Infrared photothermal imaging of trace
explosives on relevant substrates. In: Proceedings of SPIE, vol. 8709 (2013)

3. Zhang, N., Thompson, L.A.: An intelligent clustering algorithm for high dimensional and
highly overlapped photo-thermal infrared imaging data. In: Fall 2016 ASEE Mid-Atlantic
Regional Conference, Hempstead, New York, 21–22 October 2016

Fig. 4. Classification accuracy of KNN
method in terms of various combination of k
values and fold values.

Fig. 5. Classification accuracy of our method
in terms of various combination of k values and
fold values.

An Enhanced KNN Classification Method Based on Maximal Coherence 213

4. Fix, E., Hodges Jr., J.L.: Discriminatory analysis. Nonparametric discrimination: consistency
properties. Int. Stat. Rev. 57(3), 238–247 (1989)

5. Wang, J., Neskovic, P., Coope, L.N.: Improving nearest neighbor rule with a simple adaptive
distance measure. Pattern Recogn. Lett. 28, 207–213 (2007)

6. Tang, B., He, H.: ENN: extended nearest neighbor method for pattern recognition. IEEE
Comput. Intell. Mag. 10(3), 52–60 (2015)

7. Parvin, H., Alizadeh, H., Minaei-Bidgoli, B.: MKNN: modified K-nearest neighbor. In:
Proceedings of the World Congress on Engineering and Computer Science (WCECS), San
Francisco, USA (2008)

8. Taneja, S., Gupta, C., Aggarwal, S., Jindal, V.: MFZ-KNN – a modified fuzzy based K
nearest neighbor algorithm. In: 2015 International Conference on Cognitive Computing and
Information Processing (CCIP), Noida, pp. 1–5 (2015)

9. Ramirez Rochac, J.F., Zhang, N., Behera, P.: Design of adaptive feature extraction algorithm
based on fuzzy classifier in hyperspectral imagery classification for big data analysis. In: The
12th World Congress on Intelligent Control and Automation (WCICA 2016), Guilin, China
(2016)

10. Zhang, N.: Cost-sensitive spectral clustering for photo-thermal infrared imaging data. In:
2016 Sixth International Conference on Information Science and Technology (ICIST),
Dalian, China (2016)

11. Ramirez Rochac, J.F., Zhang, N.: Reference clusters based feature extraction approach for
mixed spectral signatures with dimensionality disparity. In: 10th Annual IEEE International
Systems Conference (IEEE SysCon 2016), Orlando, Florida (2016)

12. Ramirez Rochac, J.F., Zhang, N.: Feature extraction in hyperspectral imaging using adaptive
feature selection approach. In: The Eighth International Conference on Advanced
Computational Intelligence (ICACI2016), Chiang Mai, Thailand, pp. 36–40 (2016)

214 N. Zhang et al.

Credit Risk Assessment Based on Flexible
Neural Tree Model

Yishen Zhang1,2, Dong Wang1,2(&), Yuehui Chen1,2(&),
Yaou Zhao1,2, Peng Shao3, and Qingfang Meng1,2

1 School of Information Science and Engineering,
University of Jinan, Jinan, People’s Republic of China

{ise_wangd,yhchen}@ujn.edu.cn
2 Shandong Provincial Key Laboratory of Network Based Intelligent

Computing, Jinan 250022, People’s Republic of China
3 School of Mathematics, Dalian University of Technology,

Dalian, People’s Republic of China

Abstract. In recent years, as China’s credit market continues to expand, a large
number of P2P (person-to-person borrow or lend money in Internet Finance)
platforms were born and developed. Most of the P2P platforms in China use data
mining methods to evaluate the credit risk of loan applicants. Artificial neural
network (ANN) is an emerging data mining tool and has good classification
ability in many application fields. This paper presents a model of credit risk
assessment based on flexible neural tree (FNT), which can reduce the overdue
rate and save the analysis time. Overdue and non-overdue sample data are
provided by the Jinan Hengxin Micro-Investment Advisory Co., Ltd., and used
to build the model. Experiments show that the proposed model is more accurate
and has less time cost for the overdue classification of credit risk assessment.

Keywords: Artificial neural network � Credit risk assessment � Flexible
neural tree

1 Introduction

Credit loan is an unsecured loan model. In recent years, the credit market has been
expanding rapidly in China. On one hand, the rapid development of China’s economy has
shortened the cycle of capital turnover. On the other hand, because of the improvement of
Chinese national consumption capacity, businesses increasingly need high demand for
funds, so a large number of P2P Internet inclusive financial platforms came into being. As
no complete credit evaluation system like banks in China, P2P platform has small contain
ability to non-collateral customers, it obtains better risk prediction results only through
the establishment of the corresponding credit risk assessment model. So a large number
of platforms are exploring their ownmethods of credit risk assessment, most of which use
data mining approach to try to collect and understand the customer information to better
grasp the authenticity and validity of customer information; to evaluation financial sit-
uation of customers more reasonable; to predict the business conditions, repayment
intention and ability of borrows more accurately.

© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 215–222, 2017.
DOI: 10.1007/978-3-319-59072-1_26

The establishment of a good credit risk evaluation model is the biggest challenge to
the development of P2P platform and credit market. If the model control is too strict to
the customer, the platform will lose some high-quality customers and make it passive in
the industry competition. On the contrary, the overdue rate of the platform will con-
tinued to rise, which makes financial managers difficult to be responsible and lose
credibility. Therefore, it is important to establish the credit risk evaluation model to
prevent bad debts happening, to promote the speed of capital flow and to maintain the
security and stability of capital. In the field of credit risk assessment, artificial neural
networks, genetic programming, genetic algorithms, support vector machines, logistic
regression and some hybrid models have achieved gratifying results in terms of per-
formance and precision.

In the past few years, many excellent algorithms and research methods have been
tested on the basis of customer information data in the field of credit risk assessment.
Khashman used artificial neural network algorithm in Germany customer dataset and
achieved the accuracy rate of 83.6% [1]. Bekhet and Eletter applied RBF network
algorithm to the Jordanian commercial bank data set, and the test sets had accuracy rate
of 86.5% [2]. Wang et al. uses the improved BP neural network algorithm and the
accuracy rate is 86% [3]. The traditional Artificial Neural Network has the stationary
structure, but Flexible neural tree (FNT) has the special structures which called flexible
tree structures, with this characteristic, FNT model can get better property from the
learning.

In this paper, a new method based on FNT model was proposed for classification of
customer information, and the results in 10-fold cross validation shows our method
achieved better performance than the other state-of-arts.

2 Data Collection and Variable Definition

Customer information data can be described from many dimensions. In this paper, we
randomly took 300 samples of overdue customers and 300 Negative samples of
non-overdue customers all of which were from 2,000 customers of Jinan Hengxin
Micro-Investment Advisory Co., Ltd. between 2014 and 2016. In this study, the author
chooses 13 dimensions to describe and consider the customer information. The stan-
dard of selected dimensions are: (1) do not contain the customer’s identity information;
(2) exclude the subjective information from the point of view of the actual human audit,
such as the use of loans, business models, profits and other objective information which
can only be verified by a third party as difficulties to verify and census them.

According to these principles, the selected dimensions can maximize the provided
data by customer which objectively and difficulty to forge. The accurate classification
based on actual data which can verify and excluding the subjective description. Table 1
shows the variable, values, and definitions of 13 selected dimensions of the study, and
the Table 2 shows the examples of datasets.

The 600 samples are based on the statistics in Table 1, and then all the data will
processed as “Max_Min standardization” for the next step, and get ready to input to the
FNT model, the normalized samples are shown in Table 3. The normalization rule is
shown in Eq. (1).

216 Y. Zhang et al.

P
0
ij ¼

Pij � mi

Mi � mi
ð1Þ

where, P
0
ij is the normalized customer data. Pij is the original customer data. Mi is the

maximum value of the dimension i. mi is the minimum value of the dimension i.

Table 1. Proposed variables for building dataset

Variable Value Variable definition

Gender, G 0, 1 0: female
1: male

Degree of education, D 1 to 4 1: graduated from junior high school
2: graduated from high school
3: graduated from junior college
4: get bachelor degree or above

Age, A Actual
value

The number of years the customer has experienced
since birth

Marital status, M 0 to 2 0: unmarried
1: married
2: divorce

Account properties, AP 0, 1 0: local registered permanent residence
1: foreign registered permanent residence

The number of years
experienced by the company,
YC

Actual
value

The number of years in which the customer’s work
unit has been established

Industry categories, IC 0 to 5 Industry category of customer
Job level within the company,
JC

0 to 4 0: general staff
1: junior management staff
2: middle management staff
3: senior management staff
4: the founder

Total income, TI Actual
value

Customer’s itemized of the savings card which
printed by bank, and the difference between total
amount and total expenditure in recently six months

Total debt, TD Actual
value

The sum of outstanding loan balance and average
usage limit in recently six months shown in the
summary of liability information within customer
credit report

Housing ownership situation,
HS

0 to 2 0: no real estate
1: full purchase
2: mortgage

Vehicle ownership situation,
VS

0 to 2 0: no car production
1: full purchase
2: mortgage

Overdue numbers shown in
credit reporting, OR

Actual
value

The sum of the number of overdue times in the credit
transaction details within customer credit report

Credit Risk Assessment Based on Flexible Neural Tree Model 217

3 Classification Method

3.1 Flexible Neural Tree

Flexible neural tree (FNT) is a special artificial neural network with flexible tree
structures. It is proposed by Chen et al. [4, 5] and relatively easy for this model to reach
near-optimal structure by using optimization algorithms. The FNT model consists of
tree-structural encoding method and specific instruction set, it is also generated by
using function set F and terminal instruction set T, described as follows.

S ¼ F [T ¼ þ 2; þ 3 � � � þ Nf g [x1 � � � xnf g ð2Þ

where þ iði ¼ 1; 2 � � �NÞ denotes non-leaf nodes with i arguments, the x1; x2 � � � xn are
leaf nodes with none arguments.

Figure 1 shows the output of a non-leaf node which calculated by FNT model.
Instruction þ i is also called a flexible neuron operator with i inputs. The output of a
flexible neuron +n is calculated as follows and the total excitation of þ n is given by

Table 2. Examples

No. G D A M AP YC IC JC TI HS VS OR TD

1 1 3 48 1 2 4 0 1 150 2 1 3 137.8
2 1 2 36 1 2 10 1 1 30 0 1 0 41.2
3 2 3 49 1 1 2 1 1 48 1 1 2 91.5
4 1 3 54 1 2 11 3 1 102 2 0 4 16.5
5 1 3 36 1 3 7 1 1 20 0 0 3 69.8

Table 3. Normalized samples

No. G D A M AP YC IC JC TI HS VS OR TD

0 0.5 0.44 0.33 0.5 0.23 0.17 0 0.05 1 1 0.1 0.13 0
0 0.5 0.35 0.33 0.5 0.14 0.17 0 0.09 1 0 0.1 0.09 0
0 0.5 0.23 1 0 0.05 0 0 0.04 1 1 0.4 0.27 1
0 0.5 0.64 0.33 0 0.08 0 0 0.05 0 1 0.1 0.04 1
0 0.5 0.76 0.33 0 0.20 0.17 0 0.15 0.5 0 0 0.19 1

Fig. 1. Non-leaf node of flexible neural tree with a terminal instruction set T ¼ fx1; x2; � � � ; xng

218 Y. Zhang et al.

netn ¼
Xn

j¼1
wjxj ð3Þ

In Eq. (3), xjðj ¼ 1; 2; � � � ; nÞ are the input elements to node þ n. The output of the
node þ n is then calculated by

outn ¼ f an; bn; netnð Þ ¼ e�ðnetn�an
bn

Þ2 ð4Þ

A typical FNT model is illustrated in Fig. 2. Its overall output can be computed
from left to right by a depth-first method recursively.

General learning algorithm of FNT

• Step 1. Initialize the values of parameters used in the particle swarm optimization
(PSO) algorithms. Set the elitist program as NULL and set the fitness value as the
biggest positive real number. Create the initial population.

• Step 2. Construct optimization using PSO algorithm, in which the fitness function is
calculated by root mean square error (RMSE).

• Step 3. If the better structure has found, then go to step 4, otherwise go to step 2.
• Step 4. Optimize parameters using PSO algorithm.
• Step 5. If the maximum number of local search is reached, or no better parameter

vector is found for a significantly long time (100 steps), then go to step 6; otherwise
go to step 4.

• Step 6. If the satisfied solution is found, then stop; otherwise go to step 2.

3.2 Prediction Assessment

In statistical analysis, two methods can be used to check the effectiveness of the
classifier in applications, namely, independent dataset tests and 10-fold cross validation

Fig. 2. Typical representation of FNT with function instruction set fþ 2; þ 3; þ 4; þ 5; þ 6g
and terminal set fx1; x2; x3g, which has four layers.

Credit Risk Assessment Based on Flexible Neural Tree Model 219

tests. For 10-fold cross validation, the full training set will be separated equally into 10
subset. Each subset will regarded as test data set to compute the overall accuracy
(OA) of the model trained by the rest of full training data set. In addition, Sensitivity
(Sens) and Specificity (Spec) are also used to evaluate the performance of classifier.

4 Discussion and Results

In this study, the FNT model was used to perform a 10-fold cross validation of a data
set containing 600 sample data, i.e. 540 training samples and 60 testing samples were
used for each experiment and were performed on each data set. The results show that
the average accuracy of the test set is 88.32% (Table 4). In the Table 4, “T” is
abbreviation of “trail”, “D” is abbreviation of “data”, “OA” is abbreviation of
“Overall”, “A-acc” is abbreviation of “Average accuracy rate” and “acc” is abbrevia-
tion of “accuracy rate”, the values of “A-acc” and “acc” are percentages.

We compared the average accuracy, sensitivity and specificity between our model
and other methods. The results are shown in Table 5, we can see that our method has
higher accuracy compared to other method, and the specificity is slightly better than the
others. Another point to make is this: the sensitivity value of Improved BP Neutral

Table 4. The part of results of FNT model in 10-fold cross validation

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 A-acc

D0 miss 11 7 5 9 3 10 10 7 4 5 88.17
acc 83 88 92 85 95 83 83 88 93 91

D1 miss 9 10 8 8 7 5 5 6 9 8 87.50
acc 85 83 87 87 88 91 91 90 85 86

D2 miss 8 7 10 6 9 4 9 8 5 4 88.33
acc 87 88 83 90 85 93 85 86 91 93

D3 miss 7 9 6 9 7 9 7 8 6 4 88.00
acc 88 85 90 85 88 85 88 86 90 93

D4 miss 9 8 3 3 8 6 7 4 9 5 89.67
acc 85 87 95 95 87 90 88 93 85 91

D5 miss 10 10 8 5 6 6 5 7 9 5 88.17
acc 83 83 87 92 90 90 91 88 85 91

D6 miss 9 5 9 7 10 8 9 10 5 7 86.83
acc 85 92 85 88 83 86 85 83 91 88

D7 miss 8 9 11 5 3 7 7 4 9 6 88.50
acc 87 85 82 92 95 88 88 93 85 90

D8 miss 7 10 9 8 6 9 7 5 5 5 88.17
acc 88 83 85 87 90 85 88 91 91 91

D9 miss 9 4 7 6 4 3 8 6 5 9 89.83
acc 85 93 88 90 93 95 86 90 91 85

OA 88.32

220 Y. Zhang et al.

Network method is 91.6%, and this value was calculated by once experiment result
form with 14 positive simples and 6 negative samples, totally 20 simples. The pro-
portion of positive samples is much higher, so the sensitivity value also high, besides
the sensitivity index is mentioned there only and no mention of any other place, so this
value is included in Table 5 for reference.

5 Conclusion

In this study, we proposed a redesigned and redefined customer information feature
dimension and FNT model for the field of credit risk assessment. Compared with other
methods, the method proposed in this study has different degrees of improvement in
various evaluation indexes, while the validity of the FNT model is proved. In the
future, we will continue to improve the algorithm method and search for more effective
classifiers in order to obtain better classification accuracy in this field.

Acknowledgements. This research was supported by the National Natural Science Foundation
of China (Grant No. 61302128, 61573166, 61572230, 61671220, 61640218), the Youth Science
and Technology Star Program of Jinan City (201406003), the Shandong Distinguished
Middle-aged and Young Scientist Encourage and Reward Foundation, China (Grant
No. ZR2016FB14), the Project of Shandong Province Higher Educational Science and Tech-
nology Program, China (Grant No. J16LN07), the Shandong Province Key Research and
Development Program, China (Grant No. 2016GGX101022).

References

1. Khashman, A.: Neural network for credit risk evaluation: investigation of different neural
models and learning schemes. Exp. Syst. Appl. 37(9), 6233–6239 (2010)

2. Bekhet, H., Eletter, S.: Credit risk assessment model for Jordanian commercial banks: neural
scoring approach. Rev. Dev. Financ. 4(1), 20–28 (2014)

3. Wang, L., Chen, Y., Zhao, Y., Meng, Q., Zhang, Y.: Credit management based on improved
BP neural network. IHMSC 1, 497–500 (2016)

4. Chen, Y., Yang, B., Dong, J., Abraham, A.: Time-series forecasting using flexible neural tree
model. Inf. Sci. 174, 219–235 (2005)

5. Yang, B., Chen, Y., Jiang, M.: Reverse engineering of gene regulatory networks using
flexible neural tree models. Neurocomputing 99, 458–466 (2013)

6. Abdou, H., Pointon, J., El-Masry, A.: On the applicability of credit scoring models in
Egyptian banks. Banks Bank Syst. 2(1), 4–19 (2007)

Table 5. The comparison of our method and other methods

Algorithm Accuracy (%) Sens (%) Spec (%)

Improved BP neutral network 86 91.6 62.5
Radial basis function scoring model 86.5 84.2 87.9
Artificial neural networks 83.6 Null Null
This method (average) 88.32 85.67 92.79

Credit Risk Assessment Based on Flexible Neural Tree Model 221

7. Bensic, M., Sarlija, N., Zekic-Susac, M.: Modeling small-business credit scoring by using
logistic regression, neural networks and decision trees. Intell. Syst. Account. Financ. Manag.
13(3), 133–150 (2005)

8. Blanco, A., Mejias, R., Lara, J., Rayo, S.: Credit scoring models for the microfinance
industry using neural networks: evidence from Peru. Exp. Syst. Appl. 40(1), 356–364 (2013)

9. Heiat, A.: Comparing performance of data mining models for computer credit scoring. J. Int.
Financ. Econ. 12(1), 78–83 (2012)

10. Koh, H., Tan, W., Goh, C.: A two-step method to construct credit scoring models with data
mining techniques. Int. J. Bus. Inf. 1(1), 96–118 (2006)

11. Jagric, V., Kracun, D., Jagric, T.: Does non-linearity matter in retail credit risk modeling?
Financ. uver-Czech J. Econ. Financ. 61(4), 384–402 (2011)

12. Wu, C., Guo, Y., Zhang, X., Xia, H.: Study of personal credit risk assessment based on
support vector machine ensemble. Int. J. Innov. 6(5), 2353–2360 (2010)

13. Xie, T., Yu, H., Wilamowski, B.: Comparison between traditional neural networks and radial
basis function networks. In: Proceedings of 2011 IEEE International Symposium on
Industrial Electronics, pp. 1194–1199 (2011)

14. Yap, P., Ong, S., Husain, N.: Using data mining to improve assessment of credit worthiness
via credit scoring models. Exp. Syst. Appl. 38(10), 1374–1383 (2011)

15. Memarian, H., Balasundram, S.: Comparison between multi-layer perceptron and radial
basis function networks for sediment load estimation in a tropical watershed. J. Water
Resour. Prot. 4, 870–876 (2012)

222 Y. Zhang et al.

A Portable Prognostic System for Bearing
Monitoring

Bulent Ayhan1, Chiman Kwan1(&), and Steven Liang2

1 Signal Processing, Inc., Rockville, MD 20850, USA
{bulent.ayhan,chiman.kwan}@signalpro.net
2 Georgia Institute of Technology, Atlanta, GA 30332, USA

steven.liang@me.gatech.edu

Abstract. This paper summarizes the development of a practical and high
performance bearing prognostic system, which contains a portable hardware
data acquisition system with flexible and modular prognostic tools. The data
acquisition system has a multi-sensor analog to digital (A/D) card with USB
connection, a laptop, and a modular software based on Labview. The low-cost
A/D card from National Instruments can simultaneously acquire multiple sensor
data (such as accelerometer, tachometer and load cell) at high sampling rates
(48 KS/s). The Labview based software can run in any laptops and PCs. The
basic functions of the software include: (1) data acquisition control (sampling
rate, sensor selection, etc.); (2) application configuration manager (each con-
figuration addresses one application); (3) feature selection (spectrum-based
features or time-domain based features) (4) prognostic tool library (the library
will be expandable); (5) visualization of data acquisition, feature trend plots and
prognostic results; (6) data management (raw data and log data storage, retrieval,
etc.). Simulation experiments using actual bearing test data demonstrated the
functionalities of the system.

Keywords: Prognostic system � Bearing � Remaining life prediction

1 Introduction

The ability to accurately predict the early stages of failures of critical electro-
mechanical components such as bearing [1–3, 5–8], pumps [11], actuators [12, 14–16],
motors [10, 13, 17], communication equipment [4, 9], and gear [19, 20] is critical for
affordable system operation and can also be used to enhance system safety. Early
detection of potential failures not only saves costs, but also increases reliability and
availability, and even save lives. Usually the failure goes through a series of transitions
from normal, to minor degradation, and then progresses to a significantly degraded
state, and finally to a complete failure. Each stage of degradation generally has unique
characteristics that can be identified from sensor outputs. Hence, for high quality
prognosis system, it is essential to have a library of advanced, robust, and reliable
algorithms that can perform accurate diagnostics and prognostics.

In this research, we focus on bearing prognostics. The goal is to develop a portable
system with fast data acquisition hardware, and flexible, expandable, and high

© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 223–233, 2017.
DOI: 10.1007/978-3-319-59072-1_27

performance prognostics algorithms. We have successfully developed such a system.
The data acquisition card can simultaneously collect data from up to 8 sensors. The
prognostic software contains 6 feature extraction modules and 1 prognostic module.
The software modules can be expanded. Two sets of actual bearing data were used to
demonstrate the functionalities of the proposed system.

The paper is organized as follows. In Sect. 2, we will focus on the system
description. Details of the software implementation will be described in a journal paper.
Section 3 summarizes the experimental results. Finally, some concluding remarks and
ideas for future research will be mentioned in Sect. 4.

2 Bearing Prognostic System

2.1 Portable Prognostic System

We developed a bearing prognostic system as shown in Fig. 1. This is a portable
system with data acquisition hardware and flexible and modular prognostic software
tools. The data acquisition system has a multi-sensor A/D card (USB) and a laptop. The
function generator in the figure is only used for system test. In actual applications, the
data acquisition system can be connected to accelerometers, load cells, etc. The
low-cost USB card from National Instruments can simultaneously acquire multiple
sensor data (accelerometer, tachometer and load cell) at high sampling rates such as
48 KS/s. The laptop and USB data acquisition card can be easily carried to anywhere
for periodic equipment inspection. The hardware cost is low.

2.2 Prognostic Software

The laptop contains a prognostic tool known as PrognosisLab, which is modular and
based on Labview platform. The Labview based software can run in laptops and/or
PCs. The basic functions of the software include: (1) data acquisition control (sampling
rate, sensor selection, etc.); (2) application configuration creation/selection tool;
(3) feature selection (spectrum-based features or time-domain based features)
(4) prognostics tool library (currently there is one prognostic algorithm which is called

Laptop (with LabView,
device driver for the DAQ
card and PrognosisLab
installed)

Function
generator

USB cable

USB-based DAQ card
(NI USB-6009, 8 inputs,
14 bit, Multifunction I/O)

Fig. 1. Portable prognostic system.

224 B. Ayhan et al.

Parallel-DCA-RLS); (5) visualization of data acquisition, feature trend plots and
prognostic results; (6) data management (storage, etc.).

Key features of “PrognosisLab” are:

• Flexible and a modular software structure
The software is applicable for prognosis of different bearing types with the use of a
configuration creation/selection tool. Application configurations for different bear-
ing types and with different operational and feature settings can be created with the
configuration creation/selection tool.

• Feature extraction library
Feature extraction phase is a critical phase for prognostics. The extracted features
are going to be used as the degradation signatures by the prognostics algorithm for
remaining lifetime predictions. There are currently 6 feature extraction ways in
PrognosisLab.

• Prognostics Library
Currently, there is a single technique in the library (Parallel-DCA-RLS), which is an
adaptive, data driven prognostics technique that is based on the physics of a failure
without the need of any off-line training. Extending this library by incorporating
other prognostic tools such as hidden Markov model [1] or neural networks is one
of our future objectives.

• Operation condition check
PrognosisLab is designed to check the operating condition by loadcell and
tachometer sensors and enables the prognostics approach to function only when the
system operates within the identified operating conditions (speed and load) by the
user.

LabView (32 bit) is currently the programming platform. The Parallel-DCA-RLS
technique (which is used in PrognosisLab as the prognostics technique) is a data driven
adaptive prognostics method which is based on the physics of failure model. This
technique requires that the extracted feature from the collected accelerometer data has a
gradually increasing pattern in time (as the degradation in bearing worsens, the feature
amplitude increases). This trend has generally been observed in the bearing lifetime
tests even though there are some cases which the feature amplitude increase is not
monotonic at some stages of the bearing degradation, but rather follows a fluctuating
trend at these stages due to the varying nature of the damage; this phenomenon is
known as “healing” [6]. The spectrum amplitudes extracted from the accelerometer
data at bearing fault specific frequencies and/or user specified frequencies and the root
mean squared (RMS) time domain feature of the collected vibration data are the current
features used in PrognosisLab. PrognosisLab software may not provide reliable results
if the extracted features from the collected accelerometer data do not gradually increase
in amplitude. Fluctuating feature values during the lifetime can be compensated for up
to a degree in DCA-RLS; however, if the extracted feature decreases in amplitude and
and/or shows a highly fluctuating pattern (due to extreme healing effects), since this
will conflict with the failure model of the DCA-RLS technique, PrognosisLab may not
provide meaningful remaining useful lifetime predictions for this type of cases.

A Portable Prognostic System for Bearing Monitoring 225

PrognosisLab software requires the following hardware units:

1. Laptop or PC with LabView - 2012 software (32 bits) being installed in the laptop
and the device driver for the DAQ card needs to be installed; the device driver for
the USB-based DAQ card can be found in the NIDAQ mx 9.5.5 CD library that
comes with the NI-DAQ card.

2. The USB-based DAQ card (NI USB-6009, 8 inputs, 14 bit, Multifunction I/O)
should be connected to the laptop via a USB cord. This will power the USB card
automatically and the card should be detected by the laptop (we purchased this
USB-based DAQ from National Instruments).

3. Accelerometer sensor needs to be connected to the one set of the analog inputs of
the DAQ card; the voltage reading from the sensor should not exceed ±5 V at any
time (currently this sensor is not available, a function generator is used to imitate the
accelerometer sensor data in the form of a sinusoidal signal and this data is collected
by the DAQ card and a data file which consists of scaling coefficients are used to
scale the collected data from the function generator so that the extracted feature
time-series data behaves as the physics of failure model that is observed in
degrading bearings)

4. Tachometer sensor needs to be connected to the one set of the analog inputs of the
DAQ card; the voltage reading from the sensor should not exceed ±5 V at any time
(currently this sensor is not available, the sensor is simulated by directly feeding the
tachometer value in the application configuration file as if it is collected from a
sensor)

5. Load-cell sensor needs to be connected to the one set of the analog inputs of the
DAQ card; the voltage reading from the sensor should not exceed ±5 V at any time
(currently this sensor not available, the sensor is simulated by directly feeding the
tachometer value in the application configuration file as if it is collected from a
sensor)

During the PrognosisLab implementation and in testing the modules’ operational
functionality, the actual data collection testing/debugging was done with the use of a
function generator instead of a test rig with an actual bearing. A sinusoidal waveform
has been generated in the function generator and this has been fed to the analog
channels of the NI-DAQ unit. This collected data is then scaled inside the software with
some pre-prepared coefficients to imitate a vibration feature acquired from a degrading
bearing. The tool requires the operating conditions to be within the range identified by
the user in the selected/created configuration file. The operating condition values in the
application configuration file are currently fed to the operating condition check module
in the tool as if they were collected from the tachometer and load cell sensors. The
reason the delivered software codes retrieve the operating condition values directly
from the application configuration file whereas these should come from the sensors is
that an actual experiment test rig with the above sensors (accelerometer, load cell and
tachometer) was not available during the software development. For a realistic test,
the users need to integrate these sensors and make the corresponding revisions/
customizations in the delivered Main Layer source code so that PrognosisLab can be
used in real testing environments with these three sensors. It should however be noted
that the actual bearing lifetime data sets have been used to test the feasibility of the

226 B. Ayhan et al.

adaptive prognostics algorithm embedded in PrognosisLab; these actual data sets have
been collected when the bearing operating conditions were fixed (IMS and Georgia
Tech data sets, same speed and load conditions); however since a real lifetime situation
would involve varying operating conditions, it is considered that the PrognosisLab
software should have the functionality of an operation condition check for both speed
and load; if the readings for the operating conditions are not met, PrognosisLab will
warn the user about this via its status indicator in the Main Layer and the prognostics
technique is not applied to this data which is out of range of the accepted operating
condition.

PrognosisLab consists of a Main Layer from which user can access to three other
layers. The Main Layer has also a display section that the user is informed both about
the lifetime status and system status. Configuration Layer is the layer which user can
create a new application configuration file, and/or edit an existing application config-
uration file before a test is started. The Trend Plots Layer allows the user visualizing the
trend plots of the extracted features and the RUL estimations during real-time prog-
nostics. Configuration Visualization Layer is another layer which the user can examine
the application configuration settings during a real-time prognostics test. The layers in
PrognosisLab can be seen in Fig. 2.

After running the “PrognosisLab” which is a LabView file, the Main Layer comes
to screen by default. A screenshot of the user interface of the Main Layer can be seen in
Fig. 3. There is a total of 6 pushbuttons (Start, Stop, Config, Trend Plots, Exit and Brief
Results), a “Normal/Warning/Alert” remaining lifetime status indicator with green/
yellow/red colors, estimated remaining lifetime estimation box in which the estimation
is displayed and another indicator that provides information about the system status.
Additionally, the configuration file that is currently in use is displayed in the Main
Layer at the bottom of the screen. In the same folder that the PrognosisLab LabView
file resides, there are two other data files. These files are:

1. “LastUsedConfig.dat”: This is the text data file which stores the application con-
figuration file that was last used in PrognosisLab. This file is created and/or updated
whenever the user stops an ongoing test with the “STOP” button of the Main Layer.

Main Layer

Trend Plots
Layer

Configuration
Visualization

Layer

Configuration
Layer

Real-time
Prognostics

PrognosisLab

Fig. 2. The layers in PrognosisLab. Here, we briefly describe the Main Layer. Other layers will
be described in a journal version of this paper.

A Portable Prognostic System for Bearing Monitoring 227

2. “Default_Config.dat”: This is the default application configuration file that comes
with PrognosisLab, the user can create his/her own application configuration files
with PrognosisLab using the Configuration Layer which can be opened with the
Config button.

Feature Extraction
The software provides 6 feature extraction ways to be applied to the accelerometer data.
The user is allowed to choose only one feature extraction technique. The six feature
extraction techniques are listed in the following.

1. Extract bearing fault related features with Welch PSD method: The user has to
choose one of the four bearing specific related features,

2. Extract Bearing Fault Related Feature with HFRT (High Frequency Resonance
Technique),

3. Extract Feature at a customized frequency with Welch PSD method (the user needs
to provide a customized frequency value in the application configuration file),

4. Extract Feature at a customized frequency with HFRT (the user needs to provide a
customized frequency value in the application configuration file),

5. Extract time domain features on raw data (RMS),
6. Extract time-domain features on the envelope data (RMS).

In two of the feature extraction ways, the Welch PSD spectrum method is used. This
method is used to extract the PSD amplitudes at the four identified fault frequencies and
user-customized frequency. The four bearing fault specific frequencies are ball pass
outer raceway frequency, ball pass inner raceway frequency, ball rotational frequency
and fundamental train frequency. The computations of these frequencies are shown in
(1)–(4) where FS is the rotational shaft frequency, NB is the number of rollers, Db is the
mean roller diameter, Dc is the pitch diameter, h is the roller contact angle.

Fig. 3. Main Layer

228 B. Ayhan et al.

FBPFO ¼ NB

2
FS 1� Db cos h

Dc

� �
: ball pass outer raceway frequency ð1Þ

FBPFI ¼ NB

2
FS 1þ Db cos h

Dc

� �
: ball pass inner raceway frequency ð2Þ

FBRF ¼ Dc

Db
FS 1� D2

b cos
2 h

D2
c

� �
: ball rotational frequency ð3Þ

FFTF ¼ 1
2
FS 1� Db cos h

Dc

� �
: fundamental train frequency ð4Þ

HFRT (High Frequency Resonance Technique) is used in two other feature
extraction ways. This technique is used to extract the HFRT features at the four
identified fault frequencies and also the user-customized frequency. Other than the
spectrum-based features, the RMS (root mean square) value of the collected
accelerometer data, which is a time-domain based feature, is another feature extraction
way. The RMS of the envelope of the bandpass-filtered accelerometer data is the last
feature extraction way provided in this tab. Among the 6 sets of potential features
(Welch spectrum at a bearing fault specific frequency, Welch spectrum at user defined
frequency, HFRT at a bearing fault specific frequency, HFRT at user defined fre-
quency, RMS for raw data, RMS for envelope data) to be used in the prognostics; only
one feature extraction technique is allowed to be selected by the user in the application
configuration settings.

Robust Prognostic Algorithm: Parallel-DCA-RLS
Damage Curve Approach-Recursive Least Square (DCA-RLS) [5] is an adaptive
technique; however, in order to prevent any instability issues that might result from
poor choice of initial parameters, a parallel DCA-RLS framework as shown in Fig. 4 is
developed; this framework has multiple DCA-RLS units that run in parallel and each
being initialized with a different set of initial parameter values.

DCA-RLS(1)

DCA-RLS(2)

DCA-RLS(M)

Initial Parameter
Generation

Vibration data
collected from the

bearing system

Check the
updated

parameters of
every DCA-

RLS unit
according to

physical
constraints

Among the units that
pass the physical

constraints, pick the RUL
prediction of the unit that

generates the lowest
accumulated prediction
error from start to the

current time

Fig. 4. Robust prognostic algorithm: Parallel-DCA-RLS.

A Portable Prognostic System for Bearing Monitoring 229

3 Demonstration Experiments

We used two sets of actual bearing data for demonstrations. One data set was generated
by the NSF I/UCR Center for Intelligent Maintenance Systems (IMS–www.imscenter.
net) with support from Rexnord Corp. in Milwaukee, WI. We became aware of
this bearing lifetime dataset through the Prognostics Data Repository website of
NASA [18].

Another data set came from Georgia Tech. Three bearing lifetime experiments have
been conducted in a laboratory at Georgia Tech. The experimental scheme has three
sub-systems: a test housing system, an oil circulation system, and a data acquisition and
processing system, which is shown in Fig. 5. The radial load is provided by a Power
Team P59 hydraulic hand-pump that supplies pressure to the load cylinder on the
housing. The shaft is driven by a vector drive motor with a speed controller. The oil
circulation system regulates the flow and temperature of the lubricant. The operating
system is lubricated by ISO VG 32 mineral oil.

Quite a few experiments were performed. Due to page limitation, we include two
representative plots. In Fig. 6 (IMS experiments RUL prediction plot), the unit for the
RUL predictions is in cycles and each cycle corresponds to 10 min. In Fig. 7 (GaTech
experiments RUL prediction plots), the unit for the RUL predictions is in cycles and
each cycle corresponds to a minute. From Figs. 6 and 7, it can be observed that in the
last portion of the bearing lifetime, the RUL predictions start to come quite close to the
groundtruth RUL values.

Fig. 5. Experiment setup [8]

230 B. Ayhan et al.

http://www.imscenter.net/
http://www.imscenter.net/

4 Conclusions

We presented a brief summary of the development of a portable prognostic system for
bearings. The data acquisition hardware can simultaneously measure up to 8 sensors.
The software is flexible, modular, and expandable. Preliminary demonstrations using
actual bearing data demonstrated the efficacy of the proposed system. One future
research direction is to expand the tools in the prognostic library. For example, some
data driven algorithms based on neural network will be considered for inclusion into
the system.

(a) Raw feature values (before nor-
malization and smoothing)

(b) RUL estimation

0 100 200 300 400 500 600 700 800 900 1000
10

-8

10
-7

10
-6

10
-5

10
-4

Time (cycles)

Fe
at

ur
e

am
pl

itu
de

Raw feature time-series (logscale)

0 100 200 300 400 500 600 700 800 900 1000
10

-1

10
0

10
1

10
2

10
3

10
4

Time (cycles)

R
U

L

Groundtruth RUL
Estimated RUL

Fig. 6. RUL estimations for Bearing#1 in IMS-Experiment#2 using Welch-PSD features at
BPFI (StatDur = 11)

(a) Feature raw data (b) RUL estimation

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

-7

10
-6

10
-5

10
-4

Time (cycles)

Fe
at

ur
e

am
pl

itu
de

Raw feature time-series (logscale)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

0

10
1

10
2

10
3

10
4

Time (cycles)

R
U

L

Groundtruth RUL
Estimated RUL

Fig. 7. GaTech data set Experiment#2 Channel 1 (BPFO) (StatDur = 3)

A Portable Prognostic System for Bearing Monitoring 231

Acknowledgement. This research was supported NASA Stennis Space Flight Center under
contract #NNX13CS10P. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of NASA.

References

1. Kwan, C., Zhang, X., Xu, R., Haynes, L.: A novel approach to fault diagnostics and
prognostics. In: IEEE International Conference on Robotics and Automation, Taipei, Taiwan
(2003)

2. Kwan, C., Zhang, X., Xu, R.: Early fire detection using acoustic emissions. In: 5th IFAC
Symposium on Fault Detection, Supervision and Safety of Technical Processes,
Washington DC, pp. 351–356 (2003)

3. Zhang, X., Xu, R., Kwan, C., Liang, S.Y., Xie, Q., Haynes, L.: An integrated approach to
bearing fault diagnostics and prognostics. In: American Control Conference, Portland, OR,
pp. 2750–2755 (2005)

4. Zhang, G., Kwan, C., Xu, R., Vichare, N., Pecht, M.: An enhanced prognostic model for
intermittent failures in digital electronics. In: IEEE Aerospace Conference (2007)

5. Ayhan, B., Kwan, C., Liang, S.: Adaptive prognostics of bearing. In: IEEE International
Conference on Prognostics and Health Management, Denver, Colorado (2008)

6. Williams, T., Ribadeneira, X., Billington, S., Kurfess, T.: Rolling element bearing
diagnostics in run-to-failure lifetime testing. Mech. Syst. Signal Process. 15(5), 979–993
(2001)

7. Qiu, H., Lee, J., Lin, J.: Wavelet filter-based weak signature detection method and its
application on roller bearing prognostics. J. Sound Vib. 289, 1066–1090 (2006)

8. Qiu, J., Seth, B., Liang, S., Zhang, C.: Damage mechanics approach for bearing lifetime
prognostics. Mech. Syst. Signal Process. 16(5), 817–829 (2002)

9. Zhang, X., Xu, R., Kwan, C., Pritchard, M., Haynes, L., Polycarpou, M., Yang, Y.: Fault
tolerant formation flight control of UAVs. Int. J. Veh. Auton. Syst. 2(3/4), 217–235 (2004)

10. Wongsaichua, W., Lee, W., Oraintara, S., Kwan, C., Zhang, F.: Integrated high speed
intelligent utility tie unit for disbursed/renewable generation facilities. IEEE Trans. Ind.
Appl. 41(2), 507–513 (2005)

11. Kwan, C., Xu, R., Zhang, X.: Fault detection and identification of aircraft hydraulic pumps
using MCA. In: 5th IFAC Symposium on Fault Detection, Supervision and Safety of
Technical Processes, Washington DC, pp. 1137–1142 (2003)

12. Polycarpou, M., Zhang, X., Xu, R., Yang, Y., Kwan, C.: A neural network based approach
to adaptive fault tolerant flight control. In: IEEE International Symposium on Intelligent
Control, pp. 61–66 (2004)

13. Zhang, H., Lee, W.-J., Kwan, C., Ren, Z., Chen, H., Sheeley, J.: Artificial neural network
based on-line partial discharge monitoring system for motors. In: IEEE-IAS, I&CPS Annual
Conference, Saratoga Spring, NY (2005)

14. Zhang, X., Polycarpou, M., Xu, R., Kwan, C.: Actuator fault diagnosis and accommodation
for improved flight safety. In: Joint IEEE International Symposium on Intelligent Control
and Mediterranean Conference on Control and Automation Conference, pp. 640–645 (2005)

15. Zhang, X., Miller, D., Xu, R., Kwan, C., Chen, H.: A maximum entropy based approach to
fault diagnosis using discrete and continuous variables. In: 6th IFAC Symposium on Fault
Detection, Supervision and Safety of Technical Processes, Beijing (2006)

232 B. Ayhan et al.

16. Xu, R., Zhang, G., Zhang, X., Haynes, L., Kwan, C., Semega, K.: Sensor validation using
nonlinear minor component analysis. In: Wang, J., Yi, Z., Zurada, J.M., Lu, B.-L., Yin, H.
(eds.) ISNN 2006. LNCS, vol. 3973, pp. 352–357. Springer, Heidelberg (2006). doi:10.
1007/11760191_52

17. Kwan, C., Qian, T., Ren, Z., Chen, H., Xu, R., Lee, W., Zhang, H., Sheeley, J.: A novel
approach to corona monitoring. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS,
vol. 3498, pp. 494–500. Springer, Heidelberg (2005). doi:10.1007/11427469_80

18. http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/
19. Kwan, C., Davydov, A., Xu, R.: Helicopter gearbox fault isolation. In: Proceedings of SPIE

on Component and Systems Diagnostics, Prognosis, and Health Management,
vol. 4389 (2001)

20. Kwan, C., Xu, R., Haynes, L.: Gearbox failure prediction using infrared cameras.
In: Proceedings of SPIE on Thermosense XXIII, vol. 4360 (2001)

A Portable Prognostic System for Bearing Monitoring 233

http://dx.doi.org/10.1007/11760191_52
http://dx.doi.org/10.1007/11760191_52
http://dx.doi.org/10.1007/11427469_80
http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/

Parameter Estimation of Linear Systems
with Quantized Innovations

Changchang Hu(B)

Department of Automation, Tsinghua University,
Beijing 100084, China
hcz@tsinghua.edu.cn

Abstract. A recursive identification algorithm for linear discrete time-
invariant systems with quantized observations is developed based on the
minimum mean square error (MMSE) criterion. It is demonstrated that
a persistently exciting input is rich enough to identify the parameter vec-
tor of the system with only quantized observations. Under the Gaussian
assumption on the estimate of the parameter vector, an identification
algorithm is proposed based on a quantized Recursive Least-Squares
Estimation (RLSE) scheme. It is interesting that the effect of the quan-
tization can be approximately characterized by a scalar coefficient of a
modified Riccati difference equation which is dependent on the number
of quantization levels.

Keywords: Linear systems · Parameter estimation · Quantized inno-
vations · MMSE

1 Introduction

Research on networked systems has attracted a lot of interests recently due to
their many advantages including flexibility and low implementation cost as com-
pared to traditional point-to-point wired systems and also due to new research
opportunities arising from constrains in communication resources and lack of
reliability of networks. In the past few years, control, estimation and system
identification with quantized observations have attracted significant interests.
In particular, the studies on system identification with quantized observations
are of importance in understanding modeling capability under limited obser-
vations and the trade-off between communication resources and identification
complexity.

Traditional system identification using linear sensors is a relatively mature
research area that bears a vast body of literature. There are numerous textbooks
and monographs on the subject in a stochastic or worst-case framework, see e.g.
[10,11,13].Many significant results have been obtained for identification and adap-
tive control involving random disturbances in the past decades [1,2,8–11]. Note
that set-valued observations are often encountered in digital systems and have
been studied in many branches of signal processing problems. Gradient algorithms
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 234–241, 2017.
DOI: 10.1007/978-3-319-59072-1 28

Parameter Estimation of Linear Systems with Quantized Innovations 235

for adaptive filtering using quantized data were studied in [16]. One class of adap-
tive filtering problems that has recently drawn considerable attention uses “hard
limiters” to reduce computational complexity. The idea employs the sign operator
in the error and/or the regressor, leading to a variety of sign-error, sign-regressor,
and sign-sign algorithms. Some recent work in this direction can be found in [3–5].

We apply the quantized MMSE to estimate system parameters. Noting that
the estimation performance is measured by the estimation error covariance,
quantizer and estimator are jointly designed to minimize the error covariance. It
turns out that the quantizer applied on the innovation of measurement is optimal
under the assumption that the estimate is Gaussian. The striking feature of the
estimator is that it has a similar form as the classical Recursive Least-Squares
Estimation(RLSE) [11] algorithm and the quantization effects on the estimation
performance can be characterized by a scalar coefficient in a modified Riccati
equation of error covariance.

2 Problem Formulation

Consider the parameter identification problem for the discrete linear time-
invariant system:

yk = φT
k θk + dk, (1)

where θk = [a0, . . . , an−1]T ∈ Rn is a parameter vector, φk = [uk, . . . , uk−n+1]
T ∈ Rn is the vector of inputs with uk = 0, k < 1−n, dk ∈ R is an independent
and identically distributed Gaussian noise with zero mean and covariance σ2

k:
0 < λσ2 ≤ λσ2 < ∞. The support of the prior distribution for the system
parameter vector θ is assumed in a given area Ω.

Assume the estimator (identifier) can only access the quantized measure-
ments transmitted over a network. The network configuration to be consid-
ered is characterized in Fig. 1, where the raw measurement yk is quantized as
sk and then transmitted to a remote estimator for identification of the para-
meter vector through a noiseless digital channel. At time k, given a partition
PN

k = {Ri
k; i = 1, · · · , N} of the measurement space Rm, yk is quantized into

sk by the quantizer qk which is embedded in the sensor node. The explicit form
of the quantizer is given by:

sk := qk(yk) = E[yk|Ri
k] =

∫
Ri

k
ykp(yk)dyk

∫
Ri

k
p(yk)dyk

:= lik if yk ∈ Ri
k. (2)

Fig. 1. Network configuration

236 C. Hu

Following the definition of the quantizer qk(·) in turn reads

E[yk|sk = lik] =
∫

R
ykp(yk|sk = lik)dyk =

∫
Ri

k
ykp(yk)dyk

∫
Ri

k
p(yk)dyk

= lik,

which implies that
sk = E[yk|sk] and E[sk] = E[yk]. (3)

Actually, sk is chosen to minimize the quadratic distortion within each cell Ri
k,

i.e.,
∂

∫
Ri

k
(yk − sk)2dyk

∂sk
= −2

∫

Ri
k

(yk − sk)dyk = 0 ⇒ sk = lik.

Remark 1. It should be noted that without the exact distribution informa-
tion of yk, the quantizer doesn’t work by Eq. (2). However, once we obtain the
distribution of yk, the quantizer is implementable.

Our purpose is to estimate the system parameter vector θ under the MMSE
criterion with persistently exciting inputs φk and the information of the quan-
tized observations s1:k = {s1, · · · , sk} available up to time k.

3 Identification Algorithms

In this section, we will first derive the recursive quantized MMSE estimation
and then proceed to design the optimal quantizer for application. Some stability
results on the solution of a modified Riccati difference equation will be reviewed
as well.

Define the optimal current parameter estimate θ̂k in the sense of MMSE and

Pk := E[(θ̂k − θ)(θ̂k − θ)T]

with the initial values θ̂0 ∈ Ω and finite positive definite matrix P0.
Consider that the prior information of the parameter vector is θ ∈ Ω, the

estimate is modified to be

θ̂r
k := θ̂k|Ω = θ̂kI{θ̂k∈Ω} + θ̂0I{θ̂k /∈Ω}

and the variance P r
k := PkI{θ̂k∈Ω} + P0I{θ̂k /∈Ω}, correspondingly.

Actually, the prior information of the parameter vector ensures that the esti-
mate is bounded. However, for an asymptotically convergent algorithm, there
exists a time kr, after which θ̂r

k = θ̂k. For simplification, we use θ̂k in the discus-
sion of the paper.

Assumption A1: The distribution of the estimate θ̂k is assumed to be
Gaussian with mean θ and variance Pk.

The recursive quantized identification algorithm is given in the following
theorem.

Parameter Estimation of Linear Systems with Quantized Innovations 237

Theorem 1. Consider the stochastic system described by Eq. (1) with the quan-
tized measurement (3). Under Assumption A1, the quantized MMSE estimation
algorithm can be recursively computed as follows:

θ̂k = θ̂k−1 + Kk(sk − φT
k θ̂k−1) (4)

Pk = P ∗
k−1 + KkE(yk − sk)2KT

k (5)

where Kk is defined by Kk = Pk−1φkS−1
k and P ∗

k = Pk−1 − Pk−1φkS−1
k φT

k Pk−1,
where Sk = φT

k Pk−1φk + σ2
k.

Proof. Using the quantized observation s1:k available at time k, our task is to
find the estimate of θ, denote by θ̂k = θ̂(s1:k), to minimize E[(θ−θ̂k)(θ−θ̂k)T]. To
this end, we introduce an intermediate estimate θ̂∗

k = θ̂∗(s1:k−1, yk) to minimize
E[(θ− θ̂∗

k)(θ− θ̂∗
k)T]. Together with assumption A1, the joint probability density

of θ̂k−1 and yk is given by

p(θ̂k−1, yk) = p(θ̂k−1)p(yk) (6)

= Ce− 1
2 [θ

T (P−1
k−1+φkφT

k /σ2
k)θ−2θT (P−1

k−1θ̂k−1+φkyk)], (7)

where C is independent of θ. Thus, the joint distribution of θ̂k−1 and yk is
Gaussian, which implies that θ̂∗

k is also the maximum likelihood estimate of θ.
Then, completing the square of (7) yields that

θ̂MLE = θ̂∗
k = (P−1

k−1 + φkφT
k /σ2

k)−1(P−1
k−1θ̂k−1 + φkyk).

Using the matrix inversion lemma [17] on (P−1
k−1 + φkφT

k /σ2
k)−1, we obtain

θ̂∗
k = θ̂k−1 + Kk(yk − φT

k θ̂k−1), (8)

P ∗
k = E[(θ − θ̂∗

k)(θ − θ̂∗
k)T]. (9)

It can readily verified that

Pk = E[(θ̂∗
k − θ)(θ̂k − θ̂∗

k)T] + E[(θ̂k − θ̂∗
k)(θ̂∗

k − θ)T]

+P ∗
k + E[(θ̂k − θ̂∗

k)(θ̂k − θ̂∗
k)T]. (10)

However, based on the property of the conditional expectation,

E[(θ̂∗
k − θ)(θ̂k − θ̂∗

k)T] = E[E[(θ̂∗
k − θ)(θ̂k − θ̂∗

k)T |s1:k−1, yk]]

= E[E[θ̂∗
k − θ|s1:k−1, yk](θ̂k − θ̂∗

k)T] = 0 by (8).

Similarly, E[(θ̂k − θ̂∗
k)(θ̂∗

k − θ)T] = 0. Thus, to minimize Pk, it is equivalent to
minimize E[(θ̂k − θ̂∗

k)(θ̂k − θ̂∗
k)T] by (10). Consequently,

θ̂k = E[θ̂∗
k|s1:k] = θ̂k−1 + Kk(E[yk|s1:k] − φT

k θ̂k−1)

= θ̂k−1 + Kk(sk − φT
k θ̂k−1)

and Pk = P ∗
k−1 + KkE(yk − sk)2KT

k .

238 C. Hu

Remark 2. The resulting estimation error variance can be decomposed into
two parts: one is P ∗

k which cannot be reduced as it is the exact estimation
error variance derived from the RLSE; the other nonnegative part is KkE[(yk −
sk)2|s1:k]KT

k induced by quantization.

From Eq. (5), it is clear that a higher resolution quantizer will result in a
smaller estimation error variance. In the rest of this subsection, we will concen-
trate on the design of optimal quantizer of yk to minimize Pk and refer to it as
the optimal quantized MMSE estimation.

Note that the performance of the estimation can be measured by the quan-
tity of tr(Pk). Next, the focus will be on investigating the optimal quantizer to
minimize tr(Pk), which is equivalent to minimizing the term

tr(E(yk − sk)2) = E[tr(E[(yk − sk)2|s1:k−1])] (11)

by the variance update formula in Eq. (5). Using the monotone property of condi-
tional expectation, the minimization is converted to the following optimal quan-
tizer design problem:

q∗
k = argminsk=qk(yk)

tr(E[(yk − sk)2|s1:k−1])

= argminsk=qk(yk)E[‖yk − sk‖22|s1:k−1] (12)

In the sequel, we shall elaborate how to get the optimal quantizer q∗
k.

Under Assumption A1, we have yk − φT
k θ̂k−1 belongs to the Gaussian family

with the mean 0 and variance Sk = σ2
k + φT

k Pk−1φk. Notice that

E[‖yk − sk‖22|s1:k−1] = Sk × E[‖yk − φT
k θ̂k−1√
Sk

− sk − φT
k θ̂k−1√
Sk

‖22|s1:k−1],

consequently, we have proved the following facts.

Proposition 1. Under the Gaussian assumption A1, the optimal quantizer in
Eq. (12) is the same as the optimal quantizer to minimize the average quadratic
distortion of a Gaussian random variable with mean φT

k θ̂k−1 and variance Sk.
Thus, denote q∗

G(·) as the optimal scalar quantizer to minimize the quadratic
distortion for a standard Gaussian random variable with quantization level N ,
the optimal quantizer q∗

k(·) in Eq. (12) is given by

q∗
k(yk) =

√
Sk × q∗

G(
yk − φT

k θ̂k−1√
Sk

) + φT
k θ̂k−1.

Denote the associated minimum quadratic distortion as DG
N , which is given by

DG
N = E[(x − q∗

G(x))2], (13)

where x is assumed to be a standard Gaussian random variable. For example,
when N = 2, the optimal scalar quantizer for the standard Gaussian random
variable x would be quantized as follows [12]:

Parameter Estimation of Linear Systems with Quantized Innovations 239

q∗
G(x) =

⎧
⎨

⎩

√
2
π , if x ≥ 0;

−
√

2
π , otherwise,

(14)

and the corresponding minimum quadratic distortion is computed as DG
2 =

1 − 2/π.
However, to our best knowledge, there are no known close-form solutions to

the problem of optimal quantization for an arbitrary random variable. Most of
solutions are iterative algorithms, i.e., Lloyd’s method I [14] or stochastic gradi-
ent method for the Gaussian signal [15]. Fortunately, the optimal quantizer of a
standard Gaussian random variable is readily available, e.g., the optimal quan-
tizer parameters and the associated minimum quadratic distortion are explicitly
computed and tabulated in [12], which makes it possible to efficiently use the
optimal quantizer for the measurement at each time step. We shall elaborate in
Theorem 2 below that the optimal quantized estimation has a simple recursive
structure and the estimation error variance is given by a simple modified Riccati
difference equation (MRDE), which is close to the RLSE without quantization
in terms of complexity.

Theorem 2. Consider system (1) with the quantized measurement (3). Under
Assumption A1, the optimal quantized MMSE identification algorithm is given
by the following update formulae:

θ̂k = θ̂k−1 + K ′
kq∗

G(
yk − φT

k θ̂k−1√
Sk

) (15)

Pk = Pk−1 − (1 − DG
N)S−1

k Pk−1φkφT
k Pk−1 (16)

where Sk = φT
k Pk−1φk + σ2

k and K ′
k = Pk−1φkS

−1/2
k .

Proof. Based on the Proposition 1, the optimal quantizer of yk is solved as

s∗
k =

√
Sk × q∗

k(
yk − φT

k θ̂k−1√
Sk

) + φT
k θ̂k−1 =

√
Sk × q∗

G(
yk − φT

k θ̂k−1√
Sk

) + φT
k θ̂k−1

Substituting the above into Eq. (4) follows Eq. (15). Moreover,

E[(yk − s∗
k)2] = E[E[(yk − s∗

k)2|s1:k−1]] = DG
NSk.

In view of Eqs. (5), (16) can be readily obtained.

The final result of this subsection investigates the asymptotic properties of
the estimation.

Corollary 1. As the quantization level N goes to infinity, the quantized esti-
mation algorithms in Theorems 1–2 weakly converge to the classical estimation
with measurements of yk.

Proof. It follows from [7] that DG
N → 0 and q∗(y) → y as N → ∞. The rest is

very straightforward from Theorems 1–2.

240 C. Hu

Remark 3. From Theorems 1–2, we can see that the identification algorithm
works for any number of given quantization levels, even for the binary case. The
effect of quantization is characterized by DG

N which monotonically decreases to
0 as N → ∞. Note that DG

2 = 1 − 2
π .

4 Illustrative Examples

Consider a gain system: yk = φT
k θ + dk, where the output is quantized with two

levels. The optimal quantizer is defined in (14). Suppose the true parameter is
θ = 2 and the prior information of the parameter is its belonging to [1, 7], {dk}
is a sequence of i.i.d. Gaussian variables with mean zero and variance σ2

d. The
input φk is a sequence bounded in [1, 5], which satisfies the persistent exciting
condition given in Assumption A1.

The convergence of the estimate θ̂k within 1000 steps can be illustrated in
Fig. 2. We can see that at the beginning the estimation error could be large. Note
that at the begining, θ̂k may not be Gaussian. However, θ̂k is asymptotically
Gaussian, which leads to an asymptotically optimal identification.

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

18

20

k

Es
tim

ati
on

 of
 θ

Fig. 2. Convergence of the estimation θ̂k

The curve of kPk is plotted in Fig. 3 with 1000 steps. We can see clearly that
kPk has its upper and lower bounds, which shows that Pk converges to 0 with
order 1. However, under persistently exciting conditions, the limit kPk may not
exist.

0 100 200 300 400 500 600 700 800 900 1000
4

6

8

10

12

14

16

kP
k

k

Fig. 3. Curve of kPk

Parameter Estimation of Linear Systems with Quantized Innovations 241

5 Conclusions

This paper studies system identification under quantized observations based on
the minimum mean square error (MMSE) criterion. Under the assumption that
the estimate of parameter is Gaussian, the estimation algorithm is constructed
and the optimal quantization is designed.

References

1. Caines, P.: Linear Stochastic Systems. Wiley, Hoboken (1988)
2. Chen, H.F., Guo, L.: Identification and Stochastic Adaptive Control. Birkhäuser,

Boston (1991)
3. Chen, H.F., Yin, G.: Asymptotic properties of sign algorithms for adaptive filtering.

IEEE Trans. Autom. Control 48(9), 1545–1556 (2003)
4. Elvitch, C.R., Sethares, W.A., Rey, G.J., Johnson, C.R.: Quiver diagrams and

signed adaptive fiters. IEEE Trans. Acoust. Speech Sig. Process. 37(2), 227–236
(1989)

5. Eweda, E.: Convergence analysis of an adaptive filter equipped with the sign-sign
algorithm. IEEE Trans. Autom. Control 40(10), 1807–1811 (1995)

6. Gersho, A., Gray, R.: Vector Quantization and Signal Compression. Kluwer Aca-
demic Publishers, Norwell (1991)

7. Graf, S., Luschgy, H.: Foundations of Quantization for Probability Distributions.
Springer, Heidelberg (2000)

8. Hakvoort, R.G., Van den Hof, P.M.J.: Consistent parameter bounding identifica-
tion for linearly parameterized model sets. Automatica 31(7), 957–969 (1995)

9. Kumar, P.R.: Convergence of adaptive control schemes using least-squares para-
meter estimates. IEEE Trans. Autom. Control 35(4), 416–424 (1990)

10. Kushner, H.J.K., Yin, G.: Stochastic Approximation and Recursive Algorithms
and Applications, 2nd edn. Springer, New York (2003)

11. Ljung, L.: System Identification: Theory for the User, I edn. Prentice-Hall, Engle-
wood Cliffs (1987). II edn. (1999)

12. Max, J.: Quantizing for minimum distortion. IEEE Trans. Inf. Theory 6(1), 7–12
(1960)

13. Milanese, M., Vicino, A.: Optimal estimation theory for dynamic systems with set
membership uncertainty: an overview. Automatica 27(6), 997–1009 (1991)

14. Kieffer, J.: Exponential rate of convergence for Lloyds method I. IEEE Trans. Inf.
Theory 28(2), 205–210 (1982)

15. Paǵes, G., Printems, J.: Optimal quadratic quantization for numerics: the Gaussian
case. Monte Carlo Methods Appl. 9(2), 135–165 (2003)

16. Wigren, T.: Adaptive filtering using quantized output measurements. IEEE Trans.
Sig. Process. 46(12), 3423–3426 (1998)

17. Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge
(1985)

LSTM with Matrix Factorization for Road
Speed Prediction

Jian Hu1(B), Xin Xin1, and Ping Guo1,2

1 School of Computer Science and Technology,
Beijing Institute of Technology, Beijing 100081, China

{jhu,xxin}@bit.edu.cn, pguo@ieee.org
2 Laboratory of Graphics and Pattern Recognition,
Beijing Normal University, Beijing 100875, China

Abstract. Road speed prediction is a key point of Intelligent Trans-
port System. Plenty of work have proved the effectiveness and efficiency
of neural network in forecasting freeway velocity. However, the missing
values are obstacles when applying the widely used trajectory data to
neural network. In trajectory data, most roads may not be covered by
enough trajectories in a short time. Due to highly sparsity, it will bring
extra cost if we first fill missing data then perform training. To solve
this issue, we propose a collaborative model that combines LSTM neural
network with matrix factorization to reduce sparsity and make predic-
tion simultaneously. We conduct experiments with a sufficient amount of
trajectories and the results show that our model outperforms cascaded
methods in both MAE and RMSE.

Keywords: Speed prediction · Sparse trajectories · Neural network ·
Matrix factorization

1 Introduction

With the rapid development of cities, traffic congestion becomes more and more
serious. There is a contradiction between accelerating pace of life and long com-
mute. Hence it is necessary to plan travel route and keep away from busy roads.

Predicting road speed is a crucial part of intelligent transportation. Most
traditional work, including time series analysis [1] and neural network [2], are
based on the data from static sensors. It has been proved that the feedforward
neural network is effective for forecasting road velocity [3] and recurrent neural
network is even more accurate [2]. However, only the input data with no missing
values are suitable for neural network. Hence these methods are designed for
speed estimation of freeways where the loop detectors are embedded.

Trajectory data of floating cars can provide a better coverage of the city
road network so we are able to deduce traffic condition in different districts.
Unfortunately, data sparsity and data irrelevance are difficulties to forecast road
speed utilizing the trajectory data.

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 242–249, 2017.
DOI: 10.1007/978-3-319-59072-1 29

LSTM with Matrix Factorization for Road Speed Prediction 243

To solve the above issues, in this paper we focus on the sparsity and model
training at the same time rather than isolate filling missing values from learning
pattern from data. We construct a recurrent neural network to dig out the latent
relation of road speeds between different time slots. Meanwhile we take advantage
of matrix factorization which helps to learn the similarity of different roads and
alleviate sparsity. Finally, we combine the two models and train them together in
order to benefit each other from different aspects of learning. The experimental
results demonstrate that the proposed method outperforms traditional work by
7% in MAE and RMSE.

2 Related Work

There are a lot of researches in the past few decades that elaborate on esti-
mation of speed using complete data. Common methods contain autoregressive
integrated moving average model [1,4], hidden Markov model [5,6], conditional
random fields [7] and neural network [2,3,12]. These methods are designed for
the loop detector data which are dense and complete and their performances
decrease when utilizing trajectory data. Hence we come up with a collaborative
model to improve the accuracy.

Trajectory data provide a large coverage of road network which are suitable
for traffic research [9]. Because of the low cost and easy access, trajectory data
are widely used in Intelligent Transport System [10,11]. There are some work
to do before utilizing these data such as route inference [13] and travel time
allocation [14]. In this paper, we focus on forecasting road speed with sparse
trajectories.

3 Problem Definition

The time slot is set to 10 min. From the trajectory data, we are able to calculate
the rough time that a taxi spends on each road and we record the corresponding
time slot of the trajectory. If a road is covered by more than five floating cars in
same time slot, the average travel speed is considered to be reliable. As shown
in Fig. 1, Vt is a column vector that indicates all the road speeds in time slot

Fig. 1. Problem definition

244 J. Hu et al.

t and each element in Vt corresponds to the velocity of a certain road. The
reliable observations are represented by solid circles while the missing values
are represented by dotted circles. The task is to accurately estimate Vt+1 in the
future according to Vt, Vt−1, Vt−2, ..., Vt−n.

4 Long Short Term Memory with Matrix Factorization

4.1 The Model

Parameter Definitions. Figure 2 gives a general impression of LSTMMF. The
detail elements of the model are defined as follows.
Definition 1: Velocity matrix. The velocity matrix is represented by V and each
element Va,b is the speed of ath road in bth time slot. There are M rows and N
columns in V and V ∈ R

M×N . Vt is the column vector of V which is used to
indicate all the travel speeds in time slot t. Zero-one matrix F denotes whether
the corresponding element in V is a reliable value. 0 indicates missing and 1
indicates non-missing.
Definition 2: Context matrix. To perform the matrix factorization, we introduce
road context matrix R and time slot context matrix T . According to low rank
assumption, we set the rank of R and T to P (P � M and P � N). Hence
matrix R ∈ R

M×P and matrix T ∈ R
P×N . Ra is the row vector in R which

denotes the contexts of ath road and Tb is the column vector in T which denotes
the contexts of bth time slot. By filling the missing values in V with the product
of R and T , we get a complete matrix called V ′.
Definition 3: LSTM layer. The recurrent hidden layer in our model is traditional
LSTMarchitecture [16,18–20].Thefollowingequationsgivethecompletealgorithm
of our hidden layer [15]. At time slot t, xt is the input to LSTM layer and ht is the
output of hidden layer. Input gate, forget gate and output gate are denoted as it, ft

and ot. Input node and cell state are represented by gt and ct [17].

gt = tanh(W gxxt + W ghht−1 + bg) (1)
it = sigm(W ixxt + W ihht−1 + bi) (2)
ft = sigm(W fxxt + W fhht−1 + bf) (3)

Fig. 2. Proposed model

LSTM with Matrix Factorization for Road Speed Prediction 245

ot = sigm(W oxxt + W ohht−1 + bo) (4)
ct = gt � it + ct−1 � ft (5)
ht = tanh(ct) � ot (6)

Inference. Based on the definitions above, we expect the product of matrix
R and matrix T is closed to velocity matrix V at all non-missing values
[8] and at the same time, if we take k successive column vectors in V ′

(V ′
i−k+1, V

′
i−k+2, ..., V

′
i−1, V

′
i) as an input sequence to neural network, the error

between last output and V ′
i+1 will also be minimum.

4.2 Training Algorithm

The complete work flow is demonstrated as follows.

1. Perform standardizing on original data matrix V .
2. Initialize R with standard normal distribution, and initialize T by minimizing

the error between V and product of R and T at non-missing values. Initialize
V ′ by replacing missing data with product of R and T . Initialize all parameters
inside the neural network.

3. Generate input vector sequences and target vectors from V ′. Calculate output
vectors and form them into matrix V ′′ so V ′′ represents the output from
neural network. The square error between V ′ and V ′′ is recorded as e1. The
square error between V ′′ and product of R and T is recorded as e2.

4. Update the neural network parameters based on backpropagation through
time to reduce e1.

5. Modify R and T based on gradient descent to reduce e2. Generate new V ′.
6. Iterate steps 3 to 5 until convergence.

There are two errors governing the process of training. They are defined by
the following equations. λ1 is a parameter that indicates the degree of influence
of matrix factorization on neural network. On the contrary λ2 represents the
degree of influence of neural network on matrix factorization.

e1 =
M∑

i=1

N∑

j=1

[
Fi,j(V ′

i,j − V ′′
i,j)

2 + λ1(1 − Fi,j)(V ′
i,j − V ′′

i,j)
2
]

(7)

e2 =
M∑

i=1

N∑

j=1

[
Fi,j(V ′

i,j − Ri · Tj)2 + λ2(1 − Fi,j)(V ′′
i,j − Ri · Tj)2

]
(8)

4.3 Complexity Analysis

For our network, the computational complexity is dominated by the feedforward
and feedback operations. Because LSTM algorithm is very efficient, with an
excellent update complexity of O(W) where W is the number of weights [16], the
computational complexity of our model is O(Wk) where k denotes the number
of time steps in recurrent layer. Hence the proposed model is capable to handle
large scale data.

246 J. Hu et al.

5 Experiments

5.1 Data Set

The trajectory data are generated by 10,176 taxis during July to November in
2014. We select 5,014 roads inside the 4th ring in Beijing with a total length of
2,359 km and the whole road network covers an area of 256 km2 shown in Fig. 3.
There are 8,830,789 complete travel trajectories with 401,232,582 GPS points in
our data set and the total travel distance is 37,517,780 km. The average frequency
of GPS sampling is 38 s/point. We use the data of July to September for training,
October for evaluation and November for test. The metrics to evaluate results are
mean absolute error(MAE) and root mean square error(RMSE). The definitions
are as follows. H is the set of index i where yi is non-missing.

MAE =
∑

i∈H |yi − ŷi|
Card(H)

(9)

RMSE =

√∑
i∈H (yi − ŷi)

2

Card(H)
(10)

Fig. 3. The road network used in our experiments which covers the majority of roads
inside the 4th ring in Beijing

5.2 Baseline Methods

We compare LSTMMF with the following baseline methods and TensorFlow
[21,22] is utilized to accomplish our experiments.

1. Historical Travel Speed (HTS). The prediction of each road speed is deter-
mined by its own average speed in historical data.

2. Most Recent Travel Speed (MRTS). MRTS estimates the future travel speed
based on the most recent observation of each road.

3. Traditional LSTM (LSTM). First we fill the missing values with the average
speed of each road, then utilize Long Short Term Memory network to estimate
road speed in the future.

LSTM with Matrix Factorization for Road Speed Prediction 247

4. Matrix Factorization and LSTM (MF+LSTM). MF+LSTM performs non-
negative matrix factorization in the first place to reduce sparsity and then
utilizes Long Short Term Memory network.

5. RNN with Matrix Factorization (RNNMF). This method is a simplified ver-
sion of LSTMMF. It replaces Long Short Term Memory cell with traditional
recurrent neural network architecture.

5.3 Overall Performances

Table 1 presents the overall performances of our model and other methods. The
percentages are improvements from our best method. It is obvious that LST-
MMF outperforms all the baselines in terms of MAE and RMSE. The first two
methods are inaccurate and the largest MAE is 2.88. Comparing our model with
LSTM and MF+LSTM in the middle, it is observed that the proposed method
outperforms MF+LSTM by 7.4% in MAE and 7.1% in RMSE. The previous
methods, which make the estimation in a cascaded way, suffer from the propa-
gating errors. There is a slight difference between RNNMF and LSTMMF which
is able to prove the effectiveness of Long Short Term Memory in memorizing
long term dependency.

Figure 4 shows how MAE and RMSE change during a day. It is observed
that the errors are increasing at rush hour. Figure 5 demonstrates the relation
between neural network architecture and the results. The best result is achieved
when using 20 hidden units.

Table 1. Overall performances of different methods

Methods MAE (m/s) RMSE

HTS 2.88 (34.3%) 3.91 (29.4%)

MRTS 2.50 (24.4%) 3.47 (20.5%)

LSTM 2.14 (11.7%) 3.12 (11.5%)

MF+LSTM 2.04 (7.4%) 2.97 (7.1%)

RNNMF 1.95 (3.1%) 2.85 (3.2%)

LSTMMF 1.89 2.76

Fig. 4. Performances differ over time of day

248 J. Hu et al.

Fig. 5. Results on different architecture

6 Conclusion

In this paper, we propose a novel model applied for the previous problem of road
speed prediction. To train neural network and matrix factorization together,
LSTMMF can handle sparse trajectory data well. Experiments verify that the
traditional cascaded ways of utilizing sparse data to neural network suffer from
error propagation and our model is capable of alleviating the disadvantage.

Acknowledgement. The work described in this paper was mainly supported by
the National Nature Science Foundation of China (Nos. 61672100, 61375045), the
Ph.D Programs Foundation of Ministry of Education of China (No. 20131101120035),
the Joint Research Fund in Astronomy under cooperative agreement between the
National Natural Science Foundation of China and Chinese Academy of Sciences
(No. U1531242), Beijing Natural Science Foundation (Nos. 4162054, 4162027), and
the Excellent young scholars research fund of Beijing Institute of Technology.

References

1. Min, W.L., Wynter, L.: Real-time road traffic prediction with spatio-temporal
correlations. Transp. Res. Part C: Emerg. Technol. 19, 606–616 (2011)

2. Lint, J.W.C.V., Hoogendoorn, S.P., Zuylen, H.J.V.: Accurate freeway travel time
prediction with state-space neural networks under missing data. Transp. Res. Part
C: Emerg. Technol. 13, 347–369 (2005)

3. Park, D., Rilett, L.R.: Forecasting multiple-period freeway link travel times using
modular neural networks. Transp. Res. Rec.: J. Transp. Res. Board 1617, 163–170
(1998)

4. Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)
5. Thiagarajan, A., Ravindranath, L., LaCurts, K., Madden, S., Balakrishnan, H.,

Toledo, S., Eriksson, J.: VTrack: accurate, energy-aware road traffic delay estima-
tion using mobile phones. In: Proceedings of the 7th ACM Conference on Embed-
ded Networked Sensor Systems, pp. 85–98. ACM (2009)

6. Qi, Y., Ishak, S.: A hidden Markov model for short term prediction of traffic
conditions on freeways. Transp. Res. Part C: Emerg. Technol. 43, 95–111 (2014)

7. Djuric, N., Radosavljevic, V., Coric, V., Vucetic, S.: Travel speed forecasting by
means of continuous conditional random fields. J. Transp. Res. Board 2263, 131–
139 (2011)

LSTM with Matrix Factorization for Road Speed Prediction 249

8. Funk., S.: Netflix update: Try this at home. http://sifter.org/∼simon/journal/
20061211.html

9. Pang, L.X., Chawla, S., Liu, W., Zheng, Y.: On detection of emerging anomalous
traffic patterns using GPS data. Data Knowl. Eng. 87, 357–373 (2013)

10. Wang, Y., Zheng, Y., Xue, Y.: Travel time estimation of a path using sparse trajec-
tories. In: ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 25–34. ACM (2014)

11. Yuan, J., Zheng, Y., Xie, X., Sun, G.: T-drive: enhancing driving directions with
taxi drivers’ intelligence. IEEE Trans. Knowl. Data Eng. 25, 220–232 (2013)

12. Kumar, K., Parida, M., Katiyar, V.: Short term traffic flow prediction for a non
urban highway using artificial neural network. Procedia-Soc. Behav. Sci. 104, 755–
764 (2013)

13. Deka, L., Quddus, M.: Trip-based weighted trajectory matching algorithm for
sparse GPS data. In: Transportation Research Board Annual Meeting (2015)

14. Jenelius, E., Koutsopoulos, H.N.: Travel time estimation for urban road networks
using low frequency probe vehicle data. Transp. Res. Part B Methodol. 53, 64–81
(2013)

15. Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks
for sequence learning. Computer Science (2015)

16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–1780 (1997)

17. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization.
eprint arxiv (2014)

18. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. Adv. Neural Inf. Process. Syst. 4, 3104–3112 (2014)

19. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proc.
IEEE 78, 1550–1560 (1990)

20. Graves, A.: Supervised Sequence Labelling with Recurrent Neural Networks.
Springer, Heidelberg (2012)

21. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al.: Ten-
sorflow: large-scale machine learning on heterogeneous distributed systems. arXiv
preprint arXiv:1603.04467 (2016)

22. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al.: Tensorflow:
a system for large-scale machine learning. In: Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI) (2016)

http://sifter.org/~simon/journal/20061211.html
http://sifter.org/~simon/journal/20061211.html
http://arxiv.org/abs/1603.04467

Cognition Computation and Neural
Networks

Adaptive Control Strategy for Projective
Synchronization of Neural Networks

Abdujelil Abdurahman(B), Cheng Hu, Ahmadjan Muhammadhaji,
and Haijun Jiang

College of Mathematics and System Sciences, Xinjiang University,
Urumqi, Xinjiang Uyghur Autonomous Region,

People’s Republic of China
abjil1@163.com

Abstract. In this paper, we studied the projective synchronization of a
type of chaotic neural networks (NNs) by introducing a novel adaptive
control strategy. We obtained some useful sufficient criteria for the pro-
jective synchronization of considered networks via designing novel adap-
tive controller and introducing a suitable Lyapunov function. In addition,
we gave a numerical example to validate the feasibility of the obtained
results. It is worth to mention that the projective synchronization is a
very general and it includes chaos stabilization, anti-synchronization and
complete synchronization as its special cases.

Keywords: Neural network · Projective synchronization · Adaptive
control

1 Introduction and Preliminaries

Since Pecora and Carroll [1] first realized the synchronization between the
master-slave systems, the synchronization study of chaotic systems, including
NNs, becomes a hot research topic over the past two decades due to their amaz-
ing applications in number of areas, ranging from pattern recognition to image
processing [2–4]. Meanwhile, many useful synchronization approaches have been
proposed for the chaotic systems such as complete synchronization [5], finite-time
synchronization [3,6,7], lag synchronization [8], generalized synchronization [9],
anti-synchronization [10], and projective synchronization [11,12], etc.

Projective synchronization can be understood that the master and slave sys-
tems realized the synchronization up to a scaling factor pi, i.e., yi(t) → pixi(t),
t → ∞. As compared with complete synchronization, there are a lot of advan-
tages in projective synchronization since the irregularity of the scaling constant
can greatly improve the security of communication [12,13]. As a result, projective
synchronization of chaotic systems received interest of many scholars in different
fields [14–17]. In [16], the projective synchronization of class of NN with time
varying delay was studied via Krasovskii-Lyapunov approach. [17] investigates
the weak projective synchronization of NNs with mixed time-varying delays and
parameter mismatch.
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 253–260, 2017.
DOI: 10.1007/978-3-319-59072-1 30

254 A. Abdurahman et al.

It is worth the mention that all of the above mentioned works realized the
projective synchronization by designing very complex controller that mainly con-
sisted of linear term kiei(t) and activation functions fj(ej(t)). However, in some
special cases, for example when the solutions of master system are bounded we
can optimize the controller by removing the term relevant to fj(ej(t)). In this
paper, we studied the projective synchronization for a class of chaotic NN via
designing a novel adaptive control strategy. By using some inequality techniques
and constructing a suitable Lyapunov function, we derived some useful sufficient
criteria for the projective synchronization of considered networks. Finally, an
example is given to illustrate the effectiveness of the obtained results.

Considered the projective synchronization of following NNs model

ẋi(t) = −cixi(t) +
n∑

j=1

aijfj(xj(t)) + Ii, (1)

where i ∈ I � {1, 2, · · · , n}, ci > 0 denotes to the self connection of ith neuron,
fj(xj(t)) is the activation function, aij are connection weights, and Ii corre-
sponds to the external input of the ith neuron.

Throughout the paper, we assume that the following hypotheses are satisfied
for the model (1):

H1 : For any i ∈ I , the any solution xi(t, x0
i) of system (1) with initial value

x0
i ∈ R is bounded. That is there exists a positive constant Mi such that

|xi(t, x0
i)| ≤ Mi for any i ∈ I and t ≥ 0.

H2 : For any j ∈ I , the activation functions fj(v) is continuous and differen-
tiable with bounded derivatives. That is there exist constants Nj such that,

ḟj(v) ≤ Nj , ∀ v ∈ R.

Remark 1. When the activation functions satisfy the hypothesis H1, then from
Lagrange mean value theorem, it is not difficult to check that fj(v) satisfies the
globally Lipschitz condition. That is,

|fj(v1) − fj(v2)| ≤ Lj |v1 − v2|, ∀ v1, v2 ∈ R,

where Lj = Nj .

In the paper, we consider system (1) as the master system, its slave system
is given as follows

ẏi(t) = −ciyi(t) +
n∑

j=1

aijfj(yj(t)) + Ii + ui(t), (2)

where ui(t) is a controller which will be designed.

Projective Synchronization of Neural Networks via Adaptive Control 255

We define the error term as

ei(t) = yi(t) − pixi(t), i ∈ I , (3)

where pi is a scaling constant.
The main aim of this paper is to design a suitable control input ui(t) such that

the master-slave networks (1) and (2) can achieve projective synchronization. To
do this, first we give a following definition.

Definition 1. The master-slave networks (1) and (2) are said to achieve pro-
jective synchronization if there exist δ ≥ 1 and ε > 0 such that

‖e(t)‖ = ‖y(t) − Px(t)‖ ≤ δ‖y0 − Px0‖e−εt, for all t ≥ 0,

where P = diag(p1, p2, · · · , pn), x(t) and y(t) are the state solutions of master-
slave systems (1) and (2) with initial values x0 = (x0

1, x
0
2, · · · , x0

n)T and y0 =
(y0

1 , y
0
2 , · · · , y0

n)T , respectively.

Remark 2. If the scaling constant pi = −1 or pi = 1 for all i ∈ I , then the syn-
chronization problem between the master-slave systems (1) and (2) will degener-
ate to the anti-synchronization or complete synchronization. If the scaling con-
stant pi = 0, then the synchronization problem will reduced to a chaos control
problem.

2 Main Results

Now, we consider the projective synchronization between the master-slave
systems (1) and (2). First, from the definition of ei(t) = yi(t) − pixi(t), the
error system can be expressed as

ėi(t) = −ciei(t) +
n∑

j=1

aij�ij(ej(t)) + (1 − pi)Ii + ui(t), (4)

where �ij(ej(t)) = fj(yj(t)) − pifj(xj(t)).
Now design the control input ui(t) in slave system (2) as the following form

⎧
⎨

⎩

ui(t) = −βi(t)sign(ei(t)) − ξi(t)ei(t),
β̇i(t) = bi|ei(t)|,
ξ̇i(t) = die

2
i (t),

(5)

where i ∈ I , and bi and di are arbitrary positive constants determined in
later. Then we have a following result on the projective synchronization between
master-slave systems (1) and (2).

Theorem 1. Assume that the hypotheses H1 and H2 are true. If the slave
system (2) is controlled with the adaptive controller (5), then the master-slave
systems (1) and (2) are projective synchronized.

256 A. Abdurahman et al.

Proof. First, noting the definition of �ij(ej(t)), one has

�ij(ej(t)) =
(
fj(yj(t)) − pifj(xj(t))

)

=
(
fj(yj(t)) − fj(pjxj(t)) + fj(pjxj(t)) − pifj(xj(t))

)
.

(6)

From the Lagrange mean value theorem, we get

fj(pjxj(t))− pifj(xj(t)) =fj(pjxj(t))− fj(0)− pi(fj(xj(t))− fj(0)) + (1− pi)fj(0))

=ḟj(η
1
j)pjxj(t)− piḟj(η

2
j)xj(t) + (1− pi)fj(0)),

(7)

where η1
j ∈ (min{0, pjxj(t)},max{0, pjxj(t)}) and η2

j ∈ (min{0, xj(t)},max
{0, xj(t)})

Using the assumptions H1 and H2, we get

ḟj(η1
j)pjxj(t) ≤ LjMj |pj |,

piḟj(η2
j)xj(t) ≤ LjMj |pi|.

(8)

In view of the inequalities (6), (7) and (8), �ij(ej(t)) can be estimated as

|�ij(ej(t))| = |(fj(yj(t)) − pifj(xj(t))
)| ≤ Lj |ej(t)| + rij . (9)

where rij � LjMj(|pj | + |pi|) + |(1 − pi)||fj(0)|.
Now construct the following Lyapunov function

V (t) =
n∑

i=1

{
1
2
e2i (t) +

1
2bi

(βi(t) − βi)2 +
1

2di
(ξi(t) − ξi)2

}
,

where βi and ξi are positive constant determined in later. Calculating the deriv-
ative of V (t), we get

dV (t)

dt
=

n∑

i=1

{
ei(t)

[
− ciei(t) +

n∑

j=1

aij�ij(ej(t)) + (1 − pi)Ii + ui(t)

]

+(ξi(t) − ξi)e
2
i (t) + (βi(t) − βi)|ei(t)|

}

≤
n∑

i=1

{
− ciei(t)

2 +

n∑

j=1

|aij ||ei(t)|(Lj |ej(t)| + rij) − βi(t)|ei(t)| − ξi(t)e
2
i (t)

+(ξi(t) − ξi)e
2
i (t) + [(βi(t) − βi) + (1 − pi)Ii]|ei(t)|

}

≤
n∑

i=1

{
− ciei(t)

2 +
1

2

n∑

j=1

|aij |Lj(e
2
i (t) + e2j (t)) +

n∑

j=1

rij |aij ||ei(t)|

−ξie
2
i (t) − [βi + (1 − pi)Ii]|ei(t)|

}

=

n∑

i=1

[
− ci − ξi +

1

2

n∑

j=1

|aij |Lj +
1

2

n∑

j=1

|aji|Li

]
ei(t)

2

n∑

i=1

[
− βi +

n∑

j=1

rij |aij | + (1 − pi)Ii

]
|ei(t)|,

Projective Synchronization of Neural Networks via Adaptive Control 257

where we used the inequality 2ab ≤ a2 + b2 for any a, b ∈ R.
Choosing βi and ξi large enough such that

ξi ≥ −ci +
1
2

n∑

j=1

|aij |Lj +
1
2

n∑

j=1

|aji|Li + εi,

βi ≥
n∑

j=1

rij |aij | + (1 − pi)Ii,

where εi > 0 for i ∈ I is arbitrarily chosen constant.
Let ε = mini∈I {εi} > 0, then we get

dV (t)
dt

≤ −
n∑

i=1

εie
2
i (t) ≤ −εeT (t)e(t).

Therefore,

eT (t)e(t) ≤ 2V (t) = 2V (0) + 2
∫ t

0

V̇ (s)ds

≤ 2V (0) − 2ε

∫ t

0

eT (s)e(s)ds.

From the Grownwall inequality, we get

eT (t)e(t) ≤ 2V (0)e−2εt,

this implies that
‖e(t)‖ ≤ Λ∗‖y0 − x0‖e−εt, (10)

where positive constant Λ∗ satisfies the following inequality

2V (0) ≤‖y0 − x0‖2 +
n∑

i=1

{
1
bi

(βi(0) − βi)2 +
1
di

(ξi(0) − ξi)2
}

≤Λ∗2‖‖y0 − x0‖2.
(11)

Thus, from Definition 1, the system (1) and system (2) are projective synchro-
nized under the adaptive controller (5). The proof is completed. 	

Remark 3. In the adaptive controller (5), we have to take smaller adaptive gains
bi and di to reduce the control inputs, but this may causes a slower synchroniza-
tion speed. Therefore, when the adaptive controller used to realize the projective
synchronization, the adaptive gains bi and di should be chosen in accordance with
the synchronization speed to be quick and the controller input ui(t) not to be
very large, considering the designer requirements.

258 A. Abdurahman et al.

3 Numerical Simulations

For n = 3, consider the following NNs model

ẋi(t) = −cixi(t) +
3∑

j=1

aijfj(xj(t)) + Ii, (12)

where i = 1, 2, 3, f1(u) = f2(u) = tanh(u), c1 = c2 = 0.94, a11 = 1.650, a12 =
a13 = a21 = −4.2240, a22 = 1.452, a23 = −5.808, a31 = −4.2240, a32 =
5.808, a33 = 1.320 and I1 = I2 = 0.

Fig. 1. The transient behavior of system (12).

The Matlab simulation of (12) under the initial conditions x0
1 = −0.1, x0

2 =
0.2 and x0

3 = 0.1 is given in Fig. 1, from Fig. 1 we can see that the master system
(12) has a chaotic attractor.

In the below, we will consider the projective synchronization of master system
(12) and its slave system described by

ẏi(t) = −ciyi(t) +
3∑

j=1

aijfj(yj(t)) + Ii + ui(t), (13)

where ci, aij , fj and Ij are the same as defined in system (12) and ui(t) is given
by (5).

It is not difficult to check that the hypothesis H2 is satisfied N1 = N2 = 1.
Also from the simulation of system (12) in Fig. 1, we can see that the solutions
of systems (12) are bounded. Thus the hypothesis H1 is also satisfied. Therefore,
feom Theorem 1, the systems (12) and (13) can realize projective synchroniza-
tion. Taking yk(0) = [−0.12+0.35k, 0.212+0.45k, 0.13+0.35k], βk(0) = [0.12+
0.02k, 0.13 + 0.035k, 0.17 + 0.025k], ξk(0) = [0.22 + 0.068k, 0.23 + 0.028k, 0.21 +
0.048k] for k ∈ {−3,−2, · · · 3}, bi = 0.02 and di = 0.08 for i ∈ {1, 2, 3}, then the
time evolution of the synchronization errors (left) and curves (right) between

Projective Synchronization of Neural Networks via Adaptive Control 259

Fig. 2. The evaluation of synchronization errors and curves for pi = −1.

master-slave systems (12) and (13) with scaling constant pi = −1 are shown in
Fig. 2. The adaptive feedback gains βk(t) (left) and ξk(t) (right) are given in
Fig. 3, respectively.

Fig. 3. Time evolution of the adaptive feedback gains βi and ξi for pi = −1.

4 Conclusion

In the paper, we studied the projective synchronization of class of NNs. By using
the analysis technique and designing a novel adaptive controller, some simple
but useful synchronization criteria have been derived. In addition, an example
is provided to validate the feasibility of the introduced synchronization scheme.

Acknowledgments. This work was founded by the National Natural Science Foun-
dation of P.R. China (Grant Nos. 11601464 and 61164004).

260 A. Abdurahman et al.

References

1. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett.
64, 821–824 (1990)

2. Ojalvo, J.G., Roy, R.: Spatiotemporal communication with synchronized optical
chaos. Phys. Rev. Lett. 86, 5204–5207 (2001)

3. Abdurahman, A., Jiang, H.: New results on exponential synchronization of
memristor-based neural networks with discontinuous neuron activations. Neural
Netw. 84, 161–171 (2016)

4. Abdurahman, A., Jiang, H., Teng, Z.: Finite-time synchronization for fuzzy cellular
neural networks with time-varying delays. Fuzzy Sets Syst. 297, 96–111 (2016)

5. Yao, C., Zhao, Q., Yu, J.: Complete synchronization induced by disorder in coupled
chaotic lattices. Phys. Lett. A 377, 370–377 (2013)

6. Abdurahman, A., Jiang, H., Teng, Z.: Finite-time synchronization for memristor-
based neural networks with time-varying delays. Neural Netw. 69, 20–28 (2015)

7. Abdurahman, A., Jiang, H., Hu, C., Teng, Z.: Parameter identification based on
finite-time synchronization for Cohen-Grossberg neural networks with time-varying
delays. Nonlinear Anal. Modell. Control 20(3), 348–366 (2015)

8. Abdurahman, A., Jiang, H., Teng, Z.: Exponential lag synchronization for
memristor-based neural networks with mixed time delays via hybrid switching
control. J. Frankl. Inst. 353(13), 2859–2880 (2016)

9. Rulkov, N.F., Sushchik, M.M., Tsimring, L.S.: Generalized synchronization of
chaos in directionally coupled chaotic systems. Phys. Rev. E 51, 980 (1995)

10. Kim, C.M., Rim, S., Kye, W.H., et al.: Anti-synchronization of chaotic oscillators.
Phys. Lett. A 320, 39–46 (2003)

11. Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic
systems. Phys. Rev. Lett. 82, 304 (1999)

12. Abdurahman, A., Jiang, H., Rahman, K.: Function projective synchronization
of memristor-based Cohen-Grossberg neural networks with time-varying delays.
Cogn. Neurodyn. 9(6), 603–613 (2015)

13. Runzi, L.: Adaptive function project synchronization of Rössler hyperchaotic sys-
tem with uncertain parameters. Phys. Lett. A 372, 3667–3671 (2008)

14. Abdurahman, A., Jiang, H., Teng, Z.: Function projective synchronization of
impulsive neural networks with mixed time-varying delays. Nonlinear Dyn. 78,
2627–2638 (2014)

15. Bao, H., Cao, J.: Projective synchronization of fractional-order memristor-based
neural networks. Neural Netw. 63, 1–9 (2015)

16. Ghosh, D., Banerjee, S.: Projective synchronization of time-varying delayed neural
network with adaptive scaling factors. Chaos Solitons Fractals 53, 1–9 (2013)

17. Huang, J., Li, C., Zhang, W., Wei, P.: Weak projective lag synchronization of neural
networks with parameter mismatch. Neural Comput. Appl. 24, 155–160 (2014)

Real-Time Decoding of Arm Kinematics During
Grasping Based on F5 Neural Spike Data

Narges Ashena1(B), Vassilis Papadourakis2, Vassilis Raos2, and Erhan Oztop1

1 Ozyegin University, Istanbul, Turkey
narges.ashena@ozu.edu.tr

2 University of Crete, Iraklion, Greece

Abstract. Several studies have shown that the information related to
grip type, object identity and kinematics of monkey grasping actions is
available in macaque cortical areas of F5, MI, and AIP. In particular,
these studies show that the neural discharge patterns of the neuron pop-
ulations from the aforementioned areas can be used for accurate decoding
of action parameters. In this study, we focus on single neuron decoding
capacity of neurons in a given region, F5, considering their functional
classification, i.e. as to whether they show the mirror property or not.
To this end, we recorded neural spike data and arm kinematics from a
monkey that performed grasping actions. The spikes were then used as
a regressor to predict the kinematic parameters. Results show that sin-
gle neuron real-time decoding of the kinematics is not perfect, but rea-
sonable performance can be achieved with selected neurons from both
populations. Considering the neurons that we have studied (N:32), non-
mirror neurons seem to act as better single-neuron decoders. Although
it is clear that population-level activity is needed for robust decoding,
single-neuron decoding capacity may be used as a quantitative means to
classify neurons in a given region.

Keywords: Neural decoding · Grasping · Arm kinematics · Ventral
premotor cortex (F5) · Image processing

1 Introduction

In this study, we aim to assess the real-time kinematic decoding capacity of
ventral premotor cortex (area F5) neurons. Area F5, representing hand action
[1], includes neurons called mirror neurons [2–4]. Mirror neurons show significant
activity when the monkey performs an action as well as when it observes a
similar action being done by another monkey or experimenter. In the literature,
there have been efforts to apply the decoding paradigm for generating data to
help neural prostheses development [5,6]. Grip type classification has been the
target for several decoding studies based on ventral premotor cortex [6–8,11],
dorsal premotor cortex [9], as well as parietal cortex [7] neural activity. In [7],
Bayesian classifier approach is used to classify power and precision grips with
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 261–268, 2017.
DOI: 10.1007/978-3-319-59072-1 31

262 N. Ashena et al.

5 differently oriented targets. A Support Vector Machines classifier is used as
another possible approach for decoding grip types in [6,9]. In [11], it has been
shown that grip type prediction based on single neuron activity can be made for
some F5 neurons. A recent study shows that, in addition to grip type decoding,
the details of hand shaping and reaching phase can be accurately decoded by
using population level neural activity [10]. However, to our knowledge the specific
decoding power of mirror vs. non-mirror neurons in F5 has not been addressed in
the literature. To this end, with this study we aim to investigate the single neuron
kinematics decoding power of F5 mirror and non-mirror neurons comparatively.
For extracting monkey hand kinematics, grasping actions of the monkey are
captured by a video camera together with the neural spike data. Image processing
techniques are used to extract kinematics data related to arm movement. These
kinematics data are the angle of lower arm with respect to the vertical axis
and the approximate distance between monkey wrist and the object center. The
results of this study show that single neuron decoding of the kinematics data is
possible and non-mirror neurons seem to be better decoders than mirror neurons.

2 Materials and Methods

2.1 Data Definition and Experimental Setup

The monkey was seated in front of the behavioral apparatus which was a rotating
turntable on which 3D geometrical solids were accommodated [12]. The objects
were presented one at a time, always in the same central position. The following
objects and grips were used: large sphere, whole hand prehension with all the
fingers wrapped around the object and the palm in contact with the object;
cylinder, finger prehension, using all fingers but the thumb; ring, hook grip with
the index finger inserted into a ring; cube in vertical groove, advanced precision
grip using the pulpar surface of the distal phalanx of the index finger opposed to
the pulpar surface of the distal phalanx of the thumb. At the beginning of each
trial, a LED above the selected object turned on and the monkey had to fixate
it and press a key. Following a fixation period, a dimming of the LED signaled
the onset of the reach-to-grasp movement. The monkey had to reach for, grasp,
pull and hold the object while fixating it until the extinction of the LED cuing
its release. The period from the start of the monkey’s movement to the time
of object pulling is defined as the movement epoch. Monkey’s movement was
recorded at 120 frames per second by a camera that viewed the experimental
setup from a constant distance. A second LED, hidden from the monkey’s view,
was used to align the video frames with neural activity. This LED changed its
state when the monkey’s hand left the home position to reach for the object and
when the object was grasped. For alignment purposes, it was crucial to robustly
detect the state of this LED. We recorded the activity of neurons from area F5
of the ventral premotor cortex from the monkey’s left hemisphere (contralateral
to the moving arm). Neurons that responded during the execution of grasp-
ing movements were also tested for the mirror property. The monkey observed

Real-Time Decoding of Arm Kinematics During Grasping 263

while the experimenter grasped the same objects using the same grips. Neu-
rons responding to the observation task were further classified as mirror neurons
whereas the rest were classified as non-mirror neurons.

Fig. 1. Average of extracted kinematics of all the trials and the neurons ± standard
deviation for each object

2.2 Kinematics Data Extraction

The first step for extracting kinematics data from videos is to find the frames
corresponding to the movement epoch. As mentioned earlier, there is an LED
hidden from the monkey’s view and it is used for aligning the video frames with
the neural activity. Measuring the average intensity of pixels in the rectangular
area which contains this LED followed by a mixed semi-autonomous thresholding
is used to find the time that LED changes its state. Having frames simultaneous
with the movement epoch extracted, motion parameters can be obtained from
each frame. Because the camera location is fixed in the experiment setup, the
physical measures of the setup are as analogous to pixel scale in the frames.
Moreover, fixed location of the camera causes the initial position of the monkey
wrist and the center of the object to be constant in all the frames of all the
trials. Knowing the initial location of the monkey’s wrist and the location of
the target, the sub-area of the frames where the action happened is obtained.
Using foreground detection, moving pixels from the sub-area are extracted and
regions of connected foreground pixels (components) are defined. In order to
reduce noise and foreground pixels related to sudden jerks in the setup while
the monkey is performing the task, a time profile is assigned to each extracted
component. Components with short time profile are considered as noise and jerks
and eliminated from frames. Finally, only arm pixels remain in the frame which
can be processed further by image processing techniques in order to obtain the

264 N. Ashena et al.

motion parameters which are the angle of lower arm with respect to the vertical
axis parallel to monkey body and the approximate distance between monkey
wrist and the object center. For the sake of simplicity, the former is named as
angle and the latter is named as distance.

Figure 1 shows the average of extracted kinematics. For each object and neu-
ron combination, the average is calculated including all of the trials. Shaded area
around each average curve shows the corresponding standard deviation. From
the figure, it can be seen that monkey takes longer to grasp ring and cube as
compare to sphere and cylinder, and kinematic parameters can be distinguished
for different grips. Considering each grip, Fig. 1 shows that kinematics data are
extracted consistently.

2.3 Motion Parameters Decoding

For real-time prediction of kinematics parameters of angle and distance based
on neural activity, spike trains were preprocessed by the following steps. First,
Gaussian convolution with sliding windows was used. These windows (50 ms
wide) were centered at the time index corresponding to each frame of the move-
ment epoch (a frame time index in spike train vector can be easily obtained using
alignment information). The variance for Gaussian was taken as one-third of the
window width. The number of spikes in each window was counted and applied
as a coefficient of the Gaussian for the same window. Because the windows were
overlapping, the final signal was the accumulation of the results of Gaussian
convolution applied on each window. As a result s(t) is obtained to represent
the spike train in continuous manner (t refers to the time index of each frame).

As the signals during the movement may be envisioned to drive the monkey
arm during grasping, which is a plant with non negligible dynamics, it is rea-
sonable to assume that effect of a single spike is not instantaneous but should
affect the future. Therefore as the final step of pre-processing each spike related
activity is expanded in time in a decaying fashion as shown in Eq. 2 where S(t) is
the aggregated neural activity for time index t which is the summation of current
and weighted previous activities. δ is the rate of decay and it depends on the
duration of movement. Intuitively, S(t) is simply the weighted sum of activities
until time t weighted with an exponential factor to discount for distance in time.

S(t) =
t∑

tidx=1

s(tidx) ∗ e
−(t−tidx)2

δ (1)

To decide the best model for predicting angle and distance, we used polyno-
mial family as model space. As the result of cross validation based model selec-
tion, 2nd degree polynomials were found to give best generalization for the data.
Subsequently, the prediction models are defined with 3 parameters as shown in
Eq. 2 where WD

1...3 and WA
1...3 refer to model parameters corresponding to dis-

tance and angle respectively. S represents the aggregated neural activity that is
described above. The model parameters can be found easily by pseudo-inverse
once the S(t), Distance(t) and Angles(t) are available.

Real-Time Decoding of Arm Kinematics During Grasping 265

Distance(t) = WD
0 + WD

1 S(t) + WD
2 S(t)2

Angle(t) = WA
0 + WA

1 S(t) + WA
2 S(t)2

(2)

For each neuron and object combination, there are up to 10 trials to be included
in regression. In order to assess the prediction ability of neurons leave one out
(LOO) cross validation is used. As a result, for each neuron and object combi-
nation, we obtain an average training and test (cross validation) error, which
is used as a criterion to compare neurons’ performance in decoding kinemat-
ics data. The final model is obtained as the average of the models obtained in
each cross validation iteration and used to report decoding performance of single
neuron (see Figs. 2 and 3).

Fig. 2. Non-mirror neuron 449 performance as average ± standard deviation over all
the trials for each object: the first row is the average of the aggregated neural activity,
second and third rows represent angle and distance respectively: blue curve is the
average of extracted kinematics and the red curve is the average of the corresponding
predicted kinematics. (Color figure online)

3 Results and Discussion

In this study, arm kinematics decoding capacity of 32 neurons (14 mirror and 18
non-mirror) is investigated. Polynomials with degree 2 are found to be suitable
for decoding kinematics. For each neuron, regression problem is solved 8 times
considering all 4 objects and 2 types of kinematics data. The evaluation and
comparison of the neurons’ performance for each kinematics decoding are rep-
resented by the regression output as test error and fitting curve. If a neuron is

266 N. Ashena et al.

not a good decoder for a specific kinematics data, the regression performs poorly
and it fails in providing acceptable fit by typically generating an approximately
constant line which is equal to the average of real data. On the other hand, if
a neuron is a good decoder, the regression performance improves considerably
and it generates an output curve that approximates the real data. Figures 2 and
3 show the decoding results related to two non-mirror and mirror neurons with
good decoding performance. The first row of the figures shows neural activity,
the second row shows the result of decoding the angle and last row shows the
result of decoding the distance. All the subplots are the average of performed
trials for a specific object manipulation. The bold curve in the subplots depicts
the average of related data in the respective subplot over the trials and for each
bold curve standard deviation can be seen as shaded area around it.

Fig. 3. Mirror neuron 453 performance as average ± standard deviation over all the
trials for each object: the first row is the average of the aggregated neural activity,
second and third rows represent angle and distance respectively: blue curve is the
average of extracted kinematics and red curve is the average of the corresponding
predicted kinematics. (Color figure online)

In order to compare mirror and non-mirror neurons contribution in kinemat-
ics, their decoding performance can be considered as a quantitative comparison
criteria. Each neuron performance is observed for angle and distance separately.
For decoding each kinematics data, each neuron’s performance is defined as
all-object error which is the average value of decoding errors for all objects.
Figure 4 summarizes decoding results for mirror and non-mirror neurons con-
sidering both kinematics. Vertical axis shows mean of all-object decoding error

Real-Time Decoding of Arm Kinematics During Grasping 267

Fig. 4. Comparing mirror and non-mirror neurons decoding performance based on
mean all-object prediction error for each group

for each group. In order to eliminate outliers and noisy neurons, a few worst
units are left out from both groups: Horizontal axis of subplots represents the
percentage of included neurons from each group (corresponding to the exclusion
of 2–3 neurons from each group). For each percentage, mirror and non-mirror
neurons performance are shown as blue and red bars respectively. T-test with
0.05 significance level is applied to determine the differences and the correspond-
ing p-value of each comparison is reported above the bar graphs. The significant
differences between the decoding performance of non-mirror and mirror neurons
are marked with * above the bars.

Considering all-object error as neuron performance criteria, non-mirror neu-
rons seem to be a better decoder than mirror neurons. The difference becomes
significant by focusing on angle kinematics and involving 85% of each popula-
tion. From this result, it can be suggested that non-mirror neurons are better
general decoders while mirror neurons are possibly more object specific decoders.
Experiments with more neurons should be carried out to back up the current
results.

Acknowledgments. This work was supported by the grant OBSERVENEMO within
the framework of the bilateral S&T Cooperation Program between the Republic of
Turkey and the Hellenic Republic. Grant No. 113S391 funded by TUBITAK and grant
14UR OBSERVENEMO co- Financed by the European Union and the Greek State,
MCERA/GSRT.

References

1. Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., Matelli, M.:
Functional organization of inferior area 6 in the macaque monkey. II. area F5 and
the control of distal movements. Exp. Brain Res. 71, 491–507 (1988)

2. Di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., Rizzolatti, G.: Understanding
motor events: a neurophysiological study. Exp. Brain Res. 91, 176–180 (1992)

268 N. Ashena et al.

3. Gallese, V., Fadiga, L., Fogassi, L., Rizzolatti, G.: Action recognition in the pre-
motor cortex. Brain 119, 593–609 (1996)

4. Rizzolatti, G., Fadiga, L., Gallese, V., Fogassi, L.: Premotor cortex and the recog-
nition of motor actions. Cogn. Brain. Res. 3, 131–141 (1996)

5. Musallam, S., Corneil, B.D., Greger, B., Scherberger, H., Andersen, R.A.: Cognitive
control signals for neural prosthetics. J. Sci. 305, 258–262 (2004)

6. Carpaneto, J., Raos, V., Umilta, M.A., Fogassi, L., Murata, A., Gallese, V., Micera,
S.: Continuous decoding of grasping tasks for a prospective implantable cortical
neuroprosthesis. J. Neuroeng. Rehabil. 9, 84 (2012)

7. Townsend, B.R., Subasi, E., Scherberger, H.: Grasp movement decoding from pre-
motor and parietal cortex. J. Neurosci. 31(40), 14386–14398 (2011)

8. Carpaneto, J., Umilta, M.A., Fogassi, L., Murata, A., Gallese, V., Micera, S., Raos,
V.: Decoding the activity of grasping neurons recorded from the ventral premotor
area F5 of the macaque monkey. J. Neurosci. 188, 80–94 (2011)

9. Hao, Y., Zhang, Q., Controzzi, M., Cipriani, C., Li, Y., Li, J., Zhang, S., Wang, Y.,
Chen, W., Carrozza, M.C., Zheng, X.: Distinct neural patterns enable grasp types
decoding in monkey dorsal premotor cortex. J. Neural Eng. 11, 066011 (2014)

10. Menz, V.K., Schaffelhofer, S., Scherberger, H.: Representation of continuous hand
and arm movements in macaque areas M1, F5, and AIP: a comparative decoding
study. J. Eng. 12(5), 056016 (2015)

11. Kirtay, M., Papadourakis, V., Raos, V., Oztop, E.: Neural representation in F5:
cross-decoding from observation to execution. J. BMC Neurosci. 16, 190 (2015)

12. Papadourakis, V., Raos, V.: Cue-dependent action-observation elicited responses
in the ventral premotor cortex (area F5) of the macaque monkey. Society for Neu-
roscience Abstracts, Program No. 263.08 (2013)

Application of Deep Belief Network to Land
Cover Classification Using Hyperspectral

Images

Bulent Ayhan and Chiman Kwan(&)

Signal Processing, Inc., Rockville, MD 20850, USA
{bulent.ayhan,chiman.kwan}@signalpro.net

Abstract. This paper summarizes some preliminary results of applying deep
belief network (DBN) to land classification using hyperspectral images. The
performance of DBN is then compared with several conventional classification
approaches. A fusion approach is also proposed to combine spatial and spectral
information in the classification process. Actual hyperspectral image data were
used in our investigations. Based on the particular data and experiments, it was
found that DBN has slightly better classification performance if only spectral
information is used and has slightly inferior performance than a conventional
method if both spatial and spectral information are used.

Keywords: Deep learning � DBN � SVM � SAM � Hyperspectral image � Land
classification

1 Introduction

According to the book by Liang et al. [1], land cover classification is very important for
quantifying the location, extent, and variability of change; the causes and processes of
change; and the responses to and consequences of change. Existing data products
related to land cover classification use raw data from MODIS and SPOT, which are
multispectral imagers. Hyperspectral images has great potential in discriminating dif-
ferent targets due to the availability of high spectral resolution. Multispectral and
hyperspectral images have been used in anomaly detection, classification, and change
detection [2–8, 15, 17–19] in recent years. Actually, NASA is planning a HyspIRI
mission that incorporates a hyperspectral imager with more than 200 spectral bands,
30 m resolution, and global coverage [9].

Deep learning has gaining popularity in recent years and has been applied to many
applications, including target recognition, speech recognition, and many others [10].
With more layers in the neural network, it is believed that deep neural network will be
able to capture the complicated relationships between various features. The goal of our
study is to investigate the application of deep learning in land cover classification. First,
we would like to see how well deep belief network (DBN), which is one type of deep
neural network, can achieve in pixel classification for land cover type using hyper-
spectral images. Second, we would like to see how DBN performs as compared to
some of theconventional algorithms based on spectral information only. Third, we

© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 269–276, 2017.
DOI: 10.1007/978-3-319-59072-1_32

would like to explore whether the fusion of spatial and spectral information can further
improve the land cover classification performance.

Our paper is organized as follows. In Sect. 2, we will briefly describe several land
cover classification algorithms, including DBN, Support Vector Machine (SVM),
spectral angle mapper (SAM), and a variant of SAM called M-SAM. Section 3 will
summarize a comparative study of the various algorithms to a notable hyperspectral
image data. Finally, a few concluding remarks and ideas for future research will be
summarized in Sect. 4.

2 Technical Approach

In this research, we have applied 4 algorithms in our land classification investigations.
In the following sections, we briefly describe the key algorithms applied in our studies.

2.1 SAM [13] and M-SAM [4]

SAM (Spectral Angle Measure) [13] is a well-known and simple technique for pixel
signature classification. Given a known signature vector and a test pixel signature,
SAM computes the angle between the two and use the angle for discrimination. The
formula for SAM can be seen in (1). We used an extended version of SAM in such a
way that multiple radiance profiles of the same target are used for detection. When
constructing the similarity score image, we formed the detection scores by picking the
highest similarity of the test data pixel to these extracted target signatures; we called
this M-SAM (Multiple-SAM) [4]. Suppose si ¼ ðsi1; si2; . . .; siLÞT is pixel in the
hyperspectral image cube with L bands and rj ¼ ðrj1; rj2; . . .; rjLÞT is the jth target
signature variant, where j = 1,…, K and K is the total number of signature variants for
the target of interest.

The similarity measure, SAM, between the two radiance profiles, si and rj, SAM
(si,rj) is then computed as:

SAMðsi; rjÞ ¼ cos�1 si; rj
� �

sik k rj
�� ��

 !

ð1Þ

where si; rj
� � ¼P

L

l¼1
siLrjL and sik k ¼ PL

l¼1
s2iL

� �1=2

and rj
�� �� ¼ PL

l¼1
r2jL

� �1=2

. M-SAM

computes the similarity score between the test pixel, si, and each of the target radiance
profile variant, rj, and assigns the highest similarity value as the final similarity value.

2.2 Support Vector Machine (SVM) [11, 12, 16]

In the past two decades, theoretical advances and experimental results have drawn
considerable attention to the use of kernel functions in data clustering and

270 B. Ayhan and C. Kwan

classification. Among them stands out the SVM, which is a general architecture that
can be applied to pattern recognition and classification, regression, estimation and other
problems such as speech and target recognition. Notable advantages of SVM
are: (1) there is no over training problem; (2) the training data set can be small;
(3) convergence is guaranteed. Since SVM is well known, we omit the details and
would like to mention that we used the SVM toolbox [12] in our experiments.

2.3 Deep Neural Network (DNN)

In the past few years, there have been intense research in using DNN for various
applications. The idea of DNN is not new. It is a multilayer perceptron network with
many layers. The learning algorithm is based on the well-known back-propagation
algorithm. However, recent progresses in combining back-propagation with effective
pretraining, in incorporating different kinds of nonlinearities, in regularizing net weight
estimation, and in GPU based parallel processing have demonstrated tremendous
potentials of deep learning in many machine learning tasks. According to [10], DNN
has a number of advantages such as better capturing of hierarchical feature represen-
tations, learning more complex behavior and using distributed representations to learn
the interactions of many different factors on different levels.

There are two popular DNNs: DBN (Deep Belief Network) and CNN (convolu-
tional neural network). In this paper, we selected DBN and the toolbox developed in
[14] was used in our studies.

3 Comparative Studies

3.1 About the Test Hyperspectral Image Data

The hyperspectral image data used in this example is called “NASA-KSC” image [15].
The image shown in Fig. 1 corresponds to the mixed vegetation site over Kennedy
Space Center (KSC), Florida. The image data was acquired by the National Aero-
nautics and Space Administration (NASA) Airborne Visible/Infrared Imaging Spec-
trometer instrument, on March 23, 1996. AVIRIS acquires data in a range of 224 bands
with wavelengths ranging from 0.4 lm to 2.5 lm. The KSC data have a spatial res-
olution of 18 m. Excluding water absorption and low signal-to noise ratio
(SNR) bands, there are 176 spectral bands for classification. In the NASA-KSC image,
there are 13 different land-cover classes available. It should be noted that only a small
portion of the image has been tagged with the ground truth information and these pixels
with the tagged ground truth information have been used in the classification study.

3.2 DBN Structure Used in This Study

DBNs can be viewed as a composition of simple, unsupervised networks such as
restricted Boltzmann machines (RBMs). We used a 3-Level DBN architecture:

Application of Deep Belief Network to Land Cover Classification 271

(a) Level-1 (RBM with 200 hidden units)
(b) Level-2 (RBM with 200 � 200 hidden units)
(c) Level-3 (connection to y (output) with neural network)

3.3 Results and Comparison with Benchmark Techniques SAM
and SVM

In the image, tagged parts of the image are separated into three sets, i.e., training,
validation, and testing data, with a separation ratio of 6:2:2. 60% of the tagged samples
are randomly chosen as the training set, and 20% and 20% of the tagged samples are
randomly selected for the validation and testing sets. The validation set is to pick the
training parameters and the network architecture for DBN such that the resultant trained
model on the training set provides the best performance on the validation set. Once the
best trained model is identified using the validation set, the model is then applied on the
test data set to produce the final classification results. In addition to test data set, the
classification results are generated on the validation and training sets as well.

For the benchmark techniques to compare with DBN, SVM (Support Vector
Machine), SAM (Spectral Angle Mapper) and an extended version of SAM,
Multiple-SAM, techniques are used. In SAM, signatures for each land-cover class are
randomly picked (one signature for each class); this is the SAM version without
utilizing the validation data set. For SAM with utilizing the validation set, the class
signatures are picked from the training set such that these picked signatures would
provide the best similarity scores on the corresponding class samples in the validation
data set.

In Multiple-SAM (M-SAM), for each class, a total of 20 and 50 representative
signatures are picked from the training set such that these signatures provide the best
similarity scores on the corresponding class samples in the validation set. These picked
signatures are then used on the testing set. The similarity score between each of the test

Fig. 1. NASA-KSC image and tagged pixels with ground truth information.

272 B. Ayhan and C. Kwan

data sample and each of the picked signatures is computed. The averaged similarity
scores for each class are generated for each test data sample and the class label is
decided based on the highest similarity. In SVM, LIBSVM toolbox is used with a
kernel type of Radial Basis Function and automatically regularized support vector
classification SVM method type (nu-SVC).

For using spatial information, the bands 12 (Blue), 20 (Green) and 29 (Red) in the
hyperspectral image data are picked and a spatial window with a size of 7 � 7 is
formed for each pixel such that the pixel of interest is in the center of the local window
size. The local RGB image cube with a size of 7 � 7 � 3 is then transformed into a
vector form and added to the end of the spectral information of the corresponding pixel.
It should be noted that the number of spectral bands for a pixel in this hyperspectral
image is 176; after adding the vector form of the pixel spatial information which is 147;
the size of the vector for an input pixel becomes 323.

The correct classification rates are shown in Tables 1, 2, 3, 4 and 5. In particular,
only spectral information was used in Tables 1, 2 and 3. It can be seen that DBN results
are slightly better than SVM. SAM and M-SAM do not work well perhaps due to the
presence of mixed pixels in the image data. When spatial and spectral information is
fused, both SVM and DBN have been improved by more than 3 percentage points.
Now, SVM performed slightly better.

Table 1. Preliminary results with applying SAM to hyperspectral data- Spectral information
only (random selection of training/testing/validation sets)

Utilizing
validation
set

Number of
signatures
for each
class

Train set
(correct
classification
rate)

Validation set
(correct
classification
rate)

Test set
(correct
classification
rate)

SAM no 1 0.6511 0.6676 0.6479
SAM yes 1 0.7819 0.7801 0.7847
M-SAM yes 20 0.7848 0.7820 0.7818
M-SAM yes 50 0.7887 0.7957 0.7876

Table 2. Preliminary results with applying DBN to hyperspectral data - Spectral information
only (random selection of training/testing/validation sets)

Architecture Epochs Train set
(correct
classification
rate)

Validation set
(correct
classification
rate)

Test set
(correct
classification
rate)

DBN 200 and
(200 � 200)

1,500 0.7493 0.7566 0.7488

DBN 200 and
(200 � 200)

5,000 0.8940 0.8895 0.8826

DBN 200 and
(200 � 200)

20,000 0.9299 0.9247 0.9234

DBN 200 and
(200 � 200)

30,000 0.9436 0.9374 0.9389

Application of Deep Belief Network to Land Cover Classification 273

One reason that DBN did not outperform other conventional algorithms is perhaps
due to the fact of limited training data. Usually, the more the training data, the better the
performance of DBN is. Another reason could be due to the selection of the structure in
the applied DBN and that a more proper DBN structure might further improve DBN’s
performance.

Table 3. Preliminary results with applying SVM to hyperspectral data - Spectral information
only

LIBSVM options Train set
(correct
classification
rate)

Validation
set (correct
classification
rate)

Test set
(correct
classification
rate)

SVM nu-SVC with radial basis
function kernel type(LIBSVM
parameters: ‘-s 1 -t 2 -d 3 -r 0
-c 1 -n 0.1 -p 0.1 -m 100 -e
0.000001 -h 1 -b 0 -wi 1)

0.9658 0.9374 0.9340

Table 4. Preliminary results with applying DBN to hyperspectral data – Spectral + Spatial
information (random selection of training/testing/validation sets)

Architecture Epochs Train set (correct
classification rate)

Validation set
(correct
classification rate)

Test set
(correct
classification
rate)

DBN 200 and
(200 � 200)

1,500 0.8024 0.7947 0.7924

DBN 200 and
(200 � 200)

5,000 0.9504 0.9169 0.9389

DBN 200 and
(200 � 200)

20,000 0.9863 0.9589 0.9602

DBN 200 and
(200 � 200)

30,000 0.9925 0.9648 0.9631

Table 5. Preliminary results with applying SVM to hyperspectral data – Spectral + Spatial
information only

LIBSVM options Train set
(correct
classification
rate)

Validation
set (correct
classification
rate)

Test set
(correct
classification
rate)

SVM nu-SVC with radial basis
function kernel type(LIBSVM
parameters: ‘-s 1 -t 2 -d 3 -r 0
-c 1 -n 0.1 -p 0.1 -m 100 -e
0.000001 -h 1 -b 0 -wi 1)

0.9863 0.9795 0.9709

274 B. Ayhan and C. Kwan

4 Conclusions

We presented some preliminary results of applying DBN to land cover classification
using hyperspectral image data. DBN is also compared with several conventional
algorithms. It was observed that DBN is comparable to SVM in this study. Since the
experiments were carried out by using a limited data set, it is premature to claim that
DBN is better or worse than conventional methods. Extensive studies which investigate
different DBN structures and other deep learning approaches are needed in the future.

References

1. Liang, S., Li, X., Wang, J.: Advanced Remote Sensing: Terrestrial Information Extraction
and Applications. Academic Press, Cambridge (2012)

2. Zhou, J., Kwan, C., Ayhan, B., Eismann, M.: A novel cluster kernel RX algorithm for
anomaly and change detection using hyperspectral images. IEEE Trans. Geosci. Remote
Sens. 54(11), 6497–6504 (2016)

3. Zhou, J., Kwan, C., Budavari, B.: Hyperspectral image super-resolution: a hybrid color
mapping approach. SPIE J. Appl. Remote Sens. 10, 035024 (2016)

4. Ayhan, B., Kwan, C.: On the use of radiance domain for burn scar detection under varying
atmospheric illumination conditions and viewing geometry. J. Sig. Image Video Process. 11,
605–612 (2016)

5. Kwan, C., Choi, J.H., Chan, S., Zhou, J., Budavari, B.: Resolution enhancement for
hyperspectral images: a super-resolution and fusion approach. In: IEEE International
Conference on Acoustics, Speech, and Signal Processing, New Orleans (2017)

6. Nguyen, D., Tran, T., Kwan, C., Ayhan, B.: Endmember extraction in hyperspectral images
using l-1 minimization and linear complementary programming. In: SPIE, vol. 7695 (2010)

7. Li, S., Wang, W., Qi, H., Ayhan, B., Kwan, C., Vance, S.: Low-rank tensor decomposition
based anomaly detection for hyperspectral imagery. In: IEEE International Conference on
Image Processing (ICIP), Quebec City, Canada (2015)

8. Qu, Y., Guo, R., Wang, W., Qi, H., Ayhan, B., Kwan, C., Vance, S.: Anomaly detection in
hyperspectral images through spectral unmixing and low rank decomposition. In:
International Geoscience and Remote Sensing Symposium (IGARSS), Beijing (2016)

9. Lee, C.M., Cable, M.L., Hook, S.J., Green, R.O., Ustin, S.L., Mandl, D.J., Middleton, E.M.:
An introduction to the NASA hyperspectral infrared imager (HyspIRI) mission and
preparatory activities. Remote Sens. Environ. 167, 6–19 (2015)

10. Lecun, Y., Ranzato, M.: Deep learning tutorial. In: 30th International Conference on
Machine Learning, Atlanta (2013)

11. Qian, T., Li, X., Ayhan, B., Xu, R., Kwan, C., Griffin, T.: Application of support vector
machines to vapor detection and classification for environmental monitoring of spacecraft.
In: Wang, J., Yi, Z., Zurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3973,
pp. 1216–1222. Springer, Heidelberg (2006). doi:10.1007/11760191_177

12. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans.
Intell. Syst. Technol. 2, 27:1–27:27 (2011)

13. Kwan, C., Ayhan, B., Chen, G., Chang, C., Wang, J., Ji, B.: A novel approach for spectral
unmixing, classification, and concentration estimation of chemical and biological agents.
IEEE Trans. Geosci. Remote Sens. 44, 409–419 (2006)

Application of Deep Belief Network to Land Cover Classification 275

http://dx.doi.org/10.1007/11760191_177

14. Palm, R.B.: Prediction as a candidate for learning deep hierarchical models of data.
Technical University of Denmark (2012)

15. Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of
hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 7(6),
2094–2107 (2014)

16. Qian, T., Xu, R., Kwan, C., Linnell, B., Young, R.: Toxic vapor classification and
concentration estimation for space shuttle and international space station. In: Yin, F.-L.,
Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173, pp. 543–551. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-28647-9_90

17. Ayhan, B., Kwan, C., Li, X., Trang, A.: Airborne detection of land mines using mid-wave
infrared (MWIR) and laser-illuminated-near infrared images with the RXD hyperspectral
anomaly detection method. In: Fourth International Workshop on Pattern Recognition in
Remote Sensing, Hong Kong (2006)

18. Ayhan, B., Kwan, C., Vance, S.: On the use of a linear spectral unmixing technique for
concentration estimation of APXS spectrum. J. Multi. Eng. Sci. Technol. 2(9), 2469–2474
(2015)

19. Zhou, J., Kwan, C.: Fast anomaly detection algorithms for hyperspectral images. J. Mult.
Eng. Sci. Technol. 2(9), 2521–2525 (2015)

276 B. Ayhan and C. Kwan

http://dx.doi.org/10.1007/978-3-540-28647-9_90

Reservoir Computing with a Small-World
Network for Discriminating Two

Sequential Stimuli

Ke Bai1, Fangzhou Liao2, and Xiaolin Hu3,4(B)

1 Department of Physics, Tsinghua University, Beijing, China
2 Department of Biomedical Engineering, Tsinghua University, Beijing, China

3 Department of Computer Science and Technology, Tsinghua National Laboratory
for Information Science and Technology, Beijing, China

xlhu@tsinghua.edu.cn
4 Brain-Inspired Computing Research Center, Tsinghua University, Beijing, China

Abstract. Recently, reservoir network was used for simulating the
sequential stimuli discrimination process of monkeys. To deal with the
inefficient memory problem of a randomly connected network, a winner-
take-all subnetwork was used. In this study, we show that a network
with the small-world property makes the WTA subnetwork unnecessary.
Using the reinforcement learning in the output layer only, the proposed
network successfully learns to accomplish the same discrimination task.
In addition, the model neurons exhibit heterogeneous firing properties,
which is consistent with the physiological data.

Keywords: Reservoir computing · Small-world network · Decision
making · Reinforcement learning

1 Introduction

Working memory is a mechanism that maintains and processes information for
several seconds during cognitive tasks [1]. One behavior experiment based on the
delayed discrimination task [12] is usually used as working memory paradigm. A
monkey received two vibrating tactile signals with different frequencies (f1, f2)
consecutively. Each of them lasts for 0.5 s and they are separated with a 3 s
time interval. The monkey’s task is to discriminate which one has the higher
frequency.

Several classical models have been proposed to model this task [9,11]. Reser-
voir computing [5,8] is attractive for simulating this task because it avoids the
artificially designed learning rule except for the last readout layer, and its ran-
domly initialized weights lead to heterogeneous neuron property. Barak et al.
[2] used it to achieve a good result. Cheng et al. [3] used reinforcement learning
algorithm to train the readout layer, but it still needs a biologically implausible
winner take all layer.

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 277–284, 2017.
DOI: 10.1007/978-3-319-59072-1 33

278 K. Bai et al.

From the perspective of biological plausibility and the idea of the complex
system, we constructed a constrained E-I balance reservoir computing model
with a small-world connection constraint. This model meets the three standards
mentioned above when simulating this task.

2 Methods

2.1 Experiment Paradigm

The simulation paradigm is consistent with the biology experiment. The input
is a time series with two square waves standing for different frequencies (f1, f2),
each lasts for 500 ms. A 500 ms initial time is at the beginning with no inputs.
The delay between the two stimuli is 3000 ms. Before the final decision-making,
200 ms are left (Fig. 1a).

2.2 Input

Biology experiments revealed that the firing rate of the input signal to PFC is
proportional to the stimulus frequency [13], so in our network, the input signal f1
and f2 are represented by two random number sampled from 0.1 to 1. The input
neuron is randomly connected to 3% neurons in the reservoir network and the
synapse weights are randomly initialized by sampling from standard log-normal
distribution. The weights are fixed after the initialization.

2.3 Reservoir

The reservoir network is the core part of this model. It contains a total of
N = 1200 neurons. To make the network consistent with biology, we divided
all the neurons into two categories: excitatory and inhibitory (960 excitatory,
240 inhibitory), the output weights for these two kinds of neurons are con-
strained to be positive and negative, respectively. The connection probability
of excitatory-excitatory (EE), excitatory-inhibitory (EI), inhibitory-excitatory
(IE), inhibitory-inhibitory (II) is 0.05, 0.05, 0.2, 0.2, respectively. The absolute
connection weights of these excitatory and inhibitory neurons are sampled ran-
domly from standard log-normal distribution. Others are set to be 0. The connec-
tion matrix can be seen in Fig. 1b. The weights are fixed after the initialization.

All neurons share the same activation function:

ri =

{
r0 + r0 tanh(x/r0), if x ≤ 0,

r0 + (rmax − r0) tanh(x/(rmax − r0)), if x > 0,
(1)

where r0 is 0.1, and rmax is 1.5.
The dynamic equation:

dxi

dt
= −xi + g

N∑
i=1

wijrj + σ, (2)

Reservoir Computing with a Small-World Network 279

where xi and ri denote the membrane potential and the firing rate of i-th neuron,
wij denotes the connection weight from j-th neuron to i-th neuron, τ = 0.3 s
is the time constant, σ is an Gaussian noise with standard deviation of 0.001
independent of i and t. g denotes the gain factor, which is selected purposely,
the detail will be discussed in Sect. 2.5.

The differential equation is discretized with Euler method. The time step is 5
ms. After iteration for 4.7 s, the firing rates are read out by the output neurons.

Fig. 1. The model architecture. (a) The network is composed of three parts: the input
neuron, reservoir network, output neurons. The dashed and solid lines represent train-
able and fixed weights, respectively. (b) The connection matrix of the reservoir network.
Only a subset of the network (50 of 1200) is shown here. prc = 0.2 in this case. Notice
the small-world structure in the EE part.

2.4 Output

There are two output neurons in the network, which correspond to the choice of
f1 and f2 respectively. 50% neurons in the reservoir network are connected to
them and the synapses weights are also randomly initialized by sampling from
standard log-normal distribution. The plasticity weights are updated using a
reward-based reinforcement learning rule [7].

vl =
N∑

k=1

wklrk, (3)

wkl := wkl + η(R − E[R])(rkvl) − αwkl, (4)

where vl is the activation of l-th output neuron, R is the reward, it is 1 or 0
determined by whether the network get the correct choice, when f1 = f2, the
reward is given randomly. E[R] is the expected reward, approximated by

E[R] =
1

1 − exp(vcorrect − vwrong)
. (5)

280 K. Bai et al.

2.5 Gain Factor

Gain factor is the g mentioned in Eq. (2). This quantity scales the transfer
matrix W of the reservoir network. It is a very important factor. For exam-
ple, in linear models, if the maximum absolute eigenvalue of gW is larger than
one, the firing rates will diverge to infinity, if it is smaller than one, the fir-
ing rates will astringent to zero. In the nonlinear recurrent model with weights
wij ∼ N(0, J2/N), and activation function tanh(gx), Sompolinsky et al. [14]
found that when gJ > 1, the neural net is chaotic, and when gJ = 1, the net
is on the edge of chaos and some interesting properties emerge. However, in our
model, we use a different nonlinear activation function, so the conclusions above
cannot be used directly. To keep the firing rate in a proper range, we adjust the
value of g so that the product of g and the maximum absolute eigenvalue is 1.2.

2.6 Small-World Structure

In the model, we add the small-world constraint only in the EE connection. The
small-world network is something between the regular network and the random
network. In a regular network, each neuron only connects with its neighboring
neurons. In a random neural network, every neuron randomly connects to other
neurons. The small-world network can be viewed as a regular network with
some randomly connected synapses. The proportion of the randomly connected
synapses is denoted by prc. For small-world network, prc ∈ (0, 1), for regular
network, prc = 0, and for random network, prc = 1. Notice that the small-
world property only changes the connection topology, and does not change the
overall connection probability and connection strength sampling. To investigate
the optimal prc, we evaluated prc = 0, 0.1, 0.2, 0.3 · · · 0.9, 1.

2.7 Training and Testing Procedure

We run 80 experiments for each prc. In every experiment, weights are initialized
independently. f1 is evenly sampled 13 times between 0.1 and 1, so does f2,
and the number of training set is the number of (f1, f2) combinations: 169.
The number of epochs is 2. The learning rate is exponentially decayed by 1/e
every 100 iterations. In the testing stage, f1 and f2 are evenly sampled 10 times
between 0.1 and 1, so that testing set has 100 examples. During the test phase,
each testing example is tested 22 times with independent noise.

3 Result

3.1 Classification Accuracy

The classification result is not only different under different prc, but also varies
a lot in parallel experiments. Here we show a typical good result, which is an
example under prc = 0.1. The accuracy mainly depends on |f1 − f2|. The closer

Reservoir Computing with a Small-World Network 281

frequency, the lower right rate. The result of the experiment data and the sim-
ulation data is shown in Fig. 2a. Also, notice the asymmetry: the accuracy at
f1 = 0, f2 = 0.1 is lower than that of f1 = 0.1, f2 = 0, and the accuracy at
f1 = 1.0, f2 = 0.9 is lower than that of f1 = 0.9, f2 = 1.0. It indicate that when
f1 is close to the extreme value (0 and 1) the network can not remember the
exact value, so its decision relies more on the f2, when f2 is large, it choose f2,
when f2 is small, it choose f1. It is very similar with the biological experiment
data [9].

3.2 The Importance of the Small-World Network

The experiment result is very random, so that we have to run many paral-
lel experiments and use statistics to evaluate whether the small-world network
improves the probability of getting a good result. The answer is yes. We can see
it from Fig. 2b. There are two baselines which are worth paying attention to.
First, this is a two-classification task, so the baseline is 0.5. Because the output
reinforcement layer is a weak learner and we only have 338 training examples,
the model may be trapped in the local minimal point, which leads the result
of some experiments lower than 50%. Second, if the network has poor memory
ability, which is to say, it can only remember the information of f2 and forget f1.
Under this situation, the optimal policy is choosing f2 if f2 > 0.5 and choosing
f1 is f2 < 0.5, so that the accuracy should be 75%. Considering the noise level,
we consider accuracy higher than 80% as good performance.

Among the eleven reconnection probability, prc = 0.2 gets the highest median
right rate, 81%. And this value is significantly larger than most other prc. The
Wilcoxon rank-sum test results between prc = 0.2 and other groups show that the
differences between prc = 0.2 and groups prc = 0, 0.3, 0.4, 0.5...1 are significant
(FDR = 0.05).

3.3 Heterogeneous Firing Rate

In paper of Machens et al. [10], the activity of neurons often varies strongly
in time. The author illustrated this by smoothed peristimulus time histogram
of nine cells in prefrontal cortex during the f1 stimulus and the delay interval.
In our model, we found several corresponding neurons for each pattern and the
result can be seen in Fig. 3. The display sequence of these nine neurons is exactly
the same as the biological data shown in Fig. 1 in [10].

3.4 Regression Analysis

We use the least-square method to do the linear regression:

r(t) = b0(t) + b1(t)f1 + b2(t)f2, (6)

where r(t) is the firing rate of a neuron at time t, b0, b1, b2 are coefficients. We
applied it at three time points: the last point before the input of f2 (t = 4.0 s),

282 K. Bai et al.

Fig. 2. The results on the test set. (a) The classification results at prc = 0.1. The
accuracy at each grid is averaged from 22 parallel runs with independent noise. (b) The
classification results at different prc level. The experiment id is sorted by accuracy.

Fig. 3. The smoothed peristimulus time histograms from nine neurons in the reservoir
network. The curves are colored according to f1. The red color represents the largest
value. As the color become closer to blue the value gets lower. (Color figure online)

Fig. 4. The regression results. The three subplots show regression results at three time
points. Notice the emergence of f2 tuning cells in (b) and f1 − f2 tuning cells in (c).

Reservoir Computing with a Small-World Network 283

the point during the input of f2 (t = 4.3 s) and the last point which is used
as the input of the output layer (t = 4.7 s). We conducted a test [4] to find
the neurons tuned to f1, f2, f1 − f2, which corresponds to the neurons with
b1 �= 0, b2 �= 0, b1 − b2 �= 0 respectively. Their coefficients distribution is shown in
Fig. 4. Notice that there gradually appears neurons tuning to f1, f2 and f1 − f2
as time goes by.

There is actually another kind of f1 − f2 tuning neurons in our model: the
two output neurons can also be considered as f1 − f2 tuning cells. Theoretically,
the output neurons can take input solely from the f1 − f2 tuning neurons in
the reservoir, or it can take input from f1 tuning cells and f2 tuning cells and
conduct the minus operation on synapses. But we did not further inspect which
mechanism it use. Biological results showed that there does exist many neurons
tuning to f1 − f2 [6]. But we can not identify which kind of neuron they are
according to our categorization.

4 Conclusion and Discussion

In this work, we adopted the small-world architecture in reservoir network and
found that when prc is at the proper range, it can improve the performance
relative to both the regular network and the random network. And it also shows
similar firing rate pattern with the biological result. We believe that the reason
is the reservoir network with small-world constraint achieved both good informa-
tion storage ability (like the regular network) and neuron function variety (like
the reservoir network). It is possible to generalize our model to more reservoir
computing tasks, or be used as a strategy for recurrent network initialization
method.

Acknowledgments. This work was supported in part by the National Basic Research
Program (973 Program) of China under Grant 2013CB329403, in part by the National
Natural Science Foundation of China under Grant 91420201, Grant 61332007, and
Grant 61621136008, and in part by the German Research Foundation (DFG) under
Grant TRR-169.

References

1. Baddeley, A.D.: Working Memory. Oxfoid Psychology Series, vol. 11. Oxford Uni-
versity Press, New York (1986)

2. Barak, O., Sussillo, D., Romo, R., Tsodyks, M., Abbott, L.: From fixed points
to chaos: three models of delayed discrimination. Prog. Neurobiol. 103, 214–222
(2013)

3. Cheng, Z., Deng, Z., Hu, X., Zhang, B., Yang, T.: Efficient reinforcement learn-
ing of a reservoir network model of parametric working memory achieved with a
cluster population winner-take-all readout mechanism. J. Neurophysiol. 114(6),
3296–3305 (2015)

4. Draper, N.R., Smith, H.: Applied Regression Analysis. Wiley, Hoboken (2014)

284 K. Bai et al.

5. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural
networks-with an erratum note. Bonn Ger.: Ger. Natl. Res. Center Inf. Technol.
GMD Tech. Rep. 148, 34 (2001)

6. Jun, J.K., Miller, P., Hernández, A., Zainos, A., Lemus, L., Brody, C.D., Romo,
R.: Heterogenous population coding of a short-term memory and decision task. J.
Neurosci. 30(3), 916–929 (2010)

7. Loewenstein, Y., Seung, H.S.: Operant matching is a generic outcome of synaptic
plasticity based on the covariance between reward and neural activity. Proc. Natl.
Acad. Sci. 103(41), 15224–15229 (2006)

8. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable
states: a new framework for neural computation based on perturbations. Neural
Comput. 14(11), 2531–2560 (2002)

9. Machens, C.K., Romo, R., Brody, C.D.: Flexible control of mutual inhibition: a
neural model of two-interval discrimination. Science 307(5712), 1121–1124 (2005)

10. Machens, C.K., Romo, R., Brody, C.D.: Functional, but not anatomical, separation
of “what” and “when” in prefrontal cortex. J. Neurosci. 30(1), 350–360 (2010)

11. Miller, P., Wang, X.J.: Inhibitory control by an integral feedback signal in pre-
frontal cortex: a model of discrimination between sequential stimuli. Proc. Natl.
Acad. Sci. Unit. States Am. 103(1), 201–206 (2006)

12. Romo, R., Hernández, A., Zainos, A., Lemus, L., Brody, C.D.: Neuronal correlates
of decision-making in secondary somatosensory cortex. Nat. Neurosci. 5(11), 1217–
1225 (2002)

13. Romo, R., Salinas, E.: Flutter discrimination: neural codes, perception, memory
and decision making. Nat. Rev. Neurosci. 4(3), 203–218 (2003)

14. Sompolinsky, H., Crisanti, A., Sommers, H.J.: Chaos in random neural networks.
Phys. Rev. Lett. 61(3), 259–262 (1988)

Single Channel Speech Separation Using Deep
Neural Network

Linlin Chen1,2, Xiaohong Ma1(B), and Shuxue Ding2

1 School of Information and Communication Engineering,
Dalian University of Technology, Dalian, China

maxh@dlut.edu.cn
2 School of Computer Science and Engineering,

University of Aizu Fukushima, Aizuwakamatsu, Japan
sding@u-aizu.ac.jp

Abstract. Single channel speech separation (SCSS) is an important
and challenging research problem and has received considerable interests
in recent years. A supervised single channel speech separation method
based on deep neural network (DNN) is proposed in this paper. We
explore a new training strategy based on curriculum learning to enhance
the robustness of DNN. In the training processing, the training samples
firstly are sorted by the separation difficulties and then gradually intro-
duced into DNN for training from easy to complex cases, which is similar
to the learning principle of human brain. In addition, a strong discrimi-
native objective function for reducing the source interference is designed
by adding in the correlation coefficients and negentropy. The efficiency of
the proposed method is substantiated by a monaural speech separation
task using TIMIT corpus.

Keywords: Single channel speech separation · Deep neural network ·
Discriminative object function

1 Introduction

Single channel speech separation (SCSS) is to extract speech from one signal
that is a mixture of multiple sources. It is a vital issue of speech separation and
may play an important role in many applications. Researchers have devoted to
solving SCSS problems from various perspectives, which can be categorized into
computational auditory scene analysis (CASA) based and model based.

Approaches based on CASA have proven to be effective to attack the SCSS
problem in an unsupervised mode. In [15], Wang et al. proposed to utilize tempo-
ral continuity and cross-channel correlation for speech segregation. The method
can segregate speech from interfering sounds but it does not perform well for high
frequency part of speech. Hu et al. improve it by segregating resolved and unre-
solved harmonics differently [5]. A common problem occurred in many CASA-
based methods is that the recovered speech usually miss some parts. In order

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 285–292, 2017.
DOI: 10.1007/978-3-319-59072-1 34

286 L. Chen et al.

to solve this problem, shape analysis techniques in image processing such as
labeling and distance function are applied to speech separation in [10].

In model based approaches, non-negative matrix factorization (NMF) is one
of the most popular techniques for SCSS in recent years. Conventionally, the basis
of each source is trained separately first and then the magnitude spectra of mixed
signal is decomposed into a linear combination of the trained basics. Finally, the
separated signals can be obtained from the corresponding parts of decomposed
mixture [4,12]. However, the separation become difficult when sources are overlap
in subspaces. Various attempts have been made to solve this problem [13,16].

Deep neural networks (DNN) has achieved state-of-art results in many appli-
cations such as object detection [3], speech recognition [17] owing to its strong
mapping ability. Kang et al. use DNN to learn the mapping between the mixture
and the corresponding encoding vectors of NMF [8]. In [6], a simple discrimina-
tive training criterion which takes into account the squared error of prediction
and other sources is proposed.

In this paper, we focus on training strategy and objective function. This
paper considers DNN as a kind of system learning rules from a mess of training
samples. These training samples are sorted by a ranking function and fed to DNN
in ascending order of learning difficulty. Furthermore, we use correlation coeffi-
cients and negentropy, rather than the criterion in [6], to model the similarity of
recovered signals, which aim at reducing the interference of other sources. Exper-
imental results demonstrated that the proposed method outperformed NMF and
approach in [6].

The organization of this paper is as follows: Sect. 2 introduces the proposed
methods, including the learning strategy and discriminative objective function,
Sect. 3 presents the experimental setting and results based on the TIMIT corpus
and conclusion is given in Sect. 4.

2 Proposed Method

2.1 Problem Formulation

In this paper, we assume the observed signal is a mixture of source signals of two
speakers. Ignored the attenuations of the path, the problem can be formulated as

x(t) = sT (t)+sI(t) (1)

where sT (t) and sI(t) represent the target speech and interfering speech respec-
tively. Denoting x(t, f) as the short time Fourier transform (STFT) of x(t), the
formula in the STFT domain can be represented as

x(t, f) = sT (t, f) + sI(t, f) (2)

Phase recovery is ignored in this paper since the human is not so sensitive to
phase distortion. The magnitude spectrum in Eq. (2) can be written in matrix
form as follows

X ≈ ST + SI (3)
where ST and SI are the unknown magnitude spectrums need to be estimated
by DNN.

Single Channel Speech Separation Using Deep Neural Network 287

2.2 System Framework

The overall framework of the proposed method is showed in Fig. 1. Firstly, pairs
of mixed signal and the sources are transformed to time-frequency domain by
STFT and frames of magnitude spectrum can be obtained. Then, these training
samples are sorted by a ranking function from “easy” to “hard” and fed to the
DNN gradually. After the model is mature enough, it is applied to process the
magnitude spectrum of test data and predict the spectrums of sources. Finally,
an overlap add method is used to synthesize the waveform of the estimated
signals [7].

Fig. 1. System framework

2.3 DNN Learning Strategy

For all we know, one starts with small and easy curriculums, and then gradually
increases the difficulty level. Inspired by this principle, Bengio et al. proposed a
new learning paradigm in machine learning framework called curriculum learn-
ing (CL) [1]. The main idea is sorting the training samples by a difficulty mea-
surement and then introducing them from easy to complex to the model. This
strategy is proved to be effective to alleviate the bad local optimum problem in
non-convex optimization and improve generalization ability [9,11]. The key of
CL methodology is to find a ranking function that assigns learning importance
to training samples. So the key to us is to find an appropriate ranking function
for source separation problem.

In source separation, the target speech is corrupted by interfering speech to
varying degrees over time. Empirically, we define the ranking function as follows:

f(xi, sTi) = 10log
PsTi

Pxi

(4)

where xi denotes ith frame of mixed magnitude spectrum which is fed to DNN,
sTi represents ith frame of target speech, PsTi

and Pxi
are the energy of sTi and

xi respectively. It is easy to see that the bigger the value of f is the “easier” a
sample is, since it means a larger proportion of energy the source accounts for.
According to the function, the training samples can be sorted and the system
will learn from easy to hard.

Formally, let J(g(xi,w),yi) denote the objective function of neural network
which calculates the cost between the target output y = [sTi ; sIi] and the esti-
mated magnitude spectrums g(xi,w). Here w represents the model parameters
inside DNN. Then DNN can be optimized by minimizing:

288 L. Chen et al.

min
w,v

m∑

i=1

viJ(g(xi,w),yi) (5)

where vi is determined by:

vi =
{

1 f(xi, sTi) > λ or f(xi, sIi) > λ
0 otherwise

(6)

Equation (6) indicates that a sample is considered as easy one as long as either
one of two sources occupies most energy of mixture, since it implies this sample
could be separated more easily and should be introduced to the model earlier.
The parameter λ controls the pace at which the model learns new samples. It
decreases over time. When λ is large, only easy samples will be fed to DNN. As
time goes on, λ decreases and more samples with more severe corrosion will be
gradually appended to train a more mature model.

2.4 Discriminative Objective Function

In the training stage, the magnitude spectrums from pairs of mixed signal and
the sources are utilized to train the DNN. Given xi as input of DNN, the output
g(xi,w) = [̃sTi ; s̃Ii] are expected to have small error with the target output
y, where s̃Ti and s̃Ii represent DNN estimates of target output sTi and sIi , so
conventionally one can optimize the neural network parameters by minimizing
the squared error:

Jmse(g(xi,w),yi) =
1
2

m∑

i=1

(||sTi − s̃Ti ||2 + ||sIi − s̃Ii ||2) (7)

Equation (7) enables DNN to separate two sources after training a set of samples.
In order to further improve the separation quality, here we propose a different
criteria to enhance the discrimination of the two predicted sources. An impor-
tant fact is that Eq. (7) does not take into account source interference. If the
two sources are similar, DNN may be confused and mistakes the target speech
for the interfering speech. Correlation coefficient is a metric that measures the
correlation between two signals and we expect to minimize the correlation coef-
ficients of the sources to reduce the interference. Moreover, starting from an
information theoretic viewpoint, the discrimination problem can be formulated
as reducing the mutual information. Mutual information is a natural measure
of the dependence between random variables. The mutual information can be
approximated by the negentropy. Minimizing the mutual information is roughly
equivalent to finding directions in which the negentropy is maximized. Taking
into account these two measures, we add the following two parts to the original
objective function in Eq. (7):

Jcor(g(xi,w),yi) =
m∑
i=1

corr(̃sTi , sIi) + corr(̃sIi , s
T
i)

=
m∑
i=1

cov(s̃Ti ,sIi)√
D(s̃Ti)

√
D(sIi)

+ cov(s̃Ii ,s
T
i)√

D(s̃Ii)
√

D(sTi)

(8)

Single Channel Speech Separation Using Deep Neural Network 289

Jneg(g(xi,w),yi) =
m∑
i=1

(HG(̃sTi) + HG(̃sIi))

=
m∑
i=1

(
∫

p(̃sTi) log p(s̃Ti)

pG(s̃Ti)
ds̃Ti +

∫
p(̃sIi) log p(s̃Ii)

pG(s̃Ii)
ds̃Ii)

(9)

where Eqs. (8) and (9) represent the correlation coefficients and negentropy of
the sources, respectively. In Eq. (8), cov(·) denotes covariance and D(·) denotes
variance. In Eq. (9), pG(θ) is the density of a Gaussian random variable with the
same covariance matrix as θ. To simplify the calculations, here we use nonlinear
correlation coefficients [2] and negentropy approximate formula [7] instead,

Jcor(g(xi,w),yi) =
m∑

i=1

(
n∑

j=1

s̃Ti,jg(sIi,j) +
n∑

k=1

s̃Ii,kg(sTi,k)) (10)

Jneg(g(xi,w),yi) = −1
a

m∑

i=1

E(e− a(s̃Ti)2

2 + e− a(s̃Ii)2

2) (11)

In Eq. (10), r(·) denotes nonlinear function and 2n denotes the dimension
of DNN output. E(·) in Eq. (11) represents the statistical expectation of vari-
ables and the parameter a is usually chosen as 1. We expect to minimize Jcor

and maximize Jneg for enhancing the discrimination. In order to estimate the
unknowns in the model, we solve the following problem:

argmin J(g(xi,w),yi) (12)

where
J(g(xi,w),yi) = Jmse + η1Jcor − η2Jneg (13)

is the joint discriminative function which we seek to minimize. η1 and η2 are
regularization parameters which are chosen experimentally.

3 Experiments

3.1 Experimental Setup

In order to evaluate the performance of the proposed method, we conduct exper-
iments on speech separation with TIMIT corpus. Two speakers, one male and
one female, are chosen from database. To each speaker, 80% of the sentences
are for training and 20% for testing. Mixed speech utterances were generated
by mixing the sentences randomly from the two speakers at 0 dB signal-to-noise
ratio (SNR). For increasing the number of training samples, we circularly shift
points of the signal from male speaker and mix it with the female source. The
time frequency representations are computed by the 512 point short time Fourier
transform using a 32 ms window with a step size of 16 ms. Then 257-dimensional
magnitude spectrums are used as input features to train DNN.

290 L. Chen et al.

The separation result obtained from the proposed algorithm is compared with
that of the standard NMF and DNN-based separation method [6]. In the NMF
experiment, The number of basis vectors is set to 40 for each source. As for DNN,
the architecture which jointly optimizes time-frequency masking functions as a
layer with DNN in [6] is applied here. The neural network has 2 hidden layers
with 160 nodes each, 2 hidden layers with 300 nodes each and 3 hidden layers
with 160 nodes each. Pre-training is not adopted here benefits from the activation
function Rectified Linear Unit (ReLU), which can reach the same performance
without requiring any unsupervised pre-training on purely supervised tasks with
large labeled datasets [6]. Empirically, the nonlinear function in Eq. (8) is chosen
as tanh(·) and the value of parameters η1 and η2 is in the range of 0.1 and 0.3.

The separation performance is evaluated in terms of three metrics, signal to
distortion ratio (SDR), signal to interference ratio (SIR), and signal to artifacts
ratio (SAR) [14].

3.2 Experimental Results

The separation results with 2 hidden layers and 160 nodes are reported in Table 1.
The DNNori in Table 1 means the basic DNN model with the objective function
in Eq. (7). It is obvious from the results that all DNN-based methods outperform
NMF, which confirms that neural network has better generalization and sepa-
ration capacity. Compared the results between DNNori and DNNori-cl, which
denotes the DNNori using the learning strategy proposed in Sect. 2, the SDR,
SIR, and SAR all have been improved. It confirms the need for curriculum learn-
ing. Sorting the training samples by the ranking function and making the neural
network learn like human brain from easy to complex does help the system to
be more robust. As for DNNori-dis, we use the discriminative cost function in
(13) instead of the function in Eq. (7). It is interesting to find that the improve-
ment in SDR is so slight that can be ignored, but the SIR achieves around
1.2 dB gain compared to DNNori. The results match our expectation when we
design the objective function which aims at enhancing the discrimination and
reducing the interfering of the other source. The disadvantage is that some arti-
facts are introduced into the separation and the SAR is lower than DNNori.

Table 1. Speech separation results of various separation algorithms.

Method Measurement (dB)

SDR SIR SAR

NMF 6.008 8.722 7.624

DNN[13] 7.70 11.53 8.07

DNNori 7.58 10.81 8.31

DNNori-cl 7.73 10.88 8.78

DNNori-dis 7.62 12.06 7.86

DNNori-cl-dis 7.87 12.12 8.15

Single Channel Speech Separation Using Deep Neural Network 291

Finally, in DNNori-cl-dis, the curriculum learning strategy and the discrimina-
tive objective function are both added in. We can see from the results that the
two techniques both play an effective role in single channel source separation.
To strongly demonstrate the jointly function of the curriculum learning strategy
and the discriminative objective function proposed, we do some experiments on
different layers and different notes respectively. And the results are shown in
Table 2. According to Table 2, we can see that the case having 3 hidden layers
and 160 nodes for each layer and the case having 2 hidden layers and 200 nodes
for each layer have achieved different level improvement, which is fit for the
conclusion we make above. The model achieves best performance in SDR and
SIR.

Table 2. Speech separation results of various network structures.

Method Measurement (dB)

SDR SIR SAR

DNNori-cl-dis (3*160) 7.883 11.693 8.522

DNN[13] (3*160) 7.486 10.962 8.257

DNNori-cl-dis (2*300) 7.79 11.477 8.459

DNN[13] (2*300) 7.763 11.343 8.442

4 Conclusions

In this paper, the DNN is used to model each source signal and trained to sep-
arate the mixed signal. Two novel improvements have been proposed to further
enhance the separation performance: a learning strategy based on curriculum
learning and a discriminative objective function that reduces the interference
from the other source. We have proved that the proposed algorithm achieves
better results through a series of experiments on speech separation. The future
work will focus on improving the proposed method by combining the phase sep-
aration with DNN training.

References

1. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Pro-
ceedings of the 26th Annual International Conference on Machine Learning, pp.
41–48. ACM (2009)

2. Cichocki, A., Unbehauen, R., Rummert, E.: Robust learning algorithm for blind
separation of signals. Electron. Lett. 30(17), 1386–1387 (1994)

3. Erhan, D., Szegedy, C., Toshev, A., Anguelov, D.: Scalable object detection using
deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2147–2154 (2014)

292 L. Chen et al.

4. Grais, E.M., Erdogan, H.: Single channel speech music separation using nonnega-
tive matrix factorization and spectral masks. In: 2011 17th International Confer-
ence on Digital Signal Processing (DSP), pp. 1–6. IEEE (2011)

5. Hu, G., Wang, D.: Monaural speech segregation based on pitch tracking and ampli-
tude modulation. IEEE Trans. Neural Netw. 15(5), 1135–1150 (2004)

6. Huang, P.S., Kim, M., Hasegawa-Johnson, M., Smaragdis, P.: Deep learning for
monaural speech separation. In: 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1562–1566. IEEE (2014)

7. Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component
analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)

8. Kang, T.G., Kwon, K., Shin, J.W., Kim, N.S.: Nmf-based target source separation
using deep neural network. IEEE Sig. Process. Lett. 22(2), 229–233 (2015)

9. Khan, F., Mutlu, B., Zhu, X.: How do humans teach: on curriculum learning and
teaching dimension. In: Advances in Neural Information Processing Systems, pp.
1449–1457 (2011)

10. Lee, Y.K., Kwon, O.W.: Application of shape analysis techniques for improved
casa-based speech separation. IEEE Trans. Consum. Electron. 55(1), 146–149
(2009)

11. Ni, E.A., Ling, C.X.: Supervised learning with minimal effort. In: Zaki, M.J.,
Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS, vol. 6119, pp. 476–
487. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13672-6 45

12. Smaragdis, P., Raj, B., Shashanka, M.: Supervised and semi-supervised separation of
sounds from single-channel mixtures. In: Davies, M.E., James, C.J., Abdallah, S.A.,
Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 414–421. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-74494-8 52

13. Sun, D.L., Mysore, G.J.: Universal speech models for speaker independent single
channel source separation. In: 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 141–145. IEEE (2013)

14. Vincent, E., Gribonval, R., Févotte, C.: Performance measurement in blind audio
source separation. IEEE Trans. Audio Speech Lang. Process. 14(4), 1462–1469
(2006)

15. Wang, D.L., Brown, G.J.: Separation of speech from interfering sounds based on
oscillatory correlation. IEEE Trans. Neural Netw. 10(3), 684–697 (1999)

16. Wang, Z., Sha, F.: Discriminative non-negative matrix factorization for single-
channel speech separation. In: 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 3749–3753. IEEE (2014)

17. Xue, S., Abdel-Hamid, O., Jiang, H., Dai, L., Liu, Q.: Fast adaptation of deep
neural network based on discriminant codes for speech recognition. IEEE/ACM
Trans. Audio Speech Lang. Process. 22(12), 1713–1725 (2014)

http://dx.doi.org/10.1007/978-3-642-13672-6_45
http://dx.doi.org/10.1007/978-3-540-74494-8_52

Sparse Direct Convolutional Neural Network

Vijay Daultani(B), Yoshiyuki Ohno, and Kazuhisa Ishizaka

System Platform Research Laboratories, NEC Corporation, Tokyo, Japan
v-daultani@ax.jp.nec.com, y-ohno@ji.jp.nec.com, k-ishizaka@ay.jp.nec.com

http://www.nec.com

Abstract. We propose a new computation and memory efficient algo-
rithm to speed up Convolutional Neural Networks (CNNs). Equipped
with several millions of parameters, leveraging large datasets, CNNs have
achieved state-of-the-art recognition accuracy. Recently utilizing sparsity
of parameters, several acceleration techniques for CNNs have been intro-
duced, causing a paradigm shift in type of computation from dense to
sparse, leading to opportunity for designing a new convolution algorithm
suiting high bandwidth performance architecture like SX-ACE.

In this paper we propose a new computation and memory efficient
convolution algorithm for inference phase, Sparse Direct Convolution
(SDC) and a new representation for sparse filters, Compressed Sparse
Offset (CSO). We evaluate our implementation of SDC together with
CSO on high bandwidth SX-ACE architecture and show inference time
of single convolution layer can reduce with up to 95% of lenet, 65% of
alexnet and 69% of VGG-16 without drop in accuracy.

Keywords: Deep learning · Convolutional Neural Networks · Acceler-
ated convolution algorithm · Vector architecture

1 Introduction

Increasing recognition accuracy of successive state-of-the-art CNNs can be corre-
lated to depth i.e. increasing number of convolutional layers, for example CNNs
Alexnet [2] 2012, VGG-16 [3] 2014 and Resnet [4] 2015, had 5, 13, and 152 con-
volutional layers respectively. Convolution operation takes almost 90% of total
execution time for inference phase [5] and given above trend for increasing num-
ber of convolutional layers it is evident that convolutional operation is and will
remain one of the dominant component of CNN.

Inevitable end of “Moores Law” predicted around 2025–2030 [6] will cease
computation or system FLOPS to improve, but bandwidth or BYTES will con-
tinue to improve at least for a few decades beyond.

Convolution operation can be realized using multiple algorithms like Direct
Convolution (DC), Matrix Multiplication (MM) and Fast Fourier Transform
(FFT). Most of the implementations of these algorithms are computation limited
(i.e. large FLOPS/BYTES) on general purpose hardware architectures (GPHA).
Since these algorithm’s arithmetic intensity resides on right of ridge point in
roofline [7] analysis on most of the hardware architectures, hence usually are
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 293–303, 2017.
DOI: 10.1007/978-3-319-59072-1 35

294 V. Daultani et al.

computation limited. This can be verified by calculating arithmetic intensity
and performing roofline [7] analysis of the implementation.

Recently researchers have found that CNNs are often over-parametrized in
[13,15,16] and have shown same recogintion accuracy can be achieved with much
less number of parameters by pruning redundant parameters. Motivated by
the idea of realizing CNNs on hardware constrained devices researchers have
proposed techniques to reduce the number of computations by targeting over-
parametrization. Such techniques eliminate redundancy between parameters
and introduce sparsity, which leads to transition of convolution operation from
dense/regular memory access/computation limited to sparse/irregular (stride)
memory access/bandwidth limited operation.

Techniques to utilize sparsity of fully connected layers on customized hard-
ware architecture (CHA) like EIE [15] have shown significant speed ups, com-
pared to speed ups achieved on GPHA. One reason for comparatively less speed-
up on GPHA is absence of hardware level optimizations specific to CNNs, since
they have to serve wide range of applications.

These three reasons, first: system FLOPS will cease to improve early on
contrary to bandwidth, second: change of computation type of convolution from
dense to sparse, and third: absence of efficient algorithm for utilizing sparsity for
convolution operation on GPHA lead to requirement of a convolution algorithm
that is both computation and bandwidth efficient.

In this paper we present Sparse Direct Convolution (SDC) algorithm for
convolution and Compressed Sparse Offset (CSO) for encoding non-zero values
of sparse filters. We show together both of the algorithms have universal effect
of reducing the inference time of state-of-the-art CNNs. The main contributions
of this paper are:

– First, we present a simple Sparse Direct Convolution (SDC) algorithm, which
is both computation and memory efficient algorithm for convolution opera-
tion which works without transforming the input feature maps before each
convolution layer, as required by MM or FFT.

– Second, we present Compressed Sparse Offset (CSO) technique, both compu-
tation and memory efficient way to store the indices of the non-zero values of
filters 4D tensor.

– Finally, we evaluate our algorithms on a high memory bandwidth architecture
like SX-ACE, and demonstrate for various different convolution layers our
method SDC plus CSO outperforms the state-of-the-art and most commonly
used MM for convolution operation with a difference of magnitude for total
execution time of inference phase.

2 Background

2.1 Convolutional Neural Networks

Figure 1 shows how different components are stacked over each other to form a
CNN. Conventional CNN is made up of the following components.

Sparse Direct Convolutional Neural Network 295

Fig. 1. A typical CNN architecture showing the layers discussed in the Sect. 2.1

Input Layer holds the input image as input to pass it on to the next layer in
CNN.

Convolutional Layer extracts features from input feature maps as a result
of spatial convolution between filter’s 3D tensor and a patch of input feature
maps 3D tensor as shown in Eqs. 2 and 3. Since each convolutional layer usually
consists of multiple filters they are represented by 4D tensor i.e. filter number,
filter height, filter width, and filter depth. Also inorder to maximally utilize
the available hardware, multiple images are processed simultaneously in a batch
and are also represented by 4D tensor i.e. image number, image height, image
width, image depth. Input feature maps for multiple input images in a single
batch (4D tensor) I ∈ R

NCHW , when convolved with multiple fitlers (4D tensor)
F ∈ R

KCRS results in output feature maps corresponding to each input image in
batch (4D tensor) O ∈ R

NKPQ. Table 1 explains parameters and their meaning
for convolutional layer. Height and width of output feature maps i.e. P and Q
are calculated using Eq. 1.

f(H, pad h,R, u) =

⌈
H + 2 ∗ pad h + 1 − R

u

⌉
(1)

m(p, u, pad h,R, r) = p ∗ u − pad h − R − r − 1 (2)

O[n][k][p][q] =

C−1∑

c=0

R−1∑

r=0

S−1∑

s=0

I[n][c][m(p, u, pad h,R, r)][m(q, v, pad w, S, s)] · F [k][c][r][s] (3)

Activation Layer. Each output feature map from convolutional layer is passed
through non-linearity i.e. activation layer, which aids in visual recognition task.
Many previous state-of-the-art CNNs used sigmoid and tanh non-lineartiy, but
ReLU has gained popularity recently and is most commonly used, for its sim-
plicity and effectiveness. Pooling Layer: It is common to insert pooling layer
in between successive convolution layers. Pooling layer reduces the spatial size of
the representation to reduce the number of parameters and hence computation
in the network. Pooling layer provides the translation invariance property to the
image recognition task and helps to avoid over-fitting. Most common filter size
for pooling is 2× 2 with a stride of 2. However other filter size for pooling can be
chosen. Fully Connected Layer: A series of group of Convolution, Activation,

296 V. Daultani et al.

Table 1. Convolution parameters and their meaning

Parameter Meaning

K Number of filters/output feature maps

R Height of filter

S Width of filter

N Number of input images i.e. mini-batch size

C Number of input feature maps

H Height of input feature map

W Width of input feature map

u Stride in vertical direction

v Stride in horizontal direction

pad h Zero-padding in horizontal direction

pad w Zero-padding in vertical direction

P Height of output feature map

Q Width of output feature map

Pooling layers are usually followed by a series of fully connected layers. Fully
connected layers are realized by first transforming the 4D arrays of input feature
maps and filters for neurons in layer to 2D matrix and then matrix multiplication
is used to generate the output of fully connected layer. Softmax Layer: Soft-
max is the final layer of CNN and is used to calculate the probability distribution
over different output classes.

2.2 Different Implementations of Convolution

Some convolution algorithm used in state-of-the-art deep learning frameworks
are as follows.

Direct Convolution (DC). Cuda-Convnet [8] one of the first highly optimized
CNNs implementation for GPUs realizes convolution operation using DC. Being
one of the straight forward implementation of convolution operation, it uses
CHWN memory layout for 4D tensors. Advantage of this algorithm is it does
not require any data transformation from 4D tensor to 2D tensor. Disadvantage
of this algorithm is it requires non regular memory access.

Matrix Multiplication (MM). Caffe [9] one of the famous machine learning
framework realizes convolution operation using MM. This algorithm requires
first to transform, both input feature maps for each image and filters to 2D
tensor i.e. matrix followed by MM. Advantage of this algorithm is that one can
use highly optimized MM implementation available in well tuned BLAS libraries
for GPHA. Disadvantage of this algorithm is that it involves overhead of data
transformation of input feature maps to 2D tensor.

Sparse Direct Convolutional Neural Network 297

Fast Fourier Transform (FFT). FFT [11] and its variation in fbfft [12] and
cuDNN [10] have recently shown FFT can be used to realize convolution oper-
ation efficiently. This algorithm first transforms input feature maps and filters
from time domain to frequency domain, followed by performing dot product in
frequency domain, finally followed by transform of output feature maps from fre-
quency domain to time domain. Advantage of this algorithm is that the number
of computations are reduced when convolution performed in frequency domain.
Disadvantage of this algorithm is it incurs overhead of data transformation from
time domain to frequency domain and vice versa and is effective for large kernels
[10,12].

3 Related Work

Memory Efficiency for Deep Convolutional Neural Networks on GPUs:
This work [14] proposed heuristics to estimate the best memory layout (CHWN
or NCHW) for 4D tensors, and implemented a low overhead routine to trans-
form the tensors from one layout to another if required to assist convolution
algorithm for acceleration. On contrary we propose a new accelerated convolu-
tion algorithm itself. This work is independent of nature of values in tensors
(i.e. dense or sparse) on contrary our work focus on sparsity in filters tensor.
This work improves memory efficiency of GPUs on contrary our work is based
on improving both computation and memory efficiency of SX-ACE architecture.
Efficient Inference Engine: This work [15] similar to ours is based on tech-
nique of deep compression [13] This work proposed CHA i.e. EIE on contrary we
propose a new convolution algorithm irrespective of hardware architecture. This
work uses variant of CSC (compressed sparse column) storing value, row index,
and column pointer on contrary we propose a new sparse filter representation
CSO (compressed sparse offset) storing only value and offset. This work focus
on FC layers (bandwidth limited) on contrary our work focuses on convolution
layer (computation limited). Sparse Convolutional Neural Netowrks: This
work [16] introduced sparsity using inter-channel and intra-channel decompo-
sition, on contrary we use pruning and retraining [13]. This work incurs the
overhead of transforming the input feature maps 3D tensor to matrix on con-
trary our method does not require such transformation. This work focuses on
sparse-dense matrix (2D tensor) multiplication, on contrary our work focuses on
list-tensor (4D tensor) multiplication.

4 Proposed Technique

Several recent work [13,16] have shown the redundancy in parameters of CNNs
exists and it can be eliminated to significant level. Deep compression [13] tech-
nique proposed using pruning and retraining redundancy can be removed. This
procedure results in sparse parameters, while achieving original CNN accuracy.
We extend this work by first proposing a new convolution algorithm SDC and

298 V. Daultani et al.

second proposing a new representation for sparse filters CSO and sparse filters
preprocessing algorithm.

Previous techniques have focused on compressing parameters to reduce mem-
ory footprints of CNNs therefore more beneficial for FC layer, whereas we in our
work have shown with reasonable sparsity and using our algorithm we can reduce
execution time of convolutional layer which is more computation intensive.

4.1 Preprocessing Filters

Once sparse filters 4D tensor are learned in training phase [13], Algorithm 1 scans
sparse filters (NCHW memory layout). It first initialize list all filters, whose each
entry is of form single filter. It then for each filter initializes a list i.e. single filter
whose entry is of form (input offset, filter value). For loops in line 4,5,6 represents
three different dimensions of each filter i.e. depth, height, width. If a filter value
is found non zero in line 9, corresponding 1D index is saved in input offset and
an entry (input offset, filter value) is inserted in single filter in line 16. Unique to
our algorithm input offset is the 1D index in CHWN memory layout of pixel in
first patch of the input feature map of first image in batch corresponding to the
non zero filter value. Figure 2 explains CSO format using simple example, Input
feature map of size 6× 6 (H/W = 6) is convolved with filter of size 4× 4 (R/S = 4)
with stride 1 (u/v = 1). Color cells of Kernel represents non zero value, which are
stored in Filter Values list (filter value in Algorithm1) and corresponding offsets
for the non zero values of filters in input feature maps are stored in Input Offset
(input offset in Algorithm 1). Filter Values and Input Offset remains same for all
the patches of the input feature maps. With CSO each non zero filter’s value in
3D tensor is uniquely identified by two items i.e. filter value and input offset on
contrary to three items i.e. filter value, row index and column pointer used in
CSC format used for sparse matrix representation in original deep compression
[13] technique. Reducing the number of items required to represent also reduces
the number of scalar computations to generate the index of input feature map
in Algorithm 2 and hence contribute to reduce the inference time further.

4.2 Sparse Direct Convolution Algorithm

Figure 3 explain how CSO and SDC work together. Once sparse filters are pre-
processed, corresponding CSO format representation is used by Algorithm 2.
SDC algorithm then for each convolution layer, performs the convolution
between input feature maps i.e. I and filters i.e. all filters. The output is gen-
erated in O. For each p, q pixel in output feature map f nz, we first calculate
starting row and column for the input feature map patch using formula i = p *
u and j = q * v in line 5 and 7 respectively. Then 1D starting index of patch is
calculated in line 8 and stored in patch index. Pixel value for O for the batch
size N, is first copied onto the vector register in line 10. Multiplication between
non-zero value filter value and corresponding pixel of input feature map I for all
images is then performed in line 13. After all non-zero entries i.e. input offset and
filter value in set single filter have been used to determine the value of output

Sparse Direct Convolutional Neural Network 299

Algorithm 1. Preprocessing Filters
1: initialize all filter
2: for f ∈ {0, . . . , F − 1} do
3: initialize single filter
4: for c ∈ {0, . . . , C − 1} do
5: for r ∈ {0, . . . , R − 1} do
6: for s ∈ {0, . . . , S − 1} do
7: index = NCHW INDEX(f, c, r, s, F, C,R, S)
8: filter value = filters[index]
9: if filter value != 0 then

10: input offset = CHWN INDEX(0, c, r, s,N,C,H,W)
11: insert entry (input offset, filter value) in single filter
12: end if
13: end for
14: end for
15: end for
16: insert entry (f , single filter) in all filters
17: end for
18: return all filters

pixel value at height p and width q, output is written back from vector register
to memory in line 15.

NCHW index(n, c, h, w,N,C,H,W) = (((n ∗ C + c) ∗ H + h) ∗ W + w)
CHWN index(n, c, h, w,N,C,H,W) = (((c ∗ H + h) ∗ W + w) ∗ N + n)

(4)

Fig. 2. Compressed sparse format Fig. 3. Preprocessing filters and sparse
direct convolution algorithm

300 V. Daultani et al.

Algorithm 2. Sparse Direct Convolution
1: all filters = Preprocessing Filters
2: for (filter no, single filter) ∈ all filters do
3: f nz = filter no
4: for p ∈ {0, . . . , P − 1} do
5: i = p * u
6: for q ∈ {0, . . . , Q − 1} do
7: j = q * v
8: patch index = CHWN INDEX(0, 0, i, j,N,C,H,W)
9: output index = CHWN INDEX(0, f nz, p, q,N,K, P,Q)

10: output reg[0 : 0 + N] = O[output index : output index + N]
11: for (input offset, filter value) ∈ single filter do
12: input index = patch index + input offset
13: output reg[0 : 0+N] += I[input index : input index+N] * filter value
14: end for
15: O[output index : output index + N] = output reg[0 : 0 + N]
16: end for
17: end for
18: end for

Table 2. CNNs and their layers used for the experiments.

Layer C H/W F R/S u/v Sparsity Description

CONV1 1 28 20 5 1 34 Lenet [1] on MNIST dataset

CONV2 20 12 50 5 1 88

CONV3 3 227 96 4 4 16 Alexnet [2] on Imagenet dataset

CONV4 48 27 128 5 1 62

CONV5 256 13 384 3 1 65

CONV6 192 13 192 3 1 63

CONV7 192 13 128 3 1 63

CONV8 256 56 256 3 1 76 VGG-16 [3] on Imagenet dataset

CONV9 256 56 512 3 1 68

CONV10 512 28 512 3 1 66

5 Experiment Set up

We conduct experiments on 1 core of Single CPU of SX-ACE with Super-
UX operating system. Each CPU on SX-ACE consists of 4 cores (1 core - 64
GFLOP/s) with a peak computation and bandwidth performance of 64× 4 =
256 GFLOP/s and 256 GB/s respectively. Algorithm used for baseline is MM,
which first uses im2col operation (tuned for SX-ACE) to transform 3D tensor to
2D tensor, and followed by dense MM from Mathkeisan [18]. In Table 2 columns
C, H, F, R, u have meanings as defined in Table 1. Column sparsity specifies the
percentage of values in filters which are zero. Sparsity% is same as 100−Weight%
where Weight% been shown to retain original accuracy of deep compression [13]

Sparse Direct Convolutional Neural Network 301

Fig. 4. Percentage reduction in inference time of convolution layers from Table 2

technique. A dry run to warm up cache was followed by 10 iterations of each
algorithm’s implementation.

6 Results & Analysis

Figure 4 shows percentage reduction in inference time on average for each con-
volution layer from Table 2. Reduction of 90%, 95%, 31%, 62%, 65%, 65%, 67%,
70%, 58%, 57% were observed for convolution layers of Table 2 respectively.
One reason for high percentage reduction for CONV1 and CONV2 (Lenet being
inefficiency of MM for small matrix size. Utilizing CSO format SDC algorithm
works without any data transformation at inference time and helps to achieve
good equilibrium between computation and memory access. Results shows SDC
algorithm is both computation efficient: runs near peak performance like MM
and memory efficient: loads only necessary input feature maps pixel values. Also
CSO format is both computation efficient: storing only 1D input offset saving
scalar operations at inference time and memory efficient: encoding with only 1D
input offset saves memory access.

7 Conclusion

We proposed fast SDC convolution algorithm and CSO format for encoding
sparse filters. SDC possess cherry-pick properties like, no data transformation,
computation and memory efficient not available together in other convolution
algorithms. With reasonable sparsity and single memory layout (CHWN) SDC
when used with CSO can outperform known state-of-the-art implementation
of convolution like MM in terms of execution time of convolution operation in
inference phase by substantial factor. The experiments demonstrate effectiveness
of our method and their universal effect on convolution layers of different state-
of-the-art CNNs.

302 V. Daultani et al.

Activation layer with ReLU function and Pooling layer with max-pooling
function, are most commonly used in several state-of-the-art CNNs. These lay-
ers are bandwidth limited since required number of FLOP are linearly propor-
tional to the size of input. Activation layer, Pooling layer, and Fully Connected
layer (for large networks) already being bandwidth limited, together with some
acceleration techniques for convolution operation making them bandwidth lim-
ited too, transition of CNNs from computation limited to bandwidth limited
is evident. Therefore high bandwidth architectures(large BYTES/FLOPS) like
SX-ACE, convolution algorithm like SDC and representation for sparse filters
like CSO will have huge impact for future CNNs and its applications.

References

1. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. In: Proceedings of the IEEE (1998)

2. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep con-
volutional neural networks. In: NIPS (2012)

3. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: arXiv (2015)

5. Jia, Y.: Learning semantic image representations at a large scale. Ph.D. disserta-
tion: UC Berkeley (2014)

6. Matsuoka, S., Amano, H., Nakajima, K., Inoue, K., Kudoh, T., Maruyama, N.,
Taura, K., Iwashita, T., Katagiri, T., Hanawa, T., Endo, T.: From FLOPS to
BYTES: disruptive change in high-performance computing towards the post-moore
era. In: CF (2016)

7. Williams, S.W., Waterman, A., Patterson, A.: Roofline: an insightful visual per-
formance model for floating-point program and multicore architecture. Tech-
nical report No. UCB/EECS-2008-134. https://www2.eecs.berkeley.edu/Pubs/
TechRpts/2008/EECS-2008-134.pdf

8. cuda-convnet. https://code.google.com/p/cuda-convnet/
9. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,

Guadarrama, S., Darrell, T.: Caffe: Convolutional Architecture for Fast Feature
Embedding. https://arxiv.org/abs/1408.5093

10. Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B.,
Shelhamer, E.: cuDNN: Efficient Primitives for Deep Learning. https://arxiv.org/
abs/1410.0759

11. Mathieu, M., Henaff, M., LeCun, Y.: Fast training of convolutional networks
through FFTs. In: arxiv (2013)

12. Vasilache, N., Johnson, J., Mathieu, M., Chintala, S., Piantino, S., LeCun, Y.: Fast
convolutional nets with fbfft: a GPU performance evaluation. In: ICLR (2015)

13. Han, S., Mao, H., Dally, W.J.A.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and Huffman coding. In: ICLR (2016)

14. Li, C., Yang, Y., Feng, M., Chakradhar, S., Han, H.Z.: Optimizing memory effi-
ciency for deep convolutional neural networks on GPUs. In: SC (2016)

15. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M., Dally, J.: EIE: efficient
inference engine on compressed deep neural network. In: ISCA (2016)

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-134.pdf
https://code.google.com/p/cuda-convnet/
https://arxiv.org/abs/1408.5093
https://arxiv.org/abs/1410.0759
https://arxiv.org/abs/1410.0759

Sparse Direct Convolutional Neural Network 303

16. Liu, B., Wang, M., Foroosh, H., Tappen, M., Penksy, M.: Sparse convolutional
neural networks. In: CVPR (2015)

17. Vuduc, R.W.: Automatic performance tuning of sparse matrix kernels. Ph.D. dis-
sertation: UC Berkeley (2003)

18. MathKeisan. http://www.mathkeisan.com/

http://www.mathkeisan.com/

Fuzzy Modeling from Black-Box Data with Deep
Learning Techniques

Erick de la Rosa1, Wen Yu1(B), and Humberto Sossa2

1 Departamento de Control Automático, CINVESTAV-IPN, Mexico City, Mexico
yuw@ctrl.cinvestav.mx

2 Instituto Politécnico Nacional, Centro de Investigación en Computación,
Mexico City, Mexico

Abstract. Deep learning techniques have been successfully used for pat-
tern classification. These advantage methods are still not applied in fuzzy
modeling. In this paper, a novel data-driven fuzzy modeling approach is
proposed. The deep learning methods is applied to learn the probability
properties of input and output pairs. We propose special unsupervised
learning methods for these two deep learning models with input data.
The fuzzy rules are extracted from these properties. These deep learn-
ing based fuzzy modeling algorithms are validated with three benchmark
examples.

Keywords: Fuzzy system · Black-box modeling · Deep learning

1 Introduction

Human always use “IF-THEN” rules in their thinking. These linguistic propo-
sitions are applied in fuzzy system [21]. Compared with the other modeling
techniques, the fuzzy modeling of nonlinear systems using fuzzy system is easier
to explain, it can directly use information in different forms, it is simple and
can be trained easily [16]. There are the following two basic methods to con-
struct the fuzzy rules [11]: (1) extract rules from human knowledge, (2) analyze
data to derive rules. The first method need complex work of human [13]. When
only the data of the unknown nonlinear systems are available, it is data-based
fuzzy modeling. The fuzzy modeling using data includes two stages: (1) structure
identification: extract fuzzy rules from input/output data; (2) parameters iden-
tification: updated the membership functions of the fuzzy rules with observation
data.

Extracting rules from data always uses data partition [7,10,12]. Kernel
method [19], neural networks [10], genetic method [13], SVD based algorithm
[6] and SVM [5] are also popular. In [18] SVM is extended into on-line version,
such that the fuzzy modeling based on SVM can be carried out on-line. [1,15]
use adaptive resonance to construct fuzzy sets from input data. In [17] we use
online clustering method to partition both input (precondition) and the output
(consequent) at the same time.
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 304–312, 2017.
DOI: 10.1007/978-3-319-59072-1 36

Fuzzy Modeling from Black-Box Data with Deep Learning Techniques 305

In this paper, we will use a complete novel method to extract fuzzy rules. The
fuzzy modeling of this paper uses deep learning as the structure identification
(rule extraction). We first use deep neural model to analyze the data. Then we
use decision tree to extract fuzzy rules from the deep neural model.

Deep learning techniques have achieved impressive good results in many dif-
ficult tasks in recent years [2]. Deep learning models are neural networks, which
have been widely used for nonlinear systems identification. Multilayer percep-
tron is a common model [3]. The main difficult of deep learning for nonlinear
modeling is to find the structure of the deep neural model [8]. In fact, no any
optimal method could be found [4]. Some popular methods are the grid search
and random search [4]. In this paper, we will use data-based fuzzy modeling to
help the extraction of deep neural model.

In the sense of probability theory, the objective of system identification is
to find the best conditional probability distribution P (y|x) between the input
x and the output y. Recent results show that deep learning techniques can be
applied for nonlinear system modeling [3]. The unsupervised learning is used to
obtain the input features and sent to hidden layers. The modeling accuracy can
be improved.

Almost all classification tasks use binary values [9]. However, the input/
output values of the nonlinear systems cannot be binary values. In [2], the struc-
ture of the deep models are changed, such that the probability can be calculated.

Inthispaper,weusetherestrictedBoltzmannmachinestodesigntheinputunsu-
pervised learning. Then we use the popular decision tree [14] to construct the fuzzy
rules from the deep neural networks. The data-driven fuzzy modeling using deep
learning is shown in Fig. 1. The membership functions will be updated automati-
cally. The gas furnace data are applied to test our deep learning methods.

Input/output Data

Fuzzy rules

Deep Learning
Input/output
distribution property

Decision trees

Membership
function training

Fuzzy
model

Structure
identification

Parameters
identification

Fig. 1. Data-driven fuzzy modeling using deep learning

2 Fuzzy Modeling Based on Input-Output Data

A unknown nonlinear system is described by the difference equation

y(k) = Φ [x (k) , k] (1)

306 E. de la Rosa et al.

where Φ (·) is an unknown nonlinear function,

x (k) = [y (k − 1) , · · ·y (k − ny) , u (k) , · · · u (k − nu)]T (2)

u (k) and y (k) are the control and the output, ny and nu correspond to the
system order, x (k) ∈ �n can be regarded as a new input to the nonlinear
function f (·) , n = ny + nu + 1. It is the well known NARMAX model.

For the unknown nonlinear system (1), only x (k) and y (k) are available. We
use the following Mamdani fuzzy model

Rj : IF x1 (k) is Aj
1 and x2 (k) is Aj

2 and · · · xn (k) is Aj
n THEN y (k) is Bj

here j = 1 · · · J , Aj
1, · · · Aj

n and Bj are fuzzy sets. The membership function is

μi (xj) = exp

(
− (xj − cji)

2

σ2
ji

)
(3)

where i is the condition in the part “IF”, i = 1 · · · n, j is rule number, j = 1 · · · J.
From [16], the output of the fuzzy system is

ŷ =

⎛
⎝ J∑

j=1

wj

[
n∏

i=1

μAj
i

]⎞
⎠ /

⎛
⎝ J∑

j=1

[
n∏

i=1

μAj
i

]⎞
⎠ (4)

where μAj
i

is for Aj
i , wj is for μBj

= 1. Define

φi =
n∏

j=1

μAji
/

svj∑
i=1

n∏
j=1

μAji

(4) can be expressed in matrix form

ŷ (k) = W (k) Φ [x (k)] (5)

In order to obtain a decision tree for the data [x (k, y (k))], we use the fol-
lowing deep neural networks to approximate the input-output mapping

ŷ (k) = φp(Wpφp−1 . . . W3φ2 {W2φ1 [W1x (k) + b1] + b2} . . . + bp) (6)

where ŷ (k) ∈ �m, W1 ∈ �l1×n, b1 ∈ �l1 , W2 ∈ �l2×l1 , b2 ∈ �l2 , Wp ∈ �m×lp−1 ,
bp ∈ �m.

The deep model has p layers, each layer has li (i = 1, · · · , p − 1) nodes. In
this paper, we let p ≥ 3

φi ∈ �li (i = 1 · · · p) are Sigmoid function

φi (ωj) = αi/
(
1 + e−βT

i ωj

)
− γi

In the output layer, φp is linear, �m → �m, i.e., φp = [
∑

1 · · · ∑m] .

Fuzzy Modeling from Black-Box Data with Deep Learning Techniques 307

The deep neural model increased the layer number p, not as the normal
neural model to increase the node number li.

We first use the random search to find p and li. Besides the structure identi-
fication, which needs the layer number p and node numbers li, parameter iden-
tification is to update the weights (W1 · · · Wp) to minimize the modeling error
with respect to an index.

e (k) = ŷ (k) − y (k) (7)

3 Modelling Input-Output Property with Deep Learning

The restricted Boltzmann machines (RBMs) are generative energy based models.
They learn from the input data through the usage of latent or hidden variables.
The latent variables capture features of the data, which help RBM to obtain
better representation of the empirical distribution.

RBM is a very successful method in feature extractions from image and text
data. It is also an excellent pre-training tool to set the initial parameters for the
discriminative models.

The input features extraction is to learn the probability distribution of its
input set. The input data to the RBM is x (k) = [x1 · · · xn] ∈ Rn. In the sense
of the coding phase, the output of each RBM is h̄ =

[
h̄1 · · · h̄s

] ∈ Rs. For the
i − th hidden node and the j − th visible node, the conditional probabilities are

p
(
h̄i = 1 | x)

= φ [Wx + b]
p

(
xj = 1 | h̄)

= φ
[
WTh + c

]
h̄i =

{
1 a < p

(
h̄i = 1 | x)

0 a ≥ p
(
h̄i = 1 | x) (8)

where φ is the sigmoid function, W is a weight matrix, a is a number drawn
from a uniform distribution over [0, 1], b and c are visible and hidden biases
respectively, i = 1, . . . , s, j = 1, . . . , n.

We define a probability vector h as

h =
[
p

(
h̄1 = 1 | x) · · · p (

h̄s = 1 | x)]
= [h1 · · · hs]

The probability distribution p (x) is an energy-based model

p(x) =
∑

h

p(x, h) =
∑

h

e−E(x,h)

Z
(9)

where Z =
∑

h

∑
x e−E(x,h) denotes the sums over all possible values of h and

x, the energy function E(x,h) is

E (x, h) = −cTx − bTh − hT Wx (10)

The loss function for the training is

L (θ) = log
∏
x

p (x) = log

[∑
x

e−E(x,h)

]
− log

⎡
⎣∑

x,h

e−E(x,h)

⎤
⎦

308 E. de la Rosa et al.

Define the free energy �(x) as

�(x) =
∑
x

log p (x) = −cTx −
li∑

p=1

log
∑
hp

ehp(bp+Wpx)

If x and hp are binary values

p (hp = 1|x)p=1···li = φ [Wpx + bp]
p

(
xt = 1|h̄)

t=1···li−1
= φ

[
WT

t h + ct

] (11)

The weights and biases of each RBM are updated as

θ (k + 1) = θ (k) − η1
∂ [− log p (x)]

∂θ (k)
(12)

where
∂ log p (x)

∂θ (k)
=

∑
x

p (x)
∂�(x)
∂θ (k)

− ∂�(x)
∂θ (k)

We estimate
∑

z p (x) ∂�(x)
∂Λ(k) with the Monte Carlo sampling method

∑
z

p (x)
∂�(x)
∂Λ (k)

≈
1
s

∑
z∈S

∂�(x)
∂Λ (k)

(13)

A sample z from the training data x needs the following Monte Carlo algorithm:
(1) Calculate p(h|x) using the current W and b; (2) Sample h using the condi-
tional distribution p(h|x). (3) Calculate p(x|h) using the current W and c. (4)
Sample z using the conditional distribution p(x|h). (5) Repeat steps (1)–(4) k
times using the new sample z obtained in step (4), and the new x in step (1).
After k times, we get a sample z for the set S.

Figure 2 gives one layer of the RBM model. The transformation (11) is
repeated s times generating s samples needed for the learning process, see Fig. 2.

Fig. 2. Markov sampling in a restricted Boltzmann machine

The modified deep learning algorithms, the autoencoders and the restricted
Boltzmann machine, proposed in this paper can form a deep neural model (6)
from the distribution properties of the input and output.

Fuzzy Modeling from Black-Box Data with Deep Learning Techniques 309

The next step of the structure identification is to extract fuzzy rules from
the neural networks (6). We use the standard decision tree method [22]. We use
C4.5 to generate the decision tree from the weights of (6). The fuzzy rules are
obtained from the decision tree.

Here for the split point j, this point value is the weight obtained from the
deep learning. We use this weight as the center value of the Gaussian mem-
bership function (3). The parameter training is to determine the parameters of
membership functions of Bj , as well as the membership functions Aj

1, · · · , Aj
n,

such that ŷ → y. Since the identification error e (k) is

e (k) = ŷ (k) − y (k) (14)

The nonlinear process (1) can be represented by the fuzzy model

y (k) = W∗Φ [x (k)] − μ (k) (15)

the modeling error is μ (k) .
The backpropagation like algorithm can train the membership functions

Wk+1 = Wk − ηke (k)Z (k)T

cji (k + 1) = cji (k) − 2ηkzi
Wi−ŷ

b
xj−cji

σ2
ji

(ŷ − y)

σji (k + 1) = σji (k) − 2ηkzi
Wi−ŷ

b
(xj−cji)

2

σ3
ji

(ŷ − y)
(16)

where Z (k) = [z1/b · · · zl/b]T , zi =
n∏

j=1

exp
(
− (xj−cji)

2

σ2
ji

)
, a =

svj∑
i=1

Wizi, b =

l∑
i=1

zi, ŷ = a
b . The normalized identification error eN (k) = e(k)

1+maxk(‖Φ[x(k)]‖2) sat-

isfies the following average performance lim supT→∞
1
T

T∑
k=1

‖eN (k)‖2 ≤ μ where

μ = max
k

[
‖μ (k)‖2

]
. The proofs of the above algorithms can be found in [20].

4 Simulations

One of the most utilized benchmark examples in system identification is in Box-
Jenkins textbook. In this example, a mixed of air and methane is set in order to
create a mixture of gases which contained carbon dioxide among other gases. The
input of the system is methane gas which is represented with u(k) = 0.6−0.4x(k)
while the output is the CO2 concentration y(k). The dataset is composed of 296
successive pairs of readings [x(k), y(k)] that are sampled from the continuous
records 9-s intervals (Fig. 3). The model is:

y(k) = f [y(k − 1), . . . , y(k − ny), u(k), . . . , u(k − nu)] (17)

In our experiments, the delays ny and nu are given the values 8 and 5 using a
random search method in the interval [5, 10], the training data are 200 examples

310 E. de la Rosa et al.

Fig. 3. Random search for the structure parameters.

while the rest are used for validation, early stopping criteria is not used to train
the DBMs. Following the approach presented in this work, the regression task is
done following the next steps: normalization, coding, training, decoding. ny = 8
and nu = 5.

Our neural model (6) has 4 hidden layers and 1 linear output layer, each
hidden layer has 50 nodes. The parameters are the training rate is

η3 = 0.1
η4 = 0.15

The average error is defined as

1
N

N∑
k=1

‖ŷ (k) − y (k)‖2

The testing errors of the proposed models are shown in Fig. 4.
The errors are

AC : 6.862 × 10−5

RBM : 4.239 × 10−5

In the pre-training stage, AC obtains better initial weights. Because RBMs need
more examples, while this dataset only have 200. The improvement of RBM is
not so good.

0 5 10 15 20 25 30 35 40 45 50
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Time

System
AC

FS
RBM

Output

Fig. 4. The testing errors.

Fuzzy Modeling from Black-Box Data with Deep Learning Techniques 311

5 Conclusions

The restricted Boltzmann machines is extended for nonlinear dynamic system
modeling. As an alternative model for fuzzy modelling and an efficient approach
for extracting fuzzy rules, this method is more effective than the normal neural
modelling and fuzzy modelling.

Acknowledgments. This paper is supported by the National Council of Science and
Technology of Mexico (CONACYT), under the project Frontiers of Science (Grant
No. 65).

References

1. Angelov, P.: An approach for fuzzy rule-base adaptation using online clustering.
Int. J. Approx. Reason. 35(3), 275–289 (2004)

2. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training
of deep networks. In: Advances in Neural Information Processing Systems (NIPS
2006), pp. 153–160. MIT Press (2007)

3. Bengio, Y., Delalleau, O.: Justifying and generalizing contrastive divergence.
Neural Comput. 21(6), 1601–1621 (2009)

4. Bergstra, J., Bengio, Y.: Algorithms for hyper-parameter optimization. J. Mach.
Learn. Res. 13, 281–305 (2012)

5. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines.
Cambridge University Press, Cambridge (2000)

6. Chiang, J.H., Hao, P.Y.: Suuport vector learning mechanism for fuzzy rule-based
modelling: a new approach. IEEE Trans. Fuzzy Syst. 12(1), 1–12 (2004)

7. Chiu, S.L.: Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy
Syst. 2(3), 267–278 (1994)

8. Erhan, D., Manzagol, P.A., Bengio, Y., Bengio, S., Vincent, P.: The difficulty of
training deep architectures and the effect of unsupervised pretraining. In: 12th
International Conference on Artificial Intelligence and Statistics (AISTATS 2009),
pp. 153–160. AISTATS Press (2009)

9. Hinton, G.E., Sejnowski, T.J.: Learning and relearning in Boltzmann machines. In:
Parallel Distributed Processing: Explorations in the Microstructure of Cognition,
Volume 1: Foundations, pp. 282–317. MIT Press, Cambridge (1986)

10. Jang, J.S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans.
Syst. Man Cybern. 23, 665–685 (1993)

11. Leski, J.M.: TSK-fuzzy modelling based on ε-insensitive learning. IEEE Trans.
Fuzzy Syst. 13(2), 81–193 (2005)

12. Mitra, S., Hayashi, Y.: Neuro-fuzzy rule generation: survey in soft computing
framework. IEEE Trans. Neural Netw. 11(3), 748–769 (2000)

13. Rivals, I., Personnaz, L.: Neural-network construction and selection in nonlinear
modelling. IEEE Trans. Neural Netw. 14(4), 804–820 (2003)

14. Saito, K., Nakano, R.: Extracting regression rules from neural networks. Neural
Netw. 15(10), 1279–1288 (2002)

15. Tzafestas, S.G., Zikidis, K.C.: NeuroFAST: online neuro-fuzzy ART-based struc-
ture and parameter learning TSK model. IEEE Trans. Syst. Man Cybern. Part B
31(5), 797–803 (2001)

312 E. de la Rosa et al.

16. Wang, L.X.: Adaptive Fuzzy Systems and Control. Prentice-Hall, Englewood Cliffs
(1994)

17. Yu, W.: A novel fuzzy neural networks modelling approach to crude oil blending.
IEEE Trans. Control Syst. Technol. 17(6), 1424–1431 (2009)

18. Yu, W.: Fuzzy modelling via on-line support vector machines. Int. J. Syst. Sci.
41(11), 1325–1335 (2010)

19. de la Rosa, E., Yu, W.: Randomized algorithms for nonlinear system identification
with deep learning modification. Inf. Sci. 364, 197–212 (2016)

20. Yu, W., Li, X.: Fuzzy identification using fuzzy neural networks with stable learning
algorithms. IEEE Trans. Fuzzy Syst. 12(3), 411–420 (2004)

21. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1998)
22. Zilke, J.R.: Extracting rules from deep neural networks. TU Darmstadt, Master

thesis (2015)

Matrix Neural Networks

Junbin Gao1, Yi Guo2(B), and Zhiyong Wang1

1 University of Sydney, Sydney, Australia
{junbin.gao,zhiyong.wang}@sydney.edu.au

2 Western Sydney University, Parramatta, Australia
y.guo@westernsydney.edu.au

Abstract. Traditional neural networks assume vectorial inputs as the
network is arranged as layers of single line of computing units called
neurons. This special structure requires the non-vectorial inputs such as
matrices to be converted into vectors. This process can be problematic
for loss of spatial information and huge solution space. To address these
issues, we propose matrix neural networks (MatNet), which takes matri-
ces directly as inputs. Each layer summarises and passes information
through bilinear mapping. Under this structure, back prorogation and
gradient descent combination can be utilised to obtain network parame-
ters efficiently. Furthermore, it can be conveniently extended for multi-
modal inputs. We apply MatNet to MNIST handwritten digits classifi-
cation and image super resolution tasks to show its effectiveness. With-
out too much tweaking MatNet achieves comparable performance as the
state-of-the-art methods in both tasks with considerably reduced com-
plexity.

1 Introduction

Neural networks especially deep networks [4,6] have attracted a lot of attention
recently due to their superior performance in several machine learning tasks.
The basic structure of the most widely used neural networks remains almost the
same, i.e. hierarchical layers of computing units (called neurons) with feed for-
ward information flow from previous layer to the next layer [2]. Although there
is no restriction on how the neurons should be arranged spatially, traditionally
they all line in a row or a column just like elements in a vector. This special
structure requires the non-vectorial inputs especially matrices (e.g. images) to be
converted into vectors. Unfortunately this process can be problematic. Firstly,
the spatial information among elements of the data may be lost during vectorisa-
tion. Secondly, the solution space becomes very large which demands very special
treatments to the network parameters. These bring in many adverse effects such
as great difficulties in training.

To address these issues, we propose matrix neural networks or MatNet for
short, which takes matrices directly as inputs. Therefore the input layer neurons
form a matrix, for example, each neuron corresponds to a pixel in a grey scale
image. The upper layers are also but not limited to matrices. Different from the

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 313–320, 2017.
DOI: 10.1007/978-3-319-59072-1 37

314 J. Gao et al.

convolutional neural network (CNN) [7] and alike (e.g. neocognitron [3]) where
input layers are feature extraction layers and its core is still the traditional vector
based neural network, in MatNet matrices are passing through each layer without
vectorisation at all. MatNet passes information through bilinear mapping from
layer to layer. The neurons in each layer activate according to some activation
function e.g. sigmoid, tanh, and rectified linear unit (reLU) [8] to generate its
output for the next layer. In order not to disturb the flow, we simple discuss
the model in later sections and leave the mathematical details to supplement
materials, where interested readers can find the details.

To demonstrate the usefulness of the proposed MatNet, we will test it in two
image processing tasks, the well-known MNIST handwritten digits classification
and image super resolution. For image super resolution, we show in Sect. 3 the
multimodal inputs in MatNet. As shown in Sect. 4, MatNet can achieve com-
parable classification rate as those sophisticated deep learning neural networks.
Due to early research nature of this work, MatNet is not yet optimised for this
task and the choices of the key network parameters such as the number of layers
and neurons are somewhat arbitrary. For super resolution task, MatNet is very
competitive in terms of peak signal to noise ratio (PSNR) compared to the state-
of-the-art methods such as the sparse representation (SR) [10]. Once again, this
result can be further optimised and we will discuss some further developments
that will be carried out in near future in Sect. 5.

2 Matrix Neural Network Model

The basic model of a layer of MatNet is the following bilinear mapping

Y = σ(UXV T + B) + E, (2.1)

where X and Y are input and output matrices of that layer, U , V , B and E
are matrices with compatible dimensions, determined by input X and model
flexibility. U and V are connection weights, B is the offset of current layer, σ(·)
is the activation function acting on each element of matrix and E is the error.

2.1 Network Structure

The MatNet consists of multiple layers of neurons in the form of (2.1). Let
X(l) ∈ R

Il×Jl be the matrix variable at layer l where l = 1, 2, . . . , L, L+1. Layer
1 is the input layer that takes matrices input directly and Layer L + 1 is the
output layer. All the other layers are hidden layers. Layer l is connected to Layer
l + 1 by

X(l+1) = σ(U (l)X(l)V (l)T + B(l)), (2.2)

where B(l) ∈ R
Il+1×Jl+1 , U (l) ∈ R

Il+1×Il and V (l) ∈ R
Jl+1×Jl , for l = 1, 2, ...,L-1.

For the convenience of explanation, we define

N (l) = U (l)X(l)V (l)T + B(l) (2.3)

Matrix Neural Networks 315

for l = 1, 2, ..., L. Hence
X(l+1) = σ(N (l)).

The shape of the output layer is determined by the functionality of the network,
i.e. regression or classification, which in turn determines the connections from
Layer L. We discuss in the following three cases.

– Case 1: Normal regression network. The output layer is actually a matrix
variable as O = X(L+1). The connection between layer L and the output
layer is defined as (2.2) with l = L.

– Case 2: Classification network. The output layer is a multiple label (0–1)
vector o = (o1, ..., oK) where K is the number of classes. In o, all elements
are 0 but one 1. The final connection is then defined by

ok =
exp(ukX

(L)vT
k + tbk)

∑K
k′=1 exp(uk′X(L)vT

k′ + tbk′)
, (2.4)

where k = 1, 2, ...,K, U = [uT
1 ,,uT

K]T ∈ R
K×IL and V = [vT

1 ,,vT
K]T ∈

R
K×JL . That is both uk and vk are rows of matrices U and V , respectively.

Similar to (2.3), we denote

nk = ukX
(L)vT

k + tbk. (2.5)

(2.4) is the softmax that is frequently used in logistic regression [5]. Note that
in (2.4), the matrix form is maintained. However, one can flatten the matrix
for the output layer.

Assume that we are given a training dataset D = {(Xn, Yn)}Nn=1 for regression
or D = {(Xn, tn)}Nn=1 for classification problems respectively. Then we define
the following loss functions

L =
1
N

N∑

n=1

1
2
‖Yn − X(L+1)

n ‖2F (2.6)

for regression and

L = − 1
N

N∑

n=1

K∑

k=1

tnk log(onk) (2.7)

for classification. MatNet is open to any other cost functions as long as the
gradient with respect to unknown variables can be easily obtained.

MatNet reduces the solution space heavily. For Layer l, MatNet has Il+1Il +
Jl+1Jl parameters while Il+1IlJl+1Jl parameters in traditional vector neural
networks. The resultant effects and advantages include less costly training
process, less local minima, easier to handle and most of all, direct and intuitive
interpretation.

316 J. Gao et al.

2.2 Regularisation

Regularisation can be considered in ManNet. For example clamping mapping
weights

λ
∑

l

(‖U (l)‖2F + ‖V (l)‖2F),

where λ is a nonnegative regularisation parameter and the summation of Frobe-
nius norms includes the output layer as well.

Sparsity is also possible. Here we discuss one method that is straightforward
to build into MatNet to eliminate excessive neurons. let ρ(l) = 1

N

∑N
n=1 X

(l)
n be

the average activations of hidden layer l (averaged over the training set). By
enforcing the following

ρ
(l)
ij = ρ,

one can achieve sparsity in reducing the number of neurons [9]. Therefore, ρ is
called a sparsity parameter, typically a small value close to zero, e.g. ρ = 0.05.
The above equality constraint is implemented by

Rl = sum
(

ρ log
ρ

ρ(l)
+ (1 − ρ) log

1 − ρ

1 − ρ(l)

)

(2.8)

where sum(M) summing over all the elements in matrix M ; log and division are
applied to matrix elementwise. To screen out neurons that are not necessary, we
add the following extra term in the cost function of MatNet

β

L∑

l=2

Rl.

The optimisation of this is detailed in the supplement materials.

3 Multimodal Matrix Neural Networks

We demonstrate a three layer multimodal MatNet autoencoder here for super
resolution application. It is not difficult to extend to other type of multimodal
MatNet with multiple hidden layers using the same methodology.

Assume D modalities as matrices in consideration denoted by Xj ∈ R
Kj1×Kj2

(j = 1, 2, ...,D). Similarly there are D output matrix variables of the same sizes.
Let X = (X1, ...,XD). In the hidden layer, we only have one matrix variable
H ∈ R

K1×K2 . The transformation from input layer to hidden layer is

H = σ(
D∑

j=1

UjX
jV T

j + B), (3.1)

and from hidden layer to output layer is

X̂j = σ(RjHST
j + Cj), j = 1, 2, ...,D. (3.2)

Matrix Neural Networks 317

The objective function to be minimised is defined by

L =
1

2N

N∑

i=1

D∑

j=1

‖X̂j
i − Xj

i ‖2F . (3.3)

L is a function of all the parameters W = {Uj , Vj , Rj , Sj , Cj , B}Dj=1.
We leave the derivation of the optimisation schemes in the supplementary

materials.

4 Experimental Evaluation

In this section, we apply MatNet to MNIST handwritten digits classification and
image super resolution. The network settings are somewhat arbitrary. For hand-
written digits recognition, MatNet was configured as a classification network,
i.e. the output layer was a vector of softmax functions. For illustration purpose,
we selected a simple MatNet. It contained 2 hidden layers, each with 20×20 and
16 × 16 neurons. As the numbers of layers and neurons were very conservative,
we turned off sparsity constraint as well as weights decay. For super resolution
task, the only hidden layer was of size 10 × 10. The activation function in both
networks was sigmoid.

4.1 MNIST Handwritten Digits Classification

The MNIST handwritten digits database is available at http://yann.lecun.com/
exdb/mnist/. The entire database contains 60,000 training samples and 10,000
testing samples, and each digit is a 28× 28 gray scale image. We use all training
samples for modeling and test on all testing samples. The final test accuracy is
97.3%, i.e. error rate of 2.7%, which is inferior to the best MNIST performance
by DropConnect with error rate 0.21%.

However, as we stated earlier, MatNet has much less computational com-
plexity. To see this clearly, we carried out a comparison between MatNet and
CNN. The CNN consisted of two convolutional layers of size 20 × 1 × 5 × 5 and
50 × 20 × 5 × 5 one of which is followed by a 2 × 2 max pooling, and then a
hidden layer of 500 and output layer of 10, fully connected. This is the structure
used in Theano [1] demo. The total number of parameters to optimise is 430500,
while the total number of parameters in MatNet is 5536. The server runs a 6-
core i7 3.3 GHz CPU with 64 GB memory and a NVIDIA Tesla K40 GPU card
with 12 GB memory. We used Theano for CNN which fully utilises GPU. On
contrast, MatNet is implemented with Matlab without any parallelisation. The
difference of training time is astounding. It costed the server more than 20 h for
CNN with final test accuracy of 99.07%, whereas less than 2 h for MatNet with
test accuracy of 97.3%, i.e. 1.77% worse. In order to see if MatNet can approach
this CNN’s performance in terms of accuracy, we varied the structure of MatNet
in both number of neurons in each layer and number of layers (depth). However,
we limited the depth to the maximum of 6 as we did not consider deep structure

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

318 J. Gao et al.

for the time being. Due to the randomness of the stochastic gradient descent
employed in MatNet, we ran through one structure multiple times and collected
the test accuracy. Figure 1 shows the performance of different MatNet compared
against CNN. The model complexity is rendered as the number of parameters in
the model, which is the horizontal axis in the plot. So when MatNet gets more
complex, it approaches CNN steadily.

●

0.975

0.980

0.985

0.990

0e+00 1e+05 2e+05 3e+05 4e+05
Model Complexity (Number of Parameters)

A
cc

ur
ac

y Algorithm
● CNN

MatNet

Fig. 1. Test accuracy of MatNet vs CNN

4.2 Image Super Resolution

For image super resolution, we use the multimodal MatNet detailed in Sect. 3.
For the training and detailed procedures of obtaining super resolution images
please see supplementary materials.

We applied MatNet to the data set used in SR [10]. There are 69 images
for training. The patch size was 15 × 15. We randomly sampled 10,000 patches
altogether from all images for training. Some additional parameters for MatNet
are λ = 0.001, ρ = 0.05 and β = 1. So we turned on weight decay and sparsity
constraints.

Figure 2 shows the results on two testing images. Multimodal MatNet has
comparable performance as SR, the state-of-the-art super resolution method,
evaluated by PSNR: for Lena image, multimodal MatNet, SR and bicubic inter-
polation achieved PSNR 33.966 dB, 35.037 dB and 32.795 dB respectively; for
kingfisher image, they had PSNR 36.056 dB, 36.541 dB and 34.518 dB respec-
tively. We applied to a number of images of similar size (256 × 256) and we
observed similar scenario. Figure 3(a) shows the all the test images, including the
two in Fig. 2, and PSNR’s obtained by different methods is shown in Fig. 3(b).
MatNet is very close to SR in terms of PSNR, especially for image 5 and 8.

Matrix Neural Networks 319

(a) Lena image (128 × 128)

(b) Kingfisher image (256 × 256)

Fig. 2. Super resolution on 2 sets of testing images. From left to right: input small size
image, true high resolution image, up-scaled images (2 times) produced by multimodal
MatNet, SR and bicubic interpolation respectively.

(a) All 12 test images

1 2 3 4 5 6 7 8 9 10 11 12
24

26

28

30

32

34

36

Image index

P
S

N
R

(d
B

)

Bicubic
MatNet
SR

(b) PSNR results

Fig. 3. Super resolution results comparison. The images are indexed from left to right,
from top to bottom.

5 Discussion

We proposed a matrix neural network (MatNet) in this paper, which takes
matrices input directly without vectorisation. The most prominent advantage
of MatNet over the traditional vector based neural works is that it reduces the
complexity of the optimisation problem drastically, while manages to obtain
comparable performance as the state-of-the-art methods. This has been demon-
strated in applications of MNIST handwritten digits classification and image
super resolution.

As we mentioned several times in the text, MatNet was not specially opti-
mised for the tasks we showed in experiment section. There is a lot of potentials

320 J. Gao et al.

for further improvement. Many techniques used for deep networks can be readily
applied to MatNet with appropriate adaptation, e.g. reLU activation function,
max-pooling, etc., which certainly become our future research.

Supplementary Materials

Refer to http://arxiv.org/abs/1601.03805 for all details about the optimisation
(including back propagation) and experiments.

References

1. Al-Rfou et al.: Theano: a Python framework for fast computation of mathematical
expressions. arXiv e-prints abs/1605.02688, May 2016

2. Bishop, C.: Neural Networks for Pattern Recognition. Clarendon Press, Oxford
(1995)

3. Fukushima, K.: Artificial vision by multi-layered neural networks: Neocognitron
and its advances. Neural Netw. 37, 103–119 (2013)

4. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural Comput. 18(7), 1527–1554 (2006)

5. Hosmer Jr., D.W., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression,
vol. 398. Wiley, Hoboken (2013)

6. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
7. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to

document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
8. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann

machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing (ICML 2010), pp. 807–814 (2010)

9. Shu, M., Fyshe, A.: Sparse autoencoders for word decoding from magnetoen-
cephalography. In: Proceedings of the Third NIPS Workshop on Machine Learning
and Interpretation in NeuroImaging (MLINI) (2013)

10. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution via sparse repre-
sentation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

http://arxiv.org/abs/1601.03805

Simplified Particle Swarm Optimization
Algorithm Based on Improved Learning

Factors

Wei Gao1, Chuyi Song1, Jingqing Jiang2,3(&),
and Chenggang Zhang2

1 College of Mathematics, Inner Mongolia University for Nationalities,
Tongliao 028043, China

2 College of Computer Science and Technology,
Inner Mongolia University for Nationalities, Tongliao 028043, China

jiangjingqing@aliyun.com
3 Key Laboratory of Symbolic Computation and Knowledge

Engineering of Ministry of Education, Jilin University,
Changchun 130012, People’s Republic of China

Abstract. To overcome the shortcomings of the traditional particle swarm
optimization algorithm, which are easy to fall into local extreme, a new algo-
rithm based on the simplified particle swarm optimization algorithm is proposed.
Firstly, the proposed algorithm removes the speed term, so that it makes the
algorithm simple. And then it improves the displacement term. Finally the
nonlinearity of the trigonometric function is utilized in the algorithm to improve
learning factors. It balances the global search and local search. The six basic test
functions are used to compare the standard particle swarm optimization algo-
rithm, the simplified particle swarm optimization algorithm and the improved
algorithm proposed in this paper. Experimental results show that the perfor-
mance of the improved particle swarm optimization is better than the other two
algorithms.

Keywords: Particle swarm optimization � Learning factors � Classical
functions

1 Introduction

Particle swarm optimization (PSO) is a swarm intelligent global optimization algo-
rithm, originated in the simulation of simplified social model. Particle swarm opti-
mization studied on the birds, fish and human social systems. It confirmed that the
information shared between individuals in the community benefit to the global evo-
lution. PSO was proposed by Kennedy and Eberhart in 1995 [1]. After PSO was put
forward, many people pay more and more attention to it for the simple process and
principle, easy understanding, and fast convergence speed. Therefore it is applied to
many fields, such as image processing [2], hardware accelerators [3], industry [4, 5],
biology [6], agriculture [7] and so on.

© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 321–328, 2017.
DOI: 10.1007/978-3-319-59072-1_38

In particle swarm optimization algorithm, the learning factor is a very important
parameter. It can be used to control the global search and local search ability of PSO.
So the influences that the particle’s experience and the group’s experience impact on
the particle movement trajectory can be determined by adjust the value of the learning
factors. While the self learning factor is bigger, particle flight trajectory mainly refers to
the history information of the particles themselves. While the social learning factor is
bigger, particle flight trajectory mainly refers to the social information of particles
movement. So the appropriate change of the learning factor value is a good way to
improve the performance of the algorithm.

But with further research and the emergence of the various problems in reality, the
traditional PSO algorithm exposes some defects, such as falling into local optimum
easily, the lower convergence speed in the later and the lower search precision. In order
to improve the performance of the PSO algorithm, people improved it in many aspects.
This paper simply introduces some improved particle swarm optimization algorithms.
In the literature [8], Ratnaweera and Halgamuge put forward the linear adjustment of
learning factor. The self learning factor changes from bigger to smaller. The social
learning factor changes from smaller to bigger. In the literature [9], Chen put for-
ward an improved PSO algorithm which improved the learning factor using concave
function and cosine function strategy. In the literature [10], Zhang put forward a hybrid
particle swarm optimization algorithm which improved learning factor and constraints
factor. The literature [11] put forward the improved PSO algorithm which does not
include the speed term parameters. It utilizes the individual optimal location infor-
mation of the particles to improve the performance of the algorithm. Based on the
literature [11], this paper proposed an improved PSO algorithm which removes the
speed term and dynamically adjusts the learning factors according to the iteration
number. It improved the convergence speed and overcome the shortcoming of falling
into local optimum easily.

2 The Standard Particle Swarm Optimization Algorithm

PSO algorithm creates an initial group of particles randomly. Each particle does not
have volume quality. Each particle has the position term and the velocity term. The
particle is regarded as a feasible solution. But the best solution is determined by the
fitness function. Usually each particle searches the solution space by following the best
particles of the current population. And it keeps on updating its velocity and position.
In PSO, the optimal solution is obtained by searching in each generation.

The PSO algorithm searches on a D dimension space which is composed of m
particles. In the process of evolution, each particle maintains two vectors. They
are the velocity vector Vi ¼ vi1; vi2; � � � ; viDð Þ and the position vector
Xi ¼ xi1; xi2; � � � ; xiDð Þ. The optimal position of the individual obtained in the current
searching is Pti ¼ pti1; p

t
i2; � � � ; ptiD

� �
. i ¼ 1; 2; � � � ;m. The global optimal position is

Ptg ¼ ptg1; p
t
g2; � � � ; ptgD

� �
.

322 W. Gao et al.

The velocity and position of the d dimension particle i is updated by the following
formula,

vtþ 1
id ¼ wvtid þ c1r1 pid � xtid

� �þ c2r2 pgd � xtid
� �

ð1Þ

xtþ 1
id ¼ xtid þ vtþ 1

id ð2Þ

Where t is the current iteration number, w is the inertia weight, c1 and c2 are
learning factor, r1 and r2 are random numbers among [0, 1].

In formula (1) there are three parts. The first part is the inheritance of the last
generation. And it expresses the particle’s recognition of the current state. The second
part is the recognition of itself. And it represents learning from its past experience. The
third part is the cognition of the particle population. It expresses the information
sharing and cooperation between each particle.

If the velocity or the position is illegal we must revise. The usual method is to reset
the velocity or the location randomly or set them to the boundary. Usually the ter-
mination condition of the PSO algorithm is to reach the maximum number of the
iterations or achieve the required accuracy.

3 The Improved Particle Swarm Optimization Algorithm

3.1 The Simplified PSO

The standard PSO algorithm has some defects. It is easy to fall into local optimum. It
has slow convergence speed in the later evolution and reaches low accuracy. The
literature [10] simplifies the updating formula of the standard PSO. It removes the
velocity term. So the search process is controlled by the position. Therefore the PSO
algorithm is simplified. In the process of standard PSO algorithm, the particles change
its position based on the velocity. But it does not consider the influence between
particles. The simplified PSO removes the particle’s velocity term. Moreover, the
current optimal position of the individual is changed by the average of the current
optimal position of all individuals. Therefore, the particles swarm optimization algo-
rithm is simplified.

The updated formulas are as follows:

xtþ 1
id ¼ wxtid þ c1 tð Þr1 pad � xtid

� �þ c2ðtÞr2 pgd � xtid
� �

ð3Þ

pad ¼
Xm

i¼1

pid
m

ð4Þ

In (4), pad is the average of the current optimal positions of all individuals. pid is the
current optimal position of the particle i. pgd is the current global optimal position of the
particle population.

Simplified Particle Swarm Optimization Algorithm 323

3.2 Improve the Learning Factor

The learning factor adopts a fixed value in the above simplified particle swarm algo-
rithm. But the learning factor plays an important role in the PSO. The learning factor
can effectively improve the performance of particle swarm optimization algorithm.
So the improvement of the learning factor can effectively improve the search perfor-
mance of PSO algorithm. There are three common forms of learning factor. They are
fixed value [12] (typically set to 2.5), in the form of nonlinear [13] and linear [14]
respectively.

The standard PSO algorithm generally adopts linear decreasing learning factor [14].
As the searching scope is gradually decreasing, it makes the objective function falling
into local extreme points within the neighborhood, and easily convergences to the local
extreme value. In order to overcome the shortcomings of the above PSO algorithm, the
learning factor is further improved on the basis of literature [11]. The improvement of
the learning factor is as follows:

c1 tð Þ ¼ c1 tð Þþ sin tð Þ ð5Þ

c2 tð Þ ¼ c2 tð Þþ cos tð Þ ð6Þ

1� c1 tð Þ� 2:5 ð7Þ

1� c2 tð Þ� 2:5 ð8Þ

Where t is the number of the iteration; c1 tð Þ is the self- learning factor; c2 tð Þ is the
social learning factor; sin tð Þ is a sine function of the number of iterations. cos tð Þ is a
cosine function of the number of iterations. The formula (7) and formula (8) constrain
the scope of learning factor.

In the formula (5), the self-learning factor is improved by using the sine function.
At the beginning, the c1 tð Þ is larger. It benefits the local search. With the increase of the
number of iterations, the self-learning factor changes up and down as a cycle. It
prevented the PSO algorithm trap into the local optimum. In the formula (6) social
learning factor is improved by using the cosine function of the number of iterations. At
the beginning, the c2 tð Þ is small. It benefits the algorithm searching in the solution
space. With the increase of the number of iterations, the social learning factor changes
down and up as a cycle. While the number of iterations is set properly, the self-learning
factor declines and the social learning factor increases finally. At last the smaller
self-learning factor and the bigger social factor benefit the global searching.

The formula (7) and (8) is introduced by the literature [12]. The searching ability of
the PSO algorithm is good for the learning factor lies between [1, 2.5]. The first part of
the PSO algorithm is not only decreasing monotonically, but also related to the
objective function closely. At the same time, through the adjustment of the second part,
the learning factor can’t change dramatically. This makes the improved particle swarm
optimization algorithm not only converges fast but also not likely to fall into the local
optimum.

324 W. Gao et al.

4 The Steps of the Improved PSO Algorithm

The steps of improved particle swarm optimization algorithm are as follows:
Step 1. The population initialization. The position X0

i

� �
is created randomly in the

search space. Each particle in the population has a position vector xid. m is
the number of particles in the population. d 2 1;D½ � and D is the dimension
of a particle.

Step 2. Let Xmax is the maximum value of the position. pi is the current optimal
position of the particle i. pg is the optimal position of the population.

Step 3. Calculating learning factors according to the formula (5) and (6), and then
calculate pid, pgd:

Step 4. Calculate the fitness of particle i, and f xð Þ is the fitness function. i 2 1;m½ �:
Step 5. If the fitness value f xið Þ of the particle i is superior to the fitness value f pið Þ

of the current optimal position pi of particle i, pi is replaced by xi. If f xið Þ is
better than the fitness of global optimal position f pg

� �
, pg is replaced by xi:

Step 6. Updating position according to the formula (3).
Step 7. If the termination condition is reached by the iteration, output the global

optimal position. Otherwise returns to step 3, and continue to search.

5 Simulation Experience

Six basic test functions are used to test the efficiency of the improved PSO. And the
simulation results are compared with the standard particle swarm optimization algo-
rithm [1] and the simplified particle swarm optimization algorithm. The improved PSO
sets the parameters as follows: Population size of particle swarm is m ¼ 30. Dimension
is D ¼ 20. The maximum iteration number is 50; the inertia weight is w ¼ 0:927;
learning factors are c1 1ð Þ ¼ c2 1ð Þ ¼ 1. Six basic test functions [15] are as follows:

(a) Sphere function

f xð Þ ¼
XD
d¼1

x2d

Global optimum is f X�ð Þ ¼ 0, search range is �100� xd � 100.
(b) Shaffer’s f7 function

f xð Þ ¼ x21 þ x22
� �0:25

sin2 50 x21 þ x22
� �0:1� �

þ 1:0
h i

Global optimum is f X�ð Þ ¼ 0, search range is �100� xd � 100.
(c) Griewank function

Simplified Particle Swarm Optimization Algorithm 325

f xð Þ ¼ 1
4000

XD
i¼1

x2i �
YD
i¼1

cos
xiffiffi
i

p þ 1

Global optimum is f X�ð Þ ¼ 0, search range is �100� xd � 100.
(d) Rosenbrock function

f xð Þ ¼
XD�1

i¼1

100 xiþ 1 � x2i
� �2 þ xi � 1ð Þ2

h i

Global optimum is f X�ð Þ ¼ 0, search range is �30� xd � 30.
(e) Rastrigrin function

f xð Þ ¼
XD
i¼1

x2i � 10 cos 2pxið Þþ 10
� �

Global optimum is f X�ð Þ ¼ 0, search range is �10� xd � 10.
(f) Shaffer’s f6 function

f xð Þ ¼ 0:5þ
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p� �2
� 0:5

1:0þ 0:001 x21 þ x22
� �� �2

Global optimum is f X�ð Þ ¼ 0, search range is �100� xd � 100.

Table 1 shows the results of three algorithms for six test functions. For each
algorithm, the first column is the best fitness value and the second column is the
number of iteration that needed to reach the best value. It can be seen from Table 1 that
the improved PSO can reach the global optimum for five of six functions and reach
better solution for the other functions. The iterations that needed are less than the other
two algorithms.

Figures 1 and 2 show the performance compared the Simplified PSO and the
improved PSO for the Rosenbrock and Shaffer’s f6 function. From the two diagrams it
can be seen clearly that the performance of the improved PSO algorithm is superior to
the simplified PSO algorithm. It makes the change of position faster in the first half part

Table 1. The best fitness value of the test functions

Test functions Standard PSO Simplified PSO Improved PSO
Best fitness Iterations Best fitness Iterations Best fitness Iterations

Sphere 16.1610 50 0.2624 50 0 10
Shaffer’s f7 7.2028 50 0.0152 50 0 19
Griewank 9.0726 50 0 11 0 4
Rosenbrock 12.7292 50 0.0266 50 0 19
Rastrigrin 6.7522 50 0.2286 50 0 10
Shaffer’s f6 1.6979 50 0.219 50 0.0097 8

326 W. Gao et al.

of searching and slower in the last half part. The improved PSO algorithm can search
the optimal solution of the objective function efficiently and it voids tofall into the local
optimum.

6 Conclusion

To overcome the shortcomings of the standard particle swarm optimization algorithm
which have lower convergence speed and easy to fall into local optimum, an improved
algorithm is put forward in this paper which based on simplified particle swarm
optimization algorithm to improve the learning factors. Firstly, this algorithm removes
the velocity term of the standard PSO algorithm. And it simplified the PSO. Secondly,
it uses the relationship between the particle and the number of iterations to improve the
position. Finally, it improves the learning factors. The change of learning factors in this
way benefits the local search. Six basic test functions are used to test the standard
particle swarm optimization algorithm, the simplified particle swarm optimization

0
1
2
3
4
5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49Fu
nc

tio
n

fit
ne

ss
 v

al
ue

Iterations

The simplified PSO The improved PSO

Fig. 1. Rosenbrock function fitness value change in the two algorithms

0

0.5

1

1.5

2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49Fu
nc

tio
n

fit
ne

ss
 v

al
ue

Iterations

The simplified PSO The improved PSO

Fig. 2. Shaffer’s f6 functions fitness value change in the two algorithms

Simplified Particle Swarm Optimization Algorithm 327

algorithm and the improved algorithm in this paper. The numerical experiments show
that this improved particle swarm optimization algorithm converges fast. The improved
particle swarm optimization algorithm avoids falling into local minima at the same
time. The performance of improved PSO algorithm is better than the other two
algorithms.

Acknowledgement. This work was supported by The National Natural Science Foundation of
China (Project No. 61373067, 61662057).

References

1. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. Proc. IEEE Int. Conf. Neural
Netw. 4, 1942–1948 (1995)

2. Setayesh, M., Zhang, M., Johnston, M.: A novel particle swarm optimization approach to
detecting continuous, thin and smooth edges in noisy images. Inf. Sci. 246, 28–51 (2013)

3. Calazan, R.M., Nedjah, N., Mourelle, L.M.: A hardware accelerator for particle swarm
optimization. Appl. Soft Comput. 14, 347–356 (2014)

4. Echevarr, L.C., Santiago, O.L., Fajardo, J.A.H., Neto, A.J.S., Sanchez, D.J.: A variant of the
particle swarm optimization for the improvement of fault diagnosis in industrial systems via
faults estimation. Eng. Appl. Artif. Intell. 212, 1–16 (2014)

5. Sun, Z., Zhao, J., Wang, W.: Application of improved particle swarm optimization based on
gaussian search to grinding predictive control. J. Dalian Univ. Technol. 1, 89–96 (2015)

6. Li, N., Huang, Z.: Improved niche particle swarm optimization. Softw. Guide 2, 45–47
(2015)

7. Meng, Q., Zhang, M., Yang, G., Qiu, R., Ming, X.: Guidance line recognition of agricultural
machinery based on particle swarm optimization under natural illumination. J. Agric. Mach.
47, 11–20 (2016)

8. Ratnaweera, A., Halgamuge, S.: Self-organizing hierarchical particle swarm optimizer with
time-varying acceleration coefficients. Evol. Comput. 8, 240–255 (2004)

9. Zhao, Z., Huang, S., Wang, W.: Simplified particle swarm optimization algorithm based on
stochastic inertia weight. Comput. Appl. Res. 22, 361–363 (2014)

10. Chen, S., Cai, G., Guo, W., Chen, G.: Study on nonlinear strategy of acceleration coefficient
in particle swarm optimization (PSO) algorithm. J. Yangtze Univ. (Nat. Sci. Ed.) 4, 1–4
(2007)

11. Zhang, S., Zhong, W.: Hybrid particle swarm optimization algorithm of new learning factors
and constraint factor. Appl. Res. Comput. 32, 3626–3628 (2015)

12. Clerc, M.: The swarm and the queen: towards a deterministic and adaptive particle swarm
optimization. In: Proceeding of IEEE International Conference on Evolutionary Computa-
tion, pp. 1951–1957 (1999)

13. Zhu, X., Li, Y., Li, N., Fan, B.: Improved PSO algorithm based on swarm prematurely
degree and nonlinear periodic oscillating strategy. J. Commun. 35, 182–189 (2014)

14. Zhang, L., Wu, Y., Wei, X.: An adaptive particle swarm optimization algorithm based on
linear dynamic parameter. Res. Dev. 3, 15–18 (2011)

15. Wang, Q., Wang, Z., Wang, S.: A modified particle swarm optimizer using dynamic inertia
weight. Chin. Mech. Eng. 16, 945–948 (2005)

328 W. Gao et al.

Synchronization Analysis for Complex Networks
with Interval Coupling Delay

Dawei Gong1(B), Xiaolin Dai1, Jinliang Song2, and Bonan Huang3

1 School of Mechatronics Engineering, University of Electronic Science and
Technology of China, Chengdu, China
pzhzhx@126.com, www dxl@126.com

2 The National Network of Liaoning Electric Power Research Institute,
Shenyang, China
sjl2241@163.com

3 College of Information Science and Engineering, Northeastern University,
Shenyang, China
78778322@qq.com

Abstract. This paper concerns synchronization problems for complex
networks with interval delays. By using an inequality that is introduced
from Newton-Leibniz formula and combining the Finsler’s Lemma with
homogenous matrix, convergent LMI relaxations for synchronization
analysis are proposed with matrix-valued coefficients. Finally, a numer-
ical example is provided to illustrate the effectiveness of the proposed
methods.

Keywords: Synchronization · Complex networks · Hybrid coupling ·
Finsler’s lemma

1 Introduction

Complex networks, which have large size and non-trivial complex topological fea-
tures, have been intensively studied by many researchers in recent years. Such
networks have connections which are neither purely regular nor purely random.
These networks are used to understand and predict the behaviour of many struc-
tures, e.g. internet, medicine, society and biology. It has been found that lots of
phenomena in real world can be modeled by complex networks [1,2]. Amongst
all the topics which are studied by complex networks, synchronization phenom-
ena plays an important role due to their real world potential applications. There
are many interesting synchronization phenomena in nature world. Lots of efforts
have been putting into the development of the synchronization problems in com-
plex networks [3–5].

However, it should be noticed that for the complex dynamical networks in all
of the aforementioned contributions and most of the existing studies, time delays
occur commonly in complex networks because of the network traffic congestions
as well as the finite speed of signal transmission over the links. And the synchro-
nization problem for various types of networks with delayed coupling has been
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 329–336, 2017.
DOI: 10.1007/978-3-319-59072-1 39

330 D. Gong et al.

extensively studied [6,7]. However, in those papers, much computation complex-
ities, and the number of variables are usually very huge. So, how to improve
system performance while removing the redundant variables and reducing com-
putation complexities still remains largely unsolved and challenging. Thus, how
to utilize the information in time-varying delay in order to further obtain less
conservative synchronization for complex networks with time-varying delays still
remains largely unsolved and challenging.

Therefore, we study synchronization problem for a general complex system
with time-varying delays by using a useful inequality and introducing Finsler’s
lemma. Combining with Finsler’s Lemma, convergent LMI relaxations for syn-
chronization analysis are proposed. The obtained results can be expanded to
many existing research papers. Finally, our main results are illustrated through
some numerical simulation examples.

Notations: Rn is the n-dimensional Euclidean space; Rm×n denotes the set of
m × n real matrices. In represents the n-dimensional identity matrix. The nota-
tion X ≥ 0 (respectively, X > 0) means that X is positive semidefinite (respec-

tively, positive definite); diag(· · ·) denotes a block-diagonal matrix;
[

X Y
∗ Z

]

stands for
[

X Y
Y T Z

]
. Matrix dimensions, if not explicitly stated, are assumed to

be compatible for algebraic operations.

2 Preliminaries

Consider a delayed complex dynamical network consisting of N coupled nodes,
in which each node is an n-dimensional dynamical subsystem

ẋi(t) = f(xi(t)) + c

N∑
j=1

gijAxj(t − τ(t)), (i = 1, 2, . . . , N) (1)

where xi(t) = (xi1 (t) , xi2 (t) , · · · , xin (t))T ∈ Rn is the state vector of the ith
node. f(xi(t)) ∈ Rn is a continuously differentiable vector function. The constant
c > 0 represents the coupling strength. A = (aij)n×n is a inner-coupling matrix,
G = (gij)N×N represent the outer-coupling connections. The time delays τ(t) is
time-varying differentiable functions which satisfy

0 ≤ τ(t) ≤ τ, τ̇(t) ≤ μ < 1

In the following, some elementary situations are introduced, which play an
important role in the proof of the main result.

Throughout this paper, the following assumptions are needed.

Assumption 1. The outer-coupling configuration matrices of the neural
networks satisfy ⎧⎨

⎩
gij = gji ≥ 0, i �= j

gii = −
N∑

j=1,j �=i

gij , i, j = 1, 2, · · · , N

Synchronization Analysis for Complex Networks 331

Next, we give some useful definitions and lemmas.

Definition 1. The delayed dynamical networks (1) are said to achieve asymp-
totic synchronization if

x1(t) = x2(t) = . . . = xN (t) = s(t), t → ∞ (2)

where s(t) is a solution of an isolate node, satisfying ṡ(t) = f(s(t)).

Lemma 1. [8] Consider the delayed dynamical network (1), the eigenvalues of
outer coupling matrix G are denoted by

0 = λ1 > λ2 ≥ λ3 ≥ . . . ≥ λN ,

if the following N−1 of n-dimensional time-varying delayed differential equations
are asymptotically stable about their zero solution

ẇk(t) = J(t)wk(t) + cλkAwk(t − τ(t)) (3)

where J(t) is the Jacobian of f(x(t)) at s(t), then the synchronized states are
asymptotically stable.

Lemma 2. (Jensen’s inequality) For constant matrix Υ ∈ Rn×n, ΥT = Υ > 0,
scalar ρ > 0 and vector function � : [0, ρ] → Rn, we have:

ρ

ρ∫
0

�T (s)Υ�(s)ds ≥ (

ρ∫
0

�(s)ds)T Υ (

ρ∫
0

�(s)ds)

Lemma 3. (Finsler’s Lemma) Let ξ ∈ Rn, φ = φT ∈ Rn×n, and B ∈ Rm×n,
such that rank(B) < n. Then the following statements are equivalent:

(1) ξT φξ < 0,Bξ = 0, ξ �= 0
(2) (B⊥)T φB⊥ < 0,
(3) ∃L ∈ Rn×m, Φ + LB + BT LT < 0,

where B
⊥ is a right orthogonal complement of B

Lemma 4. [9] Let x(t) ∈ Rn be a vector-valued function with first-order
continuous-derivative entries. Then, the following integral inequality holds for
any matrices M1,M2 ∈ Rn×n, X = XT > 0 ∈ Rn×n, and Z ∈ R2n×2n, and a
scalar function τ ≥ 0:

−
t∫

t−τ

ẋT (s)Xẋ(s)ds ≤ ξT (t)Υξ(t) + τξT (t)Zξ(t),

where

Υ :=
[
MT

1 + M1 −MT
1 + M2

∗ −MT
2 − M2

]
, ξ(t) :=

[
x(t)

x(t − τ)

]
, Z =

[
MT

1

MT
2

]
X−1

[
M1 M2

]
.

332 D. Gong et al.

Remark 1. This Lemma was proposed by He Yong in 2005, and it has been
applied widely in many literatures. However, it is rarely used in the complex
networks. It was deduced from Newton-Leibniz formula, so it can use fewer free-
weighting matrices to acquire better results than some existing references in
which a number of free-weighting matrices were introduced by Newton-Leibniz
formula.

3 Main Results

In this section, we present our main results by introducing Finsler’s lemma.
Combining with the Finsler’s Lemma, convergent LMI relaxations for synchro-
nization analysis are proposed.

Theorem 1. From Lemma 3, dynamical system (1) is asymptotically synchro-
nized if there exist positive definite symmetric matrices Pk, Qk, Sk, Yk, and any
real matrices Mik, (i = 1, 2), such that the following LMIs hold for all 2 ≤ k ≤ N :

(B⊥)T Ξ2kB
⊥ < 0, (4)

where
B = [J(t), cλkA,−IN],

Ξ2k =

⎡
⎣H2k τΓT

1 Y T
k τ(1 − μ)ΓT

2

∗ −Yk − Y T
k + τSk 0

∗ ∗ −τ(1 − μ)Sk

⎤
⎦ < 0, (5)

Γ1 = [J(t), cλkA], Γ2 = [M1k,M2k],

H2k =
[
Ω11 Ω12

∗ Ω22

]
.

Ω11 = PkJ(t) + J(t)T Pk + Qk + (1 − μ)(MT
1k + M1k)

Ω12 = PkcλkA − (1 − μ)(MT
1k − M2k)

Ω22 = −(1 − μ)Qk − (1 − μ)(MT
2k + M2k).

Proof: Choose a Lyapunov-Krasovskii functional candidate as

V (t) = wT
k (t)Pkwk(t) +

t∫
t−τ(t)

wT
k (s)Qkwk(s)ds +

t∫
t−τ(t)

t∫
θ

ẇT
k (s)Skẇk(s)dsdθ,

(6)

Synchronization Analysis for Complex Networks 333

Then the time derivative of V (t) along the trajectory will satisfy

V̇ (t) = 2wT
k (t)Pk [J(t)wk(t) + cλkAwk(t − τ(t))]

+ wT
k (t)Qkwk(t) − (1 − τ̇(t))wT

k (t − τ(t))Qkwk(t − τ(t))

+ τ(t)ẇT
k (t)Skẇk(t) − (1 − τ̇(t))

t∫
t−τ(t)

ẇT
k (s)Skẇk(s)ds

≤ 2wT
k (t)Pk [J(t)wk(t) + cλkAwk(t − τ(t))]

+ wT
k (t)Qkwk(t) − (1 − μ)wT

k (t − τ(t))Qkwk(t − τ(t))

+ τẇT
k (t)Skẇk(t) − (1 − μ)

t∫
t−τ(t)

ẇT
k (s)Skẇk(s)ds (7)

From Lemma 4, for any M1k, M2k with an appropriate dimension yields the
following integral inequality

−
t∫

t−τ(t)

ẇT
k (s)Skẇk(s)ds

≤ ηT
k (t)

[
MT

1k + M1k −MT
1k + M2k

∗ −MT
2k − M2k

]
ηk(t) + τηT

k (t)
[
MT

1k

MT
2k

]
S−1

k

[
M1k M2k

]
ηk(t),

(8)

where

ηT
k (t) = [wT

k (t), wT
k (t − τ(t))].

On the other hand, it is easy to see from the system (3) of that the following
equation also holds for any matrices Yk, 2 ≤ k ≤ N ,

0 = 2ẇT
k (t)Yk[−ẇk(t) + J(t)wk(t) + cλkAwk(t − τ(t))] (9)

Combing (7), (8), and (9), we can obtain

V̇k(t) ≤ ζT
k (t)Ξ2kζk(t) (10)

where

ζT
k (t) = [wT

k (t), wT
k (t − τ(t)), ẇT

k (t)].

Note Bζk(t) = 0, it follows from Lemma 3 that (B⊥)T Ξ2kB
⊥ < 0 is equivalent

to ζT
k (t)Ξ2kζk(t) < 0. This completes the proof.

Remark 2. Convergent LMI relaxations are introduced by Finsler’s Lemma
with homogenous matrix. Then, more matrix-valued coefficients can be intro-
duced and the aim of reducing conservatism can also be achieved. Therefore,
our method significantly improvements the performance of the synchronization
results for complex networks, and can be applied to most of the existing syn-
chronization results, such as [10–12].

334 D. Gong et al.

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

t

e 1
(t)

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

t

e 2
(t)

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

t

e 3
(t)

Fig. 1. Synchronization errors for networks with time-varying delays: ej(t), j = 1, 2, 3

Synchronization Analysis for Complex Networks 335

4 Numerical Examples

In this section, some numerical examples will be given to illustrate the usefulness
of the obtained results.

Example 1: Consider a complex network model with 20 nodes, where each
node is a simple three-demensional stable linear system described by⎡

⎣ẋ1(t)
ẋ2(t)
ẋ3(t)

⎤
⎦ =

⎡
⎣ −x1

−2x2

−3x3

⎤
⎦ (11)

which is asymptotically stable at s(t) = 0, and it’s Jacobian is
J = diag(−1,−2,−3). We assume that the inner-coupling matrix is
A = 0.5diag(1, 1, 1), and the outer-coupling matrix is defined as:

G =

⎡
⎢⎢⎢⎢⎣

−2 1 0 0 1
1 −3 1 1 0
0 1 −2 1 0
0 1 1 −3 1
1 0 0 1 −2

⎤
⎥⎥⎥⎥⎦ (12)

By using the Matlab LMI Toolbox, according to the three theorems, the com-
plex networks (1) with time-varying delays can achieve global synchronization.
To further illustrate the efficiency of our method, we plot the synchronization
errors between the states of nodes in Fig. 1. In this simulation, ej(t) = x1j(t)−xij

for i = 2, · · · , 20; j = 1, 2, 3, with c = 0.4, τ = 1, and μ = 0.5. The initial values
are randomly chosen.

5 Conclusion

We have derived delay-dependent asymptotically stability criteria in terms of
LMIs for network synchronization that are very easy to verify. These synchro-
nization conditions are applicable to networks with different topologies and dif-
ferent sizes. We have also shown a numerical example to verify the theoretical
results. This paper is only a first step toward network model with coupling
delays, which can describe more realistic complex networks. There are also some
limitations in our models. For example, in our models all the delays are the
same, and the coupling strengths are all constants. In addition, how to extend
the existing results to these complex systems is still a challenging problem.

Acknowledgment. This work was supported by the National Natural Science
Foundation of China (51305066, 61603076).

References

1. Tan, S.L., Lü, J.H., Chen, G.R.: When structure meets function in evolutionary
dynamics on complex networks. IEEE Trans. Circ. Syst. Mag. 14, 36–50 (2014)

336 D. Gong et al.

2. Zou, X.J., Gong, D.W., Wang, L.P., Chen, Z.Y.: A novel method to solve inverse
variational inequality problems based on neural networks. Neurocomputing 173,
1163–1168 (2016)

3. Gao, H.J., Lam, J., Chen, G.R.: New criteria for synchronization stability of general
complex dynamical networks with coupling delays. Phys. Lett. A 360, 263–273
(2006)

4. Shen, H., Park, J.H., Wu, Z.G., Zhang, Z.Q.: Finite-time H∞ synchronization
for complex networks with semi-Markov jump topology. Commun. Nonlinear Sci.
Numer. Simul. 24, 40–51 (2015)

5. Qin, J.H., Gao, H.J., Zheng, W.X.: Exponential synchronization of complex net-
works of linear systems and nonlinear oscillators: a unified analysis. IEEE Trans.
Neural Netw. Learn. Syst. 26, 510–521 (2015)

6. Gong, D.W., Lewis, F.L., Wang, L.P., Xu, K.: Synchronization for an array of
neural networks with hybrid coupling by a novel pinning control strategy. Neural
Netw. 77, 41–50 (2016)

7. Gong, D.W., Zhang, H.G., Huang, B.N., Ren, Z.Y.: Synchronization criteria and
pinning control for complex networks with multiple delays. Neural Comput. Appl.
22, 151–159 (2013)

8. Li, C.G., Chen, G.R.: Synchronization in general complex dynamical networks with
coupling delays. Phys. A 343, 263–278 (2004)

9. Zhang, X.M., Wu, M., She, J.H., He, Y.: Delay-dependent stabilization of lin-
ear systems with time-varying state and input delays. Automatica 41, 1405–1412
(2005)

10. Dai, X.L., Gong, D.W., Huang, B.N., Li, J.J.: Synchronisation analysis for coupled
networks with multiple delays. Int. J. Syst. 46, 2439–2447 (2015)

11. Gong, D.W., Liu, J.H., Zhao, S.Y.: Chaotic synchronisation for coupled neural
networks based on T-S fuzzy theory. Int. J. Syst. Sci. 46, 681–689 (2015)

12. Huang, B.N., Zhang, H.G., Gong, D.W., Wang, J.Y.: Synchronization analysis for
static neural networks with hybrid couplings and time delays. Neurocomputing
148, 288–293 (2015)

FPGA Implementation of the L Smallest
k-Subsets Sum Problem Based on the

Finite-Time Convergent Recurrent Neural
Network

Shenshen Gu(B) and Xiaowen Wang

School of Mechatronic Engineering and Automation,
Shanghai University, Shanghai 200072, China

gushenshen@i.shu.edu.cn

Abstract. For a given set S of n real numbers and a positive integer
k < n, there are totally

(
n
k

)
subsets of S with k elements. Among these

subsets, to find L subsets whose summation of their elements are the L
smallest is so called the L smallest k-subsets sum problem. It is widely
applied in the real operations and computational research. However it
is very computationally challenging to process large scale L smallest k-
subsets sum problem. To solve this problem, this paper presents a FPGA
implementation of a finite-time convergent recurrent neural network of
L smallest k-subsets sum problem. And the neural network model is
tested on a Digilent Nexys 4 DDR board with Xilinx Artix 7 FPGA.
Experimental results show that the proposed hardware implementation
method has a high degree of parallelism and fast performance.

Keywords: Neural networks · FPGA · k-Subset

1 Introduction

The k-subset is defined as a subset of S containing k different elements, for a
given set S with n real numbers, where k < n [1]. The binomial coefficient

(
n
k

)

indicates the number of k-subsets on n elements. For example, there are
(
4
2

)
= 6

2-subsets of {3, 5, 9, 10}. The L smallest k-subsets sum problem is an operation
that defines L k-subsets whose summation of subset elements are the L smallest
among all possible combinations. It is obvious that the 2 smallest 2-subsets of
{3, 5, 9, 10} is {3, 5} and {3, 9}.

There are numerous applications of the subset sum problem in the operations
research. In computer science, it is widely implemented in the optimal memory
management in multiple programming [2]. The paper [3] presents its usage in
supporting multiple scalable video sequences by wireless resources. And in [4] the

The work described in the paper was supported by the National Science Foundation
of China under Grant 61503233.

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 337–345, 2017.
DOI: 10.1007/978-3-319-59072-1 40

338 S. Gu and X. Wang

subset sum problem was researched as a specific case of the Knapsack problem in
optimization. Chang [5] presented a quantum algorithms for solving an instance
of the subset-sum problem and test it on a quantum computer. For the hardware
implementation, a GPU implementation is proposed in paper [6] to solve the
subset sum problem.

In the past time, its difficult to compile digital signal processing by field-
programmable-gate-array (FPGA), because of the complexity of describing dig-
ital signal processing through hardware description language (HDL). However,
the appearance of a high level modeling tool Xilinx System Generation make it
easier to process mathematical model by constructing digital signal processing
in FPGA. More and more signal processing with high performance are compiled
with FPGA.

In this paper the hardware implementation of the k-subset neural network
model is studied by using a field-programmable-gate-array (FPGA) chip. To
solve the L smallest k-subsets sum problem, a efficient algorithm was proposed
in the paper [7] by combining the L shortest paths algorithm and the finite-time
convergent recurrent neural network. Based on this algorithm a neural network
model was constructed. After verification of the neural network model based on
Xilinx Blockset in Simulink, the Verilog hardware description language (HDL) is
used to describe the neural network in Xilinx company’s comprehensive FPGA
development software Vivado.

This paper is organized as follows. Section 2 presents the problem formulation
and illustrates the description of the problem with a network. Section 3 intro-
duces the neural network design procedure, architecture and properties. And the
FPGA implementation is also described in this section. Next, in Sect. 4, exper-
imental results are given to verify the efficiency of the FPGA implementation.
Finally, a conclusion was drawn in the end to summarize this work.

2 Problem Formulation and Neural Network Model

A proper mathematic model is very indispensable to solve the L smallest k-
subsets problem effectively. Mathematically, the lth (0 < l ≤ L) smallest k-subset
problem can be formulated as a function

xi =
{

1, if vi ∈ {the lth smallest k-subset};
0, otherwise; (1)

for i = 1, . . . , n; where v ∈ Rn and k ∈ {1, . . . , n − 1}. Figure 1 shows the
operation graphically.

Considering the L smallest k-subsets sum problem can be regarded as the
further application of the L shortest paths problem, many algorithms have been
proposed for finding the shortest path. To find the shortest path several neural
networks were proposed in [8], the shortest path problem can be converted to
the linear program as follows:

FPGA Implementation of the L Smallest k-Subsets Sum Problem 339

Fig. 1. Diagram of finding the lth (0 < l ≤ L) smallest k-subset operation.

minimize
n∑

i=1

n∑

j=1

cijxij

subject to
n∑

k=1

xik +
n∑

l=1

xli = δil − δin

xij ≥ 0, i, j = 1, 2, . . . , n

where cij denotes the weight between node i and node j, and δij is referred to as
Kronecker delta function which is indicated by δij = 1(i = j) and δij = 0(i �= j).
The dual problem of the previous problem is

maximize yn − y1

subject to yj − yi ≤ cij , i, j = 1, 2, . . . , n

where yi denotes the dual decision variable according to node i. By defining
zi = yi − y1 for i = 1, 2, . . . , n the dual problem can be further expressed by
following program.

minimize zn,
subject to zj − zi ≤ cij , i �= j, i, j = 1, 2, . . . , n

(2)

where z1 = 0. The effectiveness and high efficiency of the finite-time convergent
recurrent neural network has been proved in [9], because of its flexible structure
and the capability of selecting parameters for global convergence. By combining
(2) and the finite-time convergent recurrent neural network, the neural network
model can be modulated as follows:

ε
dz

dt
= −σAT g(Az − b) − c, (3)

where ε denotes a positive scaling constant, σ > 1 is a gain parameter, z = (z2,
z3, . . . , zn)T , b = (c12, . . . , c1n, c21, c23, . . . , c2n, . . . , cn1, . . . , cn,n−1)T ∈ R

n(n−1),
A is an n(n − 1) × n matrix of 0, 1 and −1 to construct n(n − 1) inequality
constraints, g : Rn → [0, 1]n is a piecewise linear function which is defined by
g(v) = (g(v1), . . . , g(vn−1)) and

340 S. Gu and X. Wang

g(vi) =

⎧
⎪⎨

⎪⎩

1, if v > 0,

[0, 1], if v = 0, (i = 1, 2, . . . , n − 1)
0, if v < 0.

(4)

Figure 2 shows the block diagram of the certain neural network which con-
sists of three main parts. A specific network structure is converted to a linear
programming in the form of (2) by preprocessing part. Then the neural network
processing part works as the calculation of the optimal solution. At last, accord-
ing to the connections, the postprocessing part decodes the optimal solution to
the solution.

Fig. 2. Block diagram of the neural network for finding the shortest path.

3 FPGA Implementation

Based on the neural network model, a circuit implementation model was built.
Figure 3 shows the circuit model, which consists of four kinds of modules: adder
modules, function modules, multiplier modules and integrator modules. Accord-
ing to the circuit model, a hardware implementation architecture is constructed
with Xilinx Blockset in Simulink. The function module is modeled by compara-
tor, i.e., if the input is positive then the output equals one, when the input is less
the or equal to zero, the output equals zero. As to the integrator, considering
that the integration process equals to small accumulation process, the numerical
value of the integrand is divided into many small ones which are added to the
accumulator step by step then stored in the register. Figure 4 shows the hard-
ware model of the integrator. Since the valve of the step is very significant, if
the step is too small, the output will converge very slowly. And if the step is
too big, the output will turn out divergent. After many experimental tries, the
hardware model performs well with the step of 0.02.

Figure 5 shows the hardware implementation model of the neural networks.
The neural networks are unsupervised which consist of three layers. The first
layer is composed of adder modules and function modules. The middle layer
consist of multiplier modules and adder modules. The multiplier modules work
as connection weights (i.e. the gain parameter σ in (3)) with the valve of 2. The

FPGA Implementation of the L Smallest k-Subsets Sum Problem 341

Fig. 3. Circuit implementation of the neural network for finding the shortest path.

Fig. 4. The model for an integrator.

last layer is composed of integrator modules, it is also the output layer of the
neural networks, the output will feedback to the first layer.

System Generator must work in Simulink of Matlab based on the method of
model design. User can construct the mathematical model by Xilinx Blockset in
Simulink and get the simulation results. Then System Generator can generate
Verilog HDL code and test bench which can be compiled in Vivado an integrated
development environment (IDE) software of Xilinx. The System Generator has a
high compatibility of floating-point calculation which makes the iteration process
more accurate and guarantees the convergence of the system. In this paper, the
generation environment is based on Xilinx Artix-7 xc7a100T.

4 Simulation Results

To show the effectiveness and efficiency of the neural network hardware imple-
mentation, the following simulations are performed. In the first case where L = 4,
k = 2, S = {2, 4, 6, 9}, the promised optimal value should be six. The type of the
data in this model is fixed binary floating point with size of 20 bits, the sample
step is 1s, the initial value of the accumulator is 15. The simulation results of the
model in Simulink are shown in Fig. 6. In the second case where L = 4, k = 2,
S = {3, 5, 9, 10}, the promised optimal value should be eight. Figure 7 shows the
simulation results of the model. The two cases above show that the hardware
model of the neural network constructed in simulink can work correctly and
efficiently, the simulation result is convergent and accurate.

342 S. Gu and X. Wang

Fig. 5. The hardware implementation model of the neural networks.

Fig. 6. The simulation results of the model in Simulink with S = {2, 4, 6, 9}.

Fig. 7. The simulation results of the model in Simulink with S = {3, 5, 9, 10}.

FPGA Implementation of the L Smallest k-Subsets Sum Problem 343

In term of the two cases, Verilog HDL code of the neural network can be
generated by Xilinx System Generation, after running behavioral simulation in
Vivado the wave simulation results are shown in Fig. 8 which illustrates that
the output of the first case converges to 6.25 in 13.49us, its very close to the
promised result. From Fig. 9, the output of the second case converges in 9.94us
and the result is 8.8125.

Fig. 8. The result of wave simulation in Vivado with S = {2, 4, 6, 9}.

Fig. 9. The result of wave simulation in Vivado with S = {3, 5, 9, 10}.

In order to display the output on the FPGA chip, the Convert module is
employed to convert the output signal into a 4 bit binary integer. The input
data of the first case are kept unvaried, the converted result is shown in Fig. 10.
Figure 11 illustrates the result of the output displayed by LEDs on the FPGA
chip, the type of the FPGA chip implemented in this experiment is Digilent
Nexys 4 DDR board with Xilinx Artix 7 FPGA. The power estimation available
in the SDK, the total on-chip power under the default environment setting is
0.148W.

Fig. 10. The simulation result of the converted output with S = {2, 4, 6, 9}.

344 S. Gu and X. Wang

Fig. 11. The simulation result on Digilent Nexys 4 DDR board with Xilinx Artix 7
FPGA.

5 Conclusion

In this paper, based on a the finite-time convergent recurrent neural network
model combined with FPGA chips, a hardware implementation method was
proposed for the the L smallest k-subsets problem. Xilinx System Generation
makes it easier to build the DSP system of neural network. The experimental
results indicated that this hardware implementation demonstrated a high degree
of parallelism and capable of pipelining of neural networks. The FPGA imple-
mentation performed efficient and effective as well. This implementation can
be considered for further study by researchers. Considering the inputs data is
kept unvaried, the results may be regarded as a benchmark for conceptual and
preliminary studies. More neural networks based on various algorithm can be
implemented by FPGA.

References

1. Nijenhuis, A., Wilf, H.: Combinatorial Algorithms for Computers and Calculators,
2nd edn. Academic Press, New York (1978)

2. Wang, H., Ma, Z., Nakayama, I.: Effectiveness of penalty function in solving the sub-
set sum problem. In: Proceedings of IEEE International Conference on Evolutionary
Computation, pp. 422–425 (1996)

3. Bocus, M., Coon, J., Canagarajah, C., Armour, S.M.D., Doufexi, A.M.J.: Per-
subcarrier antenna selection for H.264 MGS/CGS video transmission over cognitive
radio networks. IEEE Trans. Veh. Technol. 61(3), 1060–1073 (2012)

4. Martello, S., Toth, P.: Knapsack problems: Algorithms and Computer Interpreta-
tions. Wiley-Interscience, Hoboken (1990). pp. 105–136

5. Chang, W.L.: Quantum algorithms of the subset-sum problem on a quantum com-
puter. In: WASE International Conference on Information Engineering, ICIE 2009,
pp. 54–57 (2009)

FPGA Implementation of the L Smallest k-Subsets Sum Problem 345

6. Wan, L., Li, K.L.J.: GPU implementation of a parallel two-list algorithm for the
subset-sum problem. Concurr. Comput. 27(1), 119–145 (2015)

7. Gu, S., Cui, R.: An efficient algorithm for the subset sum problem based on finite-
time convergent recurrent neural network. Neuro Comput. 149, 13–21 (2015)

8. Wang, J.: Primal and dual neural networks for shortest-path routing. IEEE Trans.
Syst. Man Cybern. Part A: Syst. Hum. 28(6), 864–869 (1998)

9. Liu, Q., Wang, J.: Finite-time convergent recurrent neural network with a hard-
limiting activation function for constrained optimization with piecewise-linear objec-
tive functions. IEEE Trans. Neural Netw. 22(4), 601–613 (2011)

Accelerating Stochastic Variance Reduced
Gradient Using Mini-Batch Samples
on Estimation of Average Gradient

Junchu Huang(B), Zhiheng Zhou, Bingyuan Xu, and Yu Huang

School of Electronic and Information Engineering,
South China University of Technology, Guangzhou, China

{h.junchu,xu.bingyuan,h.y33}@mail.scut.edu.cn, zhouzh@scut.edu.cn

Abstract. Stochastic gradient descent (SGD) is popular for large scale
optimization but has slow convergence. To remedy this problem, stochas-
tic variance reduced gradient (SVRG) is proposed, which adopts average
gradient to reduce the effect of variance. Since its expensive computa-
tional cost, average gradient is maintained between m iterations, where
m is set to the same order of data size. For large scale problems, the effi-
ciency will be decreased due to the prediction on average gradient maybe
not accurate enough. We propose a method of using a mini-batch of sam-
ples to estimate average gradient, called stochastic mini-batch variance
reduced gradient (SMVRG). SMVRG greatly reduces the computational
cost of prediction on average gradient, therefore it is possible to estimate
average gradient frequently thus more accurate. Numerical experiments
show the effectiveness of our method in terms of convergence rate and
computation cost.

Keywords: Optimization algorithms · Stochastic gradient descent ·
Machine learning

1 Introduction

In machine learning, the following empirical risk minimization problem is often
encountered. Let fi(w) be a loss function defined on instance i, where i =
1, 2, · · · , n and w is the parameter to learn. To improve generalization ability,
fi(w) is often with a regularization term. In this paper, it is assumed that each
fi(w) is derivable. Our objective is to in search of an approximate solution of
such optimization problem

min P (w), P (w) � 1
n

n∑

i=1

fi(w) (1)

For example, given a set of labeled instances (x1, y1), · · · , (xn, yn), if fi(w) is
defined as log(1 + exp(−yix

T
i w)) + λ

2 ‖w‖2, problem (1) will be known as the

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 346–353, 2017.
DOI: 10.1007/978-3-319-59072-1 41

Accelerating Stochastic Variance Reduced Gradient 347

logistic regression. To solve multi-classification problem, fi(w) can be defined as
(2), which is known as softmax regression with a L2-norm regularization term.

fi(w) =
l∑

j=1

−1{yj = j}log
exp(wT

j xi)
∑l

i=1 exp(wT
j xi)

(2)

where 1{true} = 1 and 1{false} = 0. Here l means the number of classes, for
example in cifar10 l equals 10. Gradient descent [1] is a basic method to solve
this problem. At each iteration t (t = 1, 2, · · ·) wt−1 is updated by

wt = wt−1 − ηt∇P (wt−1) = wt−1 − ηt

n∑

i=1

1
n

∇fi(wt−1) (3)

However at each step, it requires to compute derivatives of all instances, which
is costly especially when n is extremely large. Stochastic gradient descent (SGD)
[1,2] is a popular method to remedy it, where at each step it is randomly drawn
from {1, 2, · · · , n} and

wt = wt−1 − ηt∇fit(w
t−1) (4)

It is usually assumed that ∇fit(w
t−1) is an unbiased estimation to ∇P (wt−1)

because
E

[∇fit(w
t−1)|wt−1

]
= ∇P (wt−1) (5)

On the one hand, the randomness can greatly reduce the computational cost
since it only requires to calculate a single instance. On the other hand it
also introduces variance, which slows down convergence rate. That is because
∇fit(w

t−1) equals ∇P (wt−1) in expectation but each fit(w
t−1) may be different.

In order to improve SGD, several researchers have proposed SGD variants,
such as SAG [3–5], SAGA [6], SVRG [7–9], SDCA [10,11] and so on. Moreover,
unlike SDCA or SAG, SVRG does not require the storage of gradients, hence will
be more suitable in complex problems. SVRG adopts average gradient to reduce
the effect of variance: where at each step t = 1, 2, · · · it can be described as

wt = wt−1 − ηt(∇fit(w
t−1) − ∇fit(ws) + ũ) (6)

where ũ = 1
n

∑n
i=1 ∇fi(ws), which means the average gradient, and ws is the

weight obtained at the end of m iterations (this is option I, option II see SVRG).
Since its expensive computational cost, average gradient is maintained between
m iterations, where m is set to the same order of n. Hence for large scale prob-
lems, the prediction on average gradient will be not accurate enough since m
is too large. Due to it, the efficiency of SVRG will be decreased. But it is also
not wise to chose a smaller m because it will increase the overhead of gradient
average computation.

348 J. Huang et al.

2 Using Mini-Batch Samples on Estimation of Average
Gradient

As discussed above, for large scale problems, the value of m is so large that the
estimation of the average gradient maybe not accurate enough, which decreases
the efficiency of algorithm. However simply choose a smaller m means more
frequent updates of the gradient average, which increases of the overhead of
computation. We propose a method of using a mini-batch of samples to esti-
mate average gradient, called stochastic mini-batch variance reduced gradient
(SMVRG). Differently, we uniformity selected {i1, i2, · · · , ik} from {1, 2, · · · ,
n} to estimate average gradient ν between m steps, so

ν =
1
k

k∑

j=1

∇fij (w̃s) (7)

where k is the size of mini-batch, and k is far less than n. Note that our method
greatly reduces the computational cost of prediction on average gradient, hence
it is possible to estimate average gradient frequently thus more accurate. And it
is natural to choose m to be the same order of k (for example in our experiment
m is set to be k). Therefore wt−1 is updated by

wt = wt−1 − ηt(∇fj(wt−1) − ∇fj(w̃s) + ν) (8)

where ws is the weight obtained at the end of m iterations.

Algorithm 1. SMVRG
Parameters: update frequency m, learning rate η and mini-batch size k
Initialize: w̃0

Iterate: for s = 1, 2, · · · ;
Uniformity select {i1, i2, · · · , ik} from {1, 2, · · · , n};
w̃ = w̃s−1

ν = 1
k

∑k
j=1 ∇fij (w̃s)

w̃0 = w̃
Iterate: for t = 1, 2, · · · , m
Randomly pick it ∈ {1, 2, · · · , n} and update weight
ṽ = ∇fit(w

t−1) − ∇fit(w̃s−1) + ν
wt = wt−1 − ηtṽ
end
option I: set w̃s−1 = wm

option II: set w̃s−1 = wt for randomly chosen t ∈ {0, 1, · · · , m}
end

Review the ideas embodied in SVRG, it takes average gradient to reduce
the effect of variance hence it outperform the standard SGD. Inspired by it,
we adopt the average gradient counted by a mini-batch instances to reduce the

Accelerating Stochastic Variance Reduced Gradient 349

variance from a single sample. If we always set k = n in SMVRG, then it can be
considered to the original SVRG. And the details of the algorithm are shown in
Algorithm 1. Compared with SVRG, SMVRG requires less computation, which
from O(2m + n) to (2m + k) between m steps.

Our contributions in this paper are in several folds.

(1) It greatly reduces the computational cost of prediction on average gradient,
which from O(n) to O(k).

(2) It is possible to estimate average gradient frequently thus more accurate
because we can chose a smaller m.

(3) Improve the efficiency of the algorithm especially in large scale optimization.
More valuable is that our method requires less computation, which is no
relationship with the size of the data. Hence will be more suitable for large
scale problem.

3 Experiment

Two datasets are used for evaluation. They are cifar10 and cifar100, which can be
downloaded from the CIFAR-10 and CIFAR-100 datasets website (http://www.
cs.toronto.edu/∼kriz/cifar.html). Detailed information is shown in Table 1. For
cifar100 each image comes with a fine label (means the class to which belongs),
and a coarse label (means the superclass to which it belongs).

Table 1. Dataset

Dataset Training
instances

Testing
instances

Features Memory Class

Cifar10 50000 10000 3072 163 MB 10

Cifar100 (coarse-label) 50000 10000 3072 161 MB 20

Cifar100 (fine-label) 50000 10000 3072 161 MB 100

We chose (2) to evaluate our SMVRG. Because full gradient may be the com-
putationally most intensive operation, for fair comparison, we compare SVRG to
SMVRG based on the number of gradient computations. The results are shown
in Figs. 1, 2, and 3 where loss is an indicator of the error. That means the lower
the loss, the better the performance. All of the experiments in this paper, learn-
ing rate η is set to the same value. The difference between Figs. 1, 2, and 3 is the
size of the mini-batch, which is set to 400, 600 and 800. According to Figs. 1, 2,
and 3, it is clear that SMVRG has a lower computational cost, therefore means
our method can be more effectively. Comparing Figs. 1, 2, and 3, the algorithm
is not sensitive to the size of the mini-batch, although a larger mini-batch may
have a better result.

In order to show the superiority of our algorithm, we also compare SVRG to
SMVRG based on the computation time. Again, the difference in Figs. 4, 5, and
6 is the size of the mini-batch. Our method requires less computation, which is
no relationship with the size of the data, therefore it is much faster than SVRG
just as the results show.

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

350 J. Huang et al.

0 1 2 3 4 5
x 104

2

3

4

5

6

7

#grad

lo
ss

cifar10

SVRG
SMVRG

0 1 2 3 4 5
x 104

2

3

4

5

6

7

#grad

lo
ss

cifar10

SVRG
SMVRG

(a)

0 1 2 3 4 5
x 104

3

4

5

6

7

#grad

lo
ss

cifar100−coarse−label

SVRG
SMVRG

0 1 2 3 4 5
x 104

3

4

5

6

7

#grad

lo
ss

cifar100−coarse−label

SVRG
SMVRG

(b)

0 1 2 3 4 5
x 104

4

5

6

7

8

9

10

11

#grad

lo
ss

cifar100−fine−label

SVRG
SMVRG

0 1 2 3 4 5
x 104

4

5

6

7

8

9

10

11

#grad

lo
ss

cifar100−fine−label

SVRG
SMVRG

(c)

Fig. 1. Contrast between the SVRG and SMVRG based on the number of gradient
computations, where k equals 400. (a) Experiments with cifar10: training loss (top),
testing loss (down). (b) Experiments with cifar100-coarse-label: training loss (top),
testing loss (down). (c) Experiments with cifar100-fine-label: training loss (top), testing
loss (down)

0 1 2 3 4 5
x 104

2

3

4

5

6

7

#grad

lo
ss

cifar10

SVRG
SMVRG

0 1 2 3 4 5
x 104

2

3

4

5

6

7

#grad

lo
ss

cifar10

SVRG
SMVRG

(a)

0 1 2 3 4 5
x 104

3

4

5

6

7

#grad

lo
ss

cifar100−coarse−label

SVRG
SMVRG

0 1 2 3 4 5
x 104

3

4

5

6

7

#grad

lo
ss

cifar100−coarse−label

SVRG
SMVRG

(b)

0 1 2 3 4 5
x 104

4

5

6

7

8

9

10

11

#grad

lo
ss

cifar100−fine−label

SVRG
SMVRG

0 1 2 3 4 5
x 104

4

5

6

7

8

9

10

11

#grad

lo
ss

cifar100−fine−label

SVRG
SMVRG

(c)

Fig. 2. Contrast between the SVRG and SMVRG based on the number of gradient
computations, where k equals 600. (a) Experiments with cifar10: training loss (top),
testing loss (down). (b) Experiments with cifar100-coarse-label: training loss (top),
testing loss (down). (c) Experiments with cifar100-fine-label: training loss (top), testing
loss (down)

Accelerating Stochastic Variance Reduced Gradient 351

0 1 2 3 4 5
x 104

2

3

4

5

6

7

#grad

lo
ss

cifar10

SVRG
SMVRG

0 1 2 3 4 5
x 104

2

3

4

5

6

7

#grad

lo
ss

cifar10

SVRG
SMVRG

(a)

0 1 2 3 4 5
x 104

3

4

5

6

7

#grad

lo
ss

cifar100−coarse−label

SVRG
SMVRG

0 1 2 3 4 5
x 104

3

4

5

6

7

#grad

lo
ss

cifar100−coarse−label

SVRG
SMVRG

(b)

0 1 2 3 4 5
x 104

4

5

6

7

8

9

10

11

#grad

lo
ss

cifar100−fine−label

SVRG
SMVRG

0 1 2 3 4 5
x 104

4

5

6

7

8

9

10

11

#grad

lo
ss

cifar100−fine−label

SVRG
SMVRG

(c)

Fig. 3. Contrast between the SVRG and SMVRG based on the number of gradient
computations, where k equals 800. (a) Experiments with cifar10: training loss (top),
testing loss (down). (b) Experiments with cifar100-coarse-label: training loss (top),
testing loss (down). (c) Experiments with cifar100-fine-label: training loss (top), testing
loss (down)

0 1000 2000 3000 4000
2

3

4

5

6

7

time/s

lo
ss

cifar10

SVRG
SMVRG

0 1000 2000 3000 4000
2

3

4

5

6

7

time/s

lo
ss

cifar10

SVRG
SMVRG

(a)

0 1000 2000 3000 4000
3

4

5

6

7

time/s

lo
ss

cifar100−coarse−label

SVRG
SMVRG

0 1000 2000 3000 4000
3

4

5

6

7

time/s

lo
ss

cifar100−coarse−label

SVRG
SMVRG

(b)

0 1000 2000 3000 4000
4

5

6

7

8

9

10

11

time/s

lo
ss

cifar100−fine−label

SVRG
SMVRG

0 1000 2000 3000 4000
4

5

6

7

8

9

10

11

time/s

lo
ss

cifar100−fine−label

SVRG
SMVRG

(c)

Fig. 4. Contrast between the SVRG and SMVRG based on the computation time,
where k equals 400. (a) Experiments with cifar10: training loss (top), testing loss
(down). (b) Experiments with cifar100-coarse-label: training loss (top), testing loss
(down). (c) Experiments with cifar100-fine-label: training loss (top), testing loss (down)

352 J. Huang et al.

0 1000 2000 3000 4000
2

3

4

5

6

7

time/s

lo
ss

cifar10

SVRG
SMVRG

0 1000 2000 3000 4000
2

3

4

5

6

7

time/s

lo
ss

cifar10

SVRG
SMVRG

(a)

0 1000 2000 3000 4000
3

4

5

6

7

time/s

lo
ss

cifar100−coarse−label

SVRG
SMVRG

0 1000 2000 3000 4000
3

4

5

6

7

time/s

lo
ss

cifar100−coarse−label

SVRG
SMVRG

(b)

0 1000 2000 3000 4000
4

5

6

7

8

9

10

11

time/s

lo
ss

cifar100−fine−label

SVRG
SMVRG

0 1000 2000 3000 4000
4

5

6

7

8

9

10

11

time/s

lo
ss

cifar100−fine−label

SVRG
SMVRG

(c)

Fig. 5. Contrast between the SVRG and SMVRG based on the computation time,
where k equals 600. (a) Experiments with cifar10: training loss (top), testing loss
(down). (b) Experiments with cifar100-coarse-label: training loss (top), testing loss
(down). (c) Experiments with cifar100-fine-label: training loss (top), testing loss (down)

0 1000 2000 3000 4000
2

3

4

5

6

7

time/s

lo
ss

cifar10

SVRG
SMVRG

0 1000 2000 3000 4000
2

3

4

5

6

7

time/s

lo
ss

cifar10

SVRG
SMVRG

(a)

0 1000 2000 3000 4000
3

4

5

6

7

time/s

lo
ss

cifar100−coarse−label

SVRG
SMVRG

0 1000 2000 3000 4000
3

4

5

6

7

time/s

lo
ss

cifar100−coarse−label

SVRG
SMVRG

(b)

0 1000 2000 3000 4000
4

5

6

7

8

9

10

11

time/s

lo
ss

cifar100−fine−label

SVRG
SMVRG

0 1000 2000 3000 4000
4

5

6

7

8

9

10

11

time/s

lo
ss

cifar100−fine−label

SVRG
SMVRG

(c)

Fig. 6. Contrast between the SVRG and SMVRG based on the computation time,
where k equals 800. (a) Experiments with cifar10: training loss (top), testing loss
(down). (b) Experiments with cifar100-coarse-label: training loss (top), testing loss
(down). (c) Experiments with cifar100-fine-label: training loss (top), testing loss (down)

Accelerating Stochastic Variance Reduced Gradient 353

4 Conclusion

Review the ideas embodied in SVRG, it takes average gradient to reduce the
effect of variance hence it outperform the standard SGD. Inspired by it, we adopt
the average gradient counted by a mini-batch instances to reduce the variance
from a single sample, which greatly reduces the computational cost of average
gradient. Hence it is possible to estimate the average gradient more frequently.
Numerical experiments show that our method requires less calculation and thus
faster than SVRG. More valuable is that SMVRG is no relationship with the
size of the data. Hence will be more suitable for solving large scale problem.

Acknowledgements. We thanks Rie Johnson for his advice. And the work is
supported by National Natural Science Foundation of China (61372142, U1401252,
U1404603), Guangdong Province Science and technology plan (2013B010102004,
2013A011403003), Guangzhou city science and technology research projects
(201508010023).

References

1. Zhang, T.: Solving large scale linear prediction problems using stochastic gradient
descent algorithms. In: International Conference on Machine Learning, p. 116.
Omnipress (2004)

2. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In:
Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT 2010, pp. 177–
186. Physica-Verlag HD, Heidelberg (2010)

3. Roux, N.L., Schmidt, M., Bach, F.: A stochastic gradient method with an expo-
nential convergence rate for finite training sets. Adv. Neural Inf. Process. Syst. 4,
2663–2671 (2012)

4. Schmidt, M., Roux, N.L., Bach, F.: Minimizing finite sums with the stochastic
average gradient. Math. Program. 26(5), 405–411 (2013)

5. Schmidt, M., Roux, N.L., Bach, F.: Erratum to: minimizing finite sums with the
stochastic average gradient. Math. Program. 26(5), 1 (2016)

6. Defazio, A., Bach, F., Lacostejulien, S.: SAGA: a fast incremental gradient method
with support for non-strongly convex composite objectives. Adv. Neural Inf.
Process. Syst. 2, 1646–1654 (2014)

7. Rie, J., Tong, Z.: Accelerating stochastic gradient descent using predictive variance
reduction. Adv. Neural Inf. Process. Syst. 315–323 (2013)

8. Wang, C., Chen, X., Smola, A., et al.: Variance Reduction for Stochastic Gradient
Optimization. University of Illinois Press, Champaign (2013). pp. 181–189

9. Gresti, P.: Linear convergence of variance-reduced projected stochastic gradient
without strong convexity. Comput. Sci. 2014(2), 648–650 (2014)

10. Shalev-Shwartz, S., Zhang, T.: Stochastic dual coordinate ascent methods for reg-
ularized loss minimization. J. Mach. Learn. Res. 14(1), 2013 (2012)

11. Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable
minimization. Math. Program. 117(1), 387–423 (2009)

Coexistence and Local Exponential Stability
of Multiple Equilibria in Memristive Neural

Networks with a Class of General
Nonmonotonic Activation Functions

Yujiao Huang(B), Shijun Chen, Jie Xiao, and Pengyi Hao

College of Computer Science and Technology,
Zhejiang University of Technology, Hangzhou 310023, China

hyj0507@zjut.edu.cn

Abstract. This paper addresses the multistability problem of n-
dimensional memristive neural networks with a class of general non-
monotonic activation functions. Sufficient conditions are proposed for
checking the existence of (2l+ 3)n equilibria, of which (l+ 2)n equilibria
are locally exponentially stable. The obtained stability results improve
and extend the existing ones. One numerical example is given to illustrate
the effectiveness of the obtained results.

Keywords: Memristive neural network · Coexistence · Local exponen-
tial stability · General nonmonotonic activation function

1 Introduction

Memristor was originally postulated by Chua in 1971 [1], and was realized by
scientists at Hewlett-Packard Laboratories in 2008 [2]. The memristor is a con-
traction of memory and resistor due to its function. It can memorize the past
quantity of electric charge by supplying a voltage or current. As predicted in
[3], in the short term, memristors are most likely to be used in storage devices,
but eventually may be used in neural networks, in applications such as pattern
recognition or associative memory. Recently, dynamical behaviors of memristive
neural networks have been reported, see [4–8] and references therein.

Existence of many equilibria is a necessary feature in the applications of
neural networks to associative memory storage. In the recent years, considerable
efforts have been devoted to studying the multistability for recurrent neural
networks [9–11,13]. Meanwhile, some efforts have been devoted to investigating
the multstbility for memristive recurrent neural networks [14].

It is well known that the activation functions play an important role in the
dynamical analysis of recurrent neural networks [12,15–19]. Number of equi-
libria of neural networks depends on the characteristic of activation functions.
In the existing references, a lot of works were based on the assumption that

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 354–362, 2017.
DOI: 10.1007/978-3-319-59072-1 42

Multistability of Memristive Neural Networks 355

the activation functions were nondecreasing [9,11]. In [10], the authors consid-
ered Mexican-hat-type activation functions. The activation functions were non-
monotonic. [14] considered nonmonotonic piecewise linear activation functions.
However, the activation functions in these references have only several corner
points. This class of activation functions is special. It is necessary to propose a
class of general nonmonotonic activation functions, and to discuss multistability
of memristive neural networks with general nonmonotonic activation functions.
This class of activation functions has the property of localization in both time
and frequency. To the best of the authors’ knowledge, there are no result about
the multistability of memristive neural networks with general nonmonotonic acti-
vation functions.

Motivated by the above discussions, we will investigate multistability of mem-
ristive neural networks with general nonmonotonic activation functions. The
main contributions of the paper can be summarized as follows. 1. A class of gen-
eral nonmonotonic activation functions is proposed. 2. By Brouwer’s fixed point
theorem, sufficient criteria are established to guarantee the existence of multiple
equilibria of memristive neural networks. 3. Multistability of memristive neural
networks with general nonmonotonic activation functions is analyzed.

2 Paper Preparation

In this paper, we consider the following n-neuron memristive neural networks

ẋi(t) = −dixi(t) +
n∑

j=1

aij(xj(t))fj(xj(t)) + Ii. i = 1, 2 · · · n, (1)

where x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ Rn is the state vector; fj(·) denotes
the neuron activation function; I = (I1, I2, · · · , In) is the control input vector;
di > 0, and aij(·) represent the memristive synaptic weights. According to the
definition of memristive neural networks, suppose

aij(xj(t)) =
{

a1
ij , |xj(t)| ≤ Tj ,

a2
ij , |xj(t)| > Tj .

Consider a class of general nonmonotonic continuous activation function as
follows:

fi(x) =

⎧
⎨

⎩

ui, x ∈ (−∞, p0i),
km

i x + bm
i , x ∈ [pm−1

i , pm
i),

vi, x ∈ [p2l+1
i ,+∞),

(2)

where ui < vi, km
i > 0 for m = 1, 3, 5 · · · 2l + 1, km

i < 0 for m = 2, 4, 6 · · · 2l,
l = 1, 2, 3, · · · . Denote āij = max{a1

ij , a
2
ij}, aij = min{a1

ij , a2
ij}, Given a set

Ξ ∈ R, co[Ξ] represents the closure of the convex hull of Ξ. Hence,

co[aij(xj(t))] =

⎧
⎨

⎩

a1
ij , |xj(t)| < Tj ,[
aij , āij

]
, |xj(t)| = Tj ,

a2
ij , |xj(t)| > Tj .

356 Y. Huang et al.

There exists âij ∈ co[aij(xj(t))] such that

ẋi(t) = −dixi(t) +
n∑

j=1

âijfj(xj(t)) + Ii. for a.e. t ≥ 0, i = 1, 2 · · · n.

Denote

(−∞, p0i] = (−∞, p0i]
1 × (p0i , p

1
i)

0 × · · · × [p2l+1
i ,+∞)0,

(p0i , p
1
i) = (−∞, p0i]

0 × (p0i , p
1
i)

1 × · · · × [p2l+1
i ,+∞)0,

· · ·
[p2l+1

i ,+∞) = (−∞, p0i]
0 × (p0i , p

1
i)

0 × · · · × [p2l+1
i ,+∞)1,

then Rn can be divided into (2l + 3)n parts:

Φ = {
n∏

i=1

(−∞, p0i]
δ
(0)
i × (p0i , p

1
i)

δ
(1)
i × · · · × [p2l+1

i ,+∞)δ
(2l+2)
i ,

(δ(0)i , δ
(1)
i , · · · δ(2l+2)

i) = (1, 0, 0, · · · , 0) or (0, 1, 0, · · · , 0) or · · · or (0, 0, 0, · · · , 1)}.

Lemma 1 [20]. Assume that activation functions fi are Lipschitz continuous
on R with Lipschitz constants ρj > 0. If fj(±Tj) = 0 (j = 1, 2, · · · , n), then
|co[aij(xj(t))]fj(xj(t)) − co[aij(yj(t))]fj(yj(t))| ≤ Aijρj |xj(t) − yj(t)| hold for
i, j = 1, 2, · · · , n, where Aij = max{|a1

ij |, |a2
ij |}.

Lemma 2 (Brouwer’s fixed point theorem). Any continuous function from Dn

to Dn (n ≥ 2), G : Dn → Dn, has a fixed point.

3 Main Result

In this section, we will discuss the existence and stability for memristive neural
networks (1) with activation function (2).

Theorem 1. There exist (2l+3)n equilibria in Rn for system (1) with activation
function (2), if the following conditions hold for i = 1, 2, · · · , n:

− dip
m
i + max{aiifi(pm

i), āiifi(pm
i)} +

n∑

j=1,j �=i

max{aijuj ,

aijvj , āijuj , āijvj} + Ii < 0, m = 0, 2, 4, · · · , 2l, (3)

− dip
m
i + min{aiifi(pm

i), āiifi(pm
i)} +

n∑

j=1,j �=i

min{aijuj ,

aijvj , āijuj , āijvj} + Ii > 0, m = 1, 3, 5, · · · , 2l + 1, (4)

Multistability of Memristive Neural Networks 357

Proof. Pick a region arbitrarily marked as Φ from the set Φ, for any point
(x1x2 · · · xn)T ∈ Φ, fix x1 · · · xi−1, xi+1 · · · xn except xi and define

Fi(x) = −dix + âiifi(x) +
n∑

j=1,j �=i

âijfj(xj) + Ii. (5)

There exist three possible cases for us to discuss.
Case 1. When xi ∈ (−∞, p0i], we can get

Fi(p0i) = − dip
0
i + âiifi(p0i) +

n∑

j=1,j �=i

âijfj(xj) + Ii

≤ − dip
0
i + max{aiifi(p0i), āiifi(p0i)}

+
n∑

j=1,j �=i

max{aijuj , aijvj , āijuj , āijvj} + Ii < 0,

and Fi(−∞) > 0. Therefore, there exists a point x̄i ∈ (−∞, p0i) such that
Fi(x̄i) = 0.

Case 2. When xi ∈ [pm−1
i , pm

i], m = 2, 4, 6 · · · 2l, we can get Fi(pm
i) < 0,

Fi(pm−1
i) > 0 by using similar proof with Case 1. Therefore, there exist points

x̄i ∈ (pm−1
i , pm

i), m = 1, 2 · · · 2l such that Fi(x̄i) = 0.
Case 3. When xi ∈ [p2l+1

i ,+∞), we can get Fi(p2l+1
i) > 0 by using similar

proof with Case 1, and Fi(+∞) < 0. Therefore, there exist one point x̄i ∈
(p2l

i , p2l+1
i) such that Fi(x̄i) = 0, and one point x̄i ∈ [p2l+1

i ,+∞) such that
Fi(x̄i) = 0.

Define a map H : Φ → Φ by H(xi, x2 · · · xn) = (x̄1, x̄2 · · · x̄n). It is clear that
the map is continuous. From Brouwer’s fixed point theorem, there exists one
fixed point x̄ = (x̄1, x̄2 · · · x̄n) of H in Φ, which is also the equilibrium point of
system (1) with activation function (2) in Φ. It is noted that the number of such
part Φ is (2l + 3)n in Φ. Hence, there exists (2l + 3)n equilibria for system (1)
with activation function (2) in Rn. �

Denote

Ω = {
n∏

i=1

(−∞, p0i]
δ
(0)
i × (p0i , p

1
i)

0 × [p1i , p
2
i]

δ
(1)
i × · · · × (p2l

i , p2l+1
i)0

× [p2l+1
i ,+∞)δ

(l+1)
i , (δ(0)i , δ

(1)
i , · · · δ(l+1)

i) = (1, 0, · · · , 0)
or (0, 1 · · · , 0) or · · · or (0, 0, · · · , 1)}.

It is obvious that Ω is made up of (l + 2)n parts and Ω is bounded in Φ.
Now we first establish some positively invariant sets for system (1) and inves-

tigate stability of the equilibrium point in each invariant set.

Lemma 3. Assume that conditions (3) and (4) hold, then each Ω is posi-
tively invariant under the solution flow generated by system (1) with activation
function (2).

358 Y. Huang et al.

Proof. Pick a region arbitrarily Ω ⊂ Ω, Consider any initial condition φ =
(φ1, φ2, · · · φn) ∈ Ω, we claim that x(t) would stay in Ω for all t ≥ 0.

Case 1. φi ∈ (−∞, p0i], i = 1, 2 · · · n. If there exists some t∗ ≥ 0 such that
xi(t∗) = p0i , then

ẋi(t∗) = − dixi(t∗) + âiifi(xi(t∗)) +
n∑

j=1,j �=i

âijfj(xi(t∗)) + Ii

≤ − dip
0
i + max{aiifi(p0i), aiifi(p0i)}

+
n∑

j=1,j �=i

max{aijuj , aijvj , aijuj , aijvj} + Ii < 0.

Case 2. φi ∈ [pm−1
i , pm

i], i = 1, 2 · · · n, m = 2, 4, 6 · · · 2l. If there exists some
t∗ ≥ 0 such that xi(t∗) = pm

i , then ẋi(t∗) < 0. If there exists some t∗ ≥ 0 such
that xi(t∗) = pm−1

i , then ẋi(t∗) > 0.
Case 3. φi ∈ [p2l+1

i ,+∞), i = 1, 2 · · · n. If there exists some t∗ ≥ 0 such that
xi(t∗) = p2l+1

i , then ẋi(t∗) > 0. Therefore, the solution x(t) will never escape
from Ω for all t ≥ 0. That is, each Ω is positive invariant under the solution flow
generated by system (1) with activation function (2). �

Theorem 2. Suppose that fi(±Ti) = 0, and conditions (3) and (4) hold for
i = 1, 2 · · · n. Meanwhile,

di >

n∑

j=1

Aijk
∗
j , i = 1, 2 · · · n, (6)

where Aij = max{|a1
ij |, |a2

ij |}, k∗
j = max{|km

j |,m = 2, 4 · · · 2l}, i, j = 1, 2 · · · n.
Then system (1) with activation function (2) has (l + 2)n locally exponentially
stable equilibria in Rn.

Proof. For each i = 1, 2 · · · n, we consider the single-variable function Gi(ξ) =

di − ξ −
n∑

j=1

Aijk
∗
j . Condition (6) implies Gi(0) > 0, and there exists a constant

λ > 0 such that Gi(λ) > 0 for all i = 1, 2 · · · n. Pick a region arbitrarily Ω ⊂ Ω.
According to Theorem 1, we can get that there exists one equilibrium point x∗

in Ω. We will prove that the equilibrium point x∗ is locally exponentially stable.
Denote yi(t) = xi(t) − x∗

i , i = 1, 2 · · · n. Then

ẏi(t) ∈ −diyi(t) +
n∑

j=1

{co[aij(xj(t))]fj(xj(t)) − co[aij(x∗
j)]fj(x∗

j)}. (7)

It follows from Lemma 1 that

|co[aij(xj(t))]fj(xj(t)) − co[aij(x∗
j)]fj(x∗

j)| ≤ Aijk
∗
j |yj(t)|. (8)

Multistability of Memristive Neural Networks 359

Therefore,

d

dt
|yi(t)| ≤ −di|yi(t)| +

n∑

j=1

Aijk
∗
j |yj(t)|.

Now, consider the function zi(·) defined by zi(t) = eλt|yi(t)|, i = 1, 2 · · · n, Let
δ > 1, K = max

1≤i≤n
{|xi(0) − x∗

i |} > 0. It follows that zi(0) < Kδ, i = 1, 2 · · · n.

We shall justify that

zi(t) < Kδ, for all t > 0, i = 1, 2 · · · n. (9)

Suppose (9) does not hold, then there is a k ∈ {1, 2 · · · n} and a t1 > 0 for the first
time such that zi(t) ≤ Kδ, t ∈ [0, t1], i = 1, 2 · · · n, i �= k; zk(t) ≤ Kδ, t ∈ [0, t1);
zk(t1) = Kδ, żk(t1) ≥ 0. In fact

żk(t1) = λeλt1 |yk(t1)| + eλt1
d

dt
|yk(t1)| ≤ λzk(t1) − dkzk(t1) +

n∑

j=1

Akjk
∗
j zj(t1)

≤ −{dk − λ −
n∑

j=1

Akjk
∗
j }Kδ < 0.

Therefore, there exits one contradiction. So assertion (9) holds and zi(t) ≤ K
for all t > 0, i = 1, 2 · · · n, by taking δ → 1+. We can obtain that |xi(t) −
x∗

i | ≤ e−λt max
1≤i≤n

{|xi(0) − x∗
i |}, t > 0, i = 1, 2 · · · n. Therefore, x(t) converges

to x∗ exponentially. That is, system (1) with activation function (2) has one
exponentially stable equilibrium point in Ω. Because of the arbitrary of Ω ⊂ Ω,
So system (1) with activation function (2) has (l + 2)n locally exponentially
stable equilibria in Rn. �
Remark 1. In [14], the authors investigated multistability of memristive neural
networks with nonmonotonic piecewise linear activation functions. However, the
activation functions had only four corner points, which is special. In this paper,
the activation functions are general, which have lots of corner points.

4 Illustrative Example

Consider the following two-dimensional memristor-based neural networks

ẋi(t) = −dixi(t) +
n∑

j=1

aij(xj(t))fj(xj(t)) + Ii. i = 1, 2, (10)

where d1 = d2 = 1.5, I1 = I2 = −1,

a11(x1(t)) =
{

1.85, |x1(t)| ≤ 1,
2.2, |x1(t)| > 1,

a12(x2(t)) =
{−0.02, |x2(t)| ≤ 1,

0.2, |x2(t)| > 1,

a21(x1(t)) =
{

0.05, |x1(t)| ≤ 1,
0.01, |x1(t)| > 1,

a22(x2(t)) =
{

2.4, |x2(t)| ≤ 1,
1.9, |x2(t)| > 1.

360 Y. Huang et al.

and the activation function fi(x) (i = 1, 2) are defined as follows:

fi(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−1, −∞ < x < − 4
3 ,

3(x + 1), − 4
3 ≤ x ≤ − 2

3 ,
3
5 (1 − x), − 2

3 < x < 8
3 ,

15x − 41, 8
3 ≤ x ≤ 3,

4, 3 < x < +∞.

(11)

System (10) satisfies the conditions in Theorem 2. Hence, system (10) with acti-
vation function (11) has 9 locally exponentially stable equilibria. The dynamics
of system (10) are illustrated in Fig. 1.

−4 −2 0 2 4 6
−4

−3

−2

−1

0

1

2

3

4

5

6

x1

x2

Fig. 1. Transient states of system (10).

5 Conclusion

In this paper, we have investigated multistability of n-dimensional memristive
neural networks with a class of general nonmonotonic continuous activation func-
tions. Sufficient criteria have been established to ensure the local existence and
local exponential stability of multiple equilibria. Compared with the existing
literature about the multistability of memristive neural networks, the activation
functions have multiple corner points in this paper. This class of activation func-
tions is general. The effectiveness of the obtained results has been verified by
one numerical example. Several extensions would be welcome as future work:
such as, studying the basin of attraction of some equilibrium points, considering
multistability of time-delay system.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China (Grant Nos. 61503338 and 61502422) and the Natural Science Foun-
dation of Zhejiang Province, China (Grant Nos. LQ15F030005, LQ15F020006 and
LQ15F020008).

Multistability of Memristive Neural Networks 361

References

1. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circ. Theory 18,
507–519 (1971)

2. Strukov, D., Snider, G., Stewart, G., Williams, R.: The missing memristor found.
Nature 453, 80–83 (2008)

3. Anthes, G.: Memristor: pass or fail. Commun. ACM 54(3), 22–24 (2010)
4. Wu, A., Zeng, Z.: Exponential stabilization of memristive neural networks with

time delays. IEEE Trans. Neural Netw. Learn. Syst. 23, 1919–1929 (2012)
5. Zhang, G., Shen, Y.: Exponential synchronization of delayed memristor based

chaotic neural networks via periodically intermittent control. Neural Netw. 55,
1–10 (2014)

6. Chandrasekar, A., Rakkiyappan, R., Cao, J., Lakshmanan, S.: Synchronization of
memristor-based recurrent neural networks with two delay components based on
second-order reciprocally convex approach. Neural Netw. 57, 79–93 (2014)

7. Yang, X., Cao, J., Yu, W.: Exponential synchronization of memristive Cohen-
Grossberg neural networks with mixed delays. Cogn. Neurodyn. 8(3), 239–249
(2014)

8. Wang, Z., Ding, S., Huang, Z., Zhang, H.: Exponential stability and stabilization
of delayed memristive neural networks based on quadratic convex combination
method. IEEE Trans. Neural Netw. Learn. Syst. 27, 2337–2350 (2016)

9. Nie, X., Cao, J.: Multistability of second-order competitive neural networks with
nondecreasing saturated activation functions. IEEE Trans. Neural Netw. 22, 1694–
1708 (2011)

10. Wang, L., Chen, T.: Multistability of neural networks with Mexican-hat-type acti-
vation functions. IEEE Trans. Neural Netw. Learn. Syst. 23, 1816–1826 (2012)

11. Zeng, Z., Zheng, W.: Multistability of two kinds of recurrent neural networks with
activation functions symmetrical about the origin on the phase plane. IEEE Trans.
Neural Netw. Learn. Syst. 24, 1749–1762 (2013)

12. Huang, Y., Wang, X., Long, H., Yang, X.: Synthesization of high-capacity auto-
associative memories using complex-valued neural networks. Chin. Phys. B 12,
120701-1–120701-8 (2016)

13. Liu, P., Zeng, Z.G., Wang, J.: Complete stability of delayed recurrent neural net-
works with Gaussian activation functions. Neural Netw. 85, 21–32 (2017)

14. Nie, X., Zheng, W., Cao, J.: Coexistence and local µ-stability of multiple equilib-
ria for memristive neural networks with nonmonotonic piecewise linear activation
functions and unbounded time-varying delays. Neural Netw. 84, 172–180 (2016)

15. Zhang, H., Wang, Y.: Stability analysis of Markovian jumping stochastic Cohen-
Grossberg neural networks with mixed time delays. IEEE Trans. Neural Netw.
19(2), 366–370 (2008)

16. Zhang, H., Wang, Z., Liu, D.: Global asymptotic stability of recurrent neural net-
works with multiple time-varying delays. IEEE Trans. Neural Netw. 19(5), 855–873
(2008)

17. Zhang, H., Liu, Z., Huang, G., Wang, Z.: Novel weighting-delay-based stability
criteria for recurrent neural networks with time-varying delay. IEEE Trans. Neural
Netw. 21(1), 91–106 (2010)

18. Zheng, Y., Ling, H., Chen, S., Xue, J.: A hybrid neuro-fuzzy network based on
differential biogeography-based optimization for online population classification in
earthquakes. IEEE Trans. Fuzzy Syst. 23(4), 1070–1083 (2015)

362 Y. Huang et al.

19. Zheng, Y., Sheng, W., Sun, X., Chen, S.: Airline passenger profiling based on fuzzy
deep machine learning. IEEE Trans. Neural Netw. Learn. Syst. (2016). doi:10.1109/
TNNLS.2016.2609437

20. Chen, J., Zeng, Z., Jiang, P.: Global Mittag-Leffler stability and synchronization
of memristor-based fractional-order neural networks. Neural Netw. 51, 1–8 (2014)

http://dx.doi.org/10.1109/TNNLS.2016.2609437
http://dx.doi.org/10.1109/TNNLS.2016.2609437

A Reinforcement Learning Method
with Implicit Critics from a Bystander

Kao-Shing Hwang1, Chi-Wei Hsieh1, Wei-Cheng Jiang1(&),
and Jin-Ling Lin2

1 Electrical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
hwang@ccu.edu.tw, darkdesert18@gmail.com,

enjoysea0605@gmail.com
2 Information Management, Shih Hsin University, Taipei, Taiwan

jllin@mail.shu.edu.tw

Abstract. In Reinforcement Learning, we train agent many times, so agents
can get experience from learning, and then, agent can complete every behavior
of different missions. In this paper, we propose architecture to allow agent get
experience from environment. We use Adaptive Heuristic Critic (AHC) as a
learning architecture and combine an action bias with AHC to solve the problem
of continuous action system. On account of the problems of recognition error
and state delay, we use Reinforcement Learning which learns from cumulative
reward to update the experience of agents.

Keywords: Reinforcement learning � Adaptive Heuristic Critic � Stochastic
Real Value � Reward function

1 Introduction

Generally, there are two methods in machine learning, supervised learning and Rein-
forcement Learning [1, 2]. Agent learns policy to do behaviors by environmental
reward in different missions, called reinforcement learning. Supervised learning which
is human commanding or teaching them. In real life, an agent interacts with not only
environment, but also human. Agents can interactive with human and get some
important experience from facial expression, besides getting reward from environment.
In fact, human are not the expert, they don’t know how to describe with words, so they
express their emotions to agent is much easier. In [3–5], Agent has its own emotion,
and it can be changed by what it encounters. In [6–9], they propose a framework that let
human can train agent, and they combine environment reward with human reward to be
a new reward function. When agent gets feedback from human, it may occur delay
reward [10]. Therefore, we use cumulative reward as update value instead of immediate
reward. We use Adaptive Heuristic Critic (AHC) [11, 12] which is one of the Actor-
Critic method [13] to accomplish Reinforcement Learning. Because the agent might not
have few actions in real life, in [14, 15], they proposed Stochastic Real Value (SRV) to
solve continuous problem. And we use the same concept to combine Action Bias with
AHC to become a continuous value to solve this problem.

© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 363–370, 2017.
DOI: 10.1007/978-3-319-59072-1_43

The Back-Propagation neural network (BP) [16] is a feed forward network, and
uses a supervised learning scheme with a different threshold function and learning
rules. Deep Learning uses the concept of BP to train its neural network, and then it
learns to extract the feature. There are three main algorithms for deep learning: Con-
volution Neural Network (CNN) [17], Deep Belief Network (DBN) [18] and Sparse
Autoencoder [19, 20].

2 Reinforcement Learning

Reinforcement learning is one of machine learning, and it is a Markov Decision Pro-
cess (MDP). In the process of training, agent has its target in the environment, and
agent interactive with environment for getting experience to update its policy. For
training many episodes, agent learns to find the optimal policy. As shown in Fig. 1,
Actor-Critic is one of method of Reinforcement Learning, and we use the concept of
Actor-Critic in this thesis. Actor Critic methods are TD methods that have a separate
memory structure to explicitly represent the policy independent of the value function.
The policy structure is known as the actor, because it is used to selected actions, and
the estimated value function is known as the critic, because it criticizes the actions
made by the actor.

3 Actor Critic-Q with Continuous Actions

In this section, the proposed methods include two parts, Actor Critic-Q and action bias.
The Actor Critic-Q is for policy learning and action bias is used for output continuous
action. The following sections will explain the content in detailed.

3.1 Actor Critic-Q

In classic AHC [11], it can predict the state value by getting external reinforcement
signal r from environment in ACE element. Then, ACE element updates its weights by

Fig. 1. The actor-critic architecture

364 K.-S. Hwang et al.

internal reinforcement r̂ called TD error. At last, ACE element emits internal rein-
forcement signal r̂ to ASE to update its weights and generate the real value for doing an
action. But, there is a weak point that AHC just can solve two direction problems like
cart pole system or mountain car. For example, maze system may be multiple direction
problems, so classic AHC is failed to solve. In order to solve this problem, we make
ASE element be multiple neurons, each of them represents the action value. If agent has
four actions, up, down, right, left, in maze system, the ASE element will have four
neurons to represent them. The Actor-Critic-Q architecture is shown in Fig. 2.

The neurons in ASE element are according to the number of action, and we use
e� greddy policy to choose action. Simply, we choose neuron which has the optimal
action value as action, but we have a probability to choose randomly for exploration. In
the part of eligibility in ASE, on account of the increasing of neuron, the eligibility can
be written as:

eij deijþð1� dÞxi ð1Þ

We update all the weights of ASE each time. But we find that there is not any
physical meaning of Q-value in ASE element in this method. Therefore, we combine
the output value with eligibility as: For example in service robot, when it service host,
there are many different obstacle at home. Therefore, we want to use continuous action
instead of discrete action.

eij deijþð1� dÞqðatÞxi ð2Þ

3.2 Actor-Critic-Q with Continuous Actions

In Actor-Critic-Q, I divide ASE element into four neuron representing action value. For
making Actor-Critic-Q have real-valued action function, I combine Actor-Critic-Q with
action bias. Action bias B�NðBm;BvÞ, is a stochastic value generating from normal

Fig. 2. The Actor-Critic-Q architecture in maze system

A Reinforcement Learning Method with Implicit Critics 365

distribution by using mean Bm and standard deviation Bv. We evaluate and update the
value of mean and standard deviation. An illustration of action bias is shown in Fig. 3.

Each ASE neuron has its action bias, so there are four action bias in ASE element.
If the bias is so large that overstep the range of the selected action, it try another bias
again. For example, the wheeled robot can turn 0� to 360� as its action. We divide it
into four part, and each part has its own action bias. We restrict the range of action bias
from �45� to 45� in order to avoid overstep the range of selected action. We show the
diagram of wheeled robot with action bias in Fig. 4.

• Action Bias Mean
In SRV, the updating rule of mean is estimate the immediate reward and the

difference between the real action output and the mean of normal distribution. In this
thesis, we use the same concept to update mean, and we use the TD error with
eligibility instead of immediately reward to update. We will show the updating rule in
Eqs. 3 and 4.

Dq ¼ r̂eij ð3Þ

mi miþ bmðDqÞðBðaiÞ � BmðaiÞÞ ð4Þ

Fig. 3. An illustration of action bias

Fig. 4. The diagram of wheeled robot with action bias

366 K.-S. Hwang et al.

Where r̂ is TD error, and eij is an eligibility that remember the state how long it stayed
and what action it chose. If Dq[0, it says that the learning is right, and we adjust the
mean toward the real action output of distribution. If Dq\0, we should adjust our mean
in opposite direction to the real action output. bm is a learning rate, and we let:

bm ¼ bp Dq[0
bn Dq\0

;

�
where bp [bn [0 ð5Þ

• Action Bias Standard deviation
The standard deviation is like an exploration. When learning is finish, the action

value is converge, and the Dq � 0. We let standard deviation become zero so that the
real action output is according to the mean. The updating rule is shown in Eq. 6.

si siþ bvð Dqj j � BvðaiÞÞ ð6Þ

where bv is a learning rate. When q is too large, it says that learning is not already, so it
should let standard deviation be larger to explore. When q approach zero, it says that it
learning already, so it should not explore. We show the Actor-Critic-Q with action bias
architecture in Fig. 5.

4 Simulation

In this section, two methods are compared Actor-Critic-Q with discrete action and
continuous actions.

Fig. 5. The Actor-Critic-Q with continuous actions architecture

A Reinforcement Learning Method with Implicit Critics 367

4.1 Compare Discrete Actions with Continuous Actions

The simulation is to command a mobile robot to approach a goal in the maze as shown
in Fig. 6. The mobile robot starts from the starting point in the size of 300 � 300 maze.
The goal, which the robot is attempting to reach, is in the center of the maze. The task
of the robot is to explore the goal and find a trace to approach the goal, simultaneously.
The agent has four options; taking an action toward the up, down, left, or right direction
one step at a time. Each direction has 90° range; for example, the range of the up
direction is from 45° to 135°. The three gray broken rings of the maze are walls. If the
agent hits the wall after taking an action, the agent stays in the same position and
receives a reward −1. When the agent arrives at the goal, the agent receives a reward 5
and the episode is terminated. Otherwise, the agent moves to the next position and
receives a reward −0.01. Since the shapes of the walls are curves, the optimal path of
robot is moving along the curves. The proposed continuous actions would control the
robot moving along the walls. The parameters of the approaching goal are set as shown
in Table 1.

The simulation results are shown in Fig. 7. We compared the Actor-Critic-Q with
discrete action and with continuous action. The simulations of Actor-Critic-Q and
Actor-Critic-Q with action bias in maze are shown in Fig. 7(a) and (b).

Fig. 6. The environment of maze

Table 1. Parameters of Actor-Critic-Q in maze simulation

Trace decay rate d 0.9
Trace decay rate k 0.8
Learning rate a 0.4
Discount rate c 0.99
Step size 5 cm

368 K.-S. Hwang et al.

5 Conclusion

As science and technology are improving, the reinforcement learning has been applied
to more complex environment in the real. In this paper, we propose an Actor-Critic-Q
with continuous action to control the robots. According to the simulation results, the
proposed method can control to achieve goal by a smooth path. In future, we hope our
method will be used in another environment or implemented in real life.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge
(1998)

2. Kaebling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif.
Intell. Res. 4, 237–285 (1996)

3. Ayesh, A.: Emotionally motivated reinforcement learning based controller. IEEE Int. Conf.
Syst. Man Cybernet. 1, 874–878 (2004)

4. Broekens, J.: Emotion and reinforcement: affective facial expressions facilitate robot
learning. In: Huang, T.S., Nijholt, A., Pantic, M., Pentland, A. (eds.) Artifical Intelligence for
Human Computing. LNCS, vol. 4451, pp. 113–132. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-72348-6_6

5. Obayashi, M., Takuno, T., Kuremoto, T., Kobayashi, K.: An emotional model embedded
reinforcement learning system. In: 2012 IEEE International Conference on Systems, Man,
and Cybernetics (2012)

6. Sridharan, M.: Augmented Reinforcement learning for interaction with non-expert humans
in agent domains. In: 2011 10th International Conference on Machine Learning and
Applications and Workshops (ICMLA), vol. 1 (2011)

(a)Discrete action (b)Continuous action

Fig. 7. The learned path of discrete action and continuous actions

A Reinforcement Learning Method with Implicit Critics 369

http://dx.doi.org/10.1007/978-3-540-72348-6_6
http://dx.doi.org/10.1007/978-3-540-72348-6_6

7. Thomaz, A.L., Hoffman, G., Breazeal, C.: Reinforcement learning with human teachers:
understanding how people want to teach robots. In: The 15th IEEE International Symposium
on Robot and Human Interactive Communication, September 2006

8. Knox, W.B., Stone, P.: TAMER: training an agent manually via evaluative reinforcement.
In: ICDL 2008 7th IEEE International Conference on Development and Learning (2008)

9. Rosenthal, S., Biswas, J., Veloso, M.: An effective personal mobile robot agent through
symbiotic human-robot interaction. In: International Conference on Autonomous Agents and
Multiagent Systems, pp. 915–922 (2010)

10. Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. thesis, Cambridge University
(1989)

11. Batro, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE Trans. Syst. Man Cybern. 13, 834–846 (1993)

12. Sun, Y., Zhang, R.B., Zhang, Y.: Research on adaptive heuristic critic algorithms and its
applications. In: Proceedings of the 4th World Congress on Intelligent Control and
Automation, vol. 1, pp. 345–349 (2002)

13. Konda, V., Tsitsiklis, J.: Actor-critic algorithms. In: Advances in Neural Information
Processing Systems (2000)

14. Gullapalli, V.: A stochastic reinforcement learning algorithm for learning real valued
functions. Neural Netw. 3, 671–692 (1990)

15. Gullapalli, V.: Associative reinforcement learning of real valued functions. In: Proceedings
of IEEE, System, Man, Cybernetics, Charlottesville, VA, October 1991

16. Widrow, B., Lehr, M.A.: 30 years of adaptive neural networks: perceptron, madaline, and
backpropagation. Proc. IEEE 78, 1415–1442 (1990)

17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: NIPS (2012)

18. Hinton, G., Osindero, S., The, Y.: A fast learning algorithm for deep belief nets. Neural
Comput. (2006)

19. Vincent, P., Larochelle, H., Lajoie, I.: Stacked denoising autoencoders: learning useful
representations in a deep network with a local denoising criterion. J. Mach. Learn. Res.
Arch. 11, 3371–3408 (2010)

20. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. JMLR Workshop
Conf. Proc. 27, 37–50 (2012)

370 K.-S. Hwang et al.

The Mixed States of Associative Memories
Realize Unimodal Distribution of Dominance

Durations in Multistable Perception

Takashi Kanamaru(B)

Department of Mechanical Science and Engineering, School of Advanced Engineering,
Kogakuin University, 2665-1 Nakano, Hachioji-city, Tokyo 192-0015, Japan

kanamaru@cc.kogakuin.ac.jp

Abstract. We propose a pulse neural network that exhibits chaotic pat-
tern alternations among stored patterns as a model of multistable per-
ception, which is reflected in phenomena such as binocular rivalry and
perceptual ambiguity. When we regard the mixed state of patterns as
a part of each pattern, the durations of the retrieved pattern obey uni-
modal distributions. The mixed states of the patterns are essential to
obtain the results that are consistent with psychological studies. Based
on these results, it is proposed that many pre-existing attractors in the
brain might relate to the general category of multistable phenomena,
such as binocular rivalry and perceptual ambiguity.

Keywords: Pulse neural network · Chaotic pattern alternations · Mul-
tistable perception · Binocular rivalry · Perceptual ambiguity · Domi-
nance duration

1 Introduction

In the perception of visual information, it is well known that multiple stable
states compete for perceptual dominance. For example, when two different stim-
uli are presented to the eyes, the dominant stimulus perceived fluctuates over
time, a phenomenon known as binocular rivalry [1,2]. Similarly, when an ambigu-
ous figure such as a Necker cube is presented, the dominant interpretation also
fluctuates over time [3]. Research has also indicated that the duration of the
dominant state (dominance duration) may be characterized by a unimodal dis-
tribution, such as the gamma distribution [2,3] or the log-normal distribution [1].

One possible mechanism for such fluctuations in multistable perception is
associated with noise in the visual system, which is generated by small eye move-
ments and microsaccades. On the other hand, the deterministic chaos generated
by nonlinear dynamics in the brain may also be responsible for such fluctuations.
Several dynamical models in which the state of the network changes chaotically
among several patterns have been proposed [4–6]. However, the duration of a
pattern in the chaotic networks does not obey a unimodal distribution, but it
typically obeys a monotonically decreasing distribution [6].
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 371–378, 2017.
DOI: 10.1007/978-3-319-59072-1 44

372 T. Kanamaru

In the present study, we report that the pattern alternations caused by
chaotic dynamics of a pulse neural network can reproduce the properties of mul-
tistable perception. This network is composed of neuronal models which emit
pulses when a sufficiently strong input is injected [7–9], while the previous mod-
els were composed of conventional neuronal models based on firing rates. By
storing several patterns based on the mechanism of associative memory, this
network shows chaotic pattern alternations [10,11]. It is observed that the dura-
tions of the retrieved pattern obey unimodal distributions when we regard the
mixed state of patterns as a part of each pattern.

Based on these results, it is proposed that many pre-existing attractors in
the brain might relate to the general category of multistable phenomena, such
as binocular rivalry and perceptual ambiguity. In the previous work, we called
such a set of pre-existing attractors as “attractor landscape” [11].

This paper is organized as follows. In Sect. 2, we define a pulse neural network
composed of excitatory neurons and inhibitory neurons exhibiting synchronized,
chaotic firing. This network is referred to as the one-module system. In Sect. 3, we
connect eight modules of networks in which three patterns are stored according
to the mechanism of associative memory. We show that chaotic dynamics are
responsible for alterations in the retrieved patterns over time. It is observed that
the durations of the retrieved pattern are shown to obey unimodal distributions.
The final section provides conclusions.

2 One-Module System

In Sects. 2 and 3, we introduce a neural network of theta neurons with phases
as their internal states [7–9]. When a sufficiently strong input is provided, each
neuron yields a pulse by increasing its phase around a circle and returning to
its original phase. The network is composed of NE excitatory neurons and NI

inhibitory neurons governed by the following equations:

˙
θ
(i)
E = (1 − cos θ

(i)
E) + (1 + cos θ

(i)
E)(r + ξ

(i)
E (t) + gintIE(t) − gextII(t)), (1)

˙
θ
(i)
I = (1 − cos θ

(i)
I) + (1 + cos θ

(i)
I)(r + ξ

(i)
I (t) + gextIE(t) − gintII(t)), (2)

IX(t) =
1

2NX

NX∑

j=1

∑

k

1
κX

exp

(
− t − t

(j)
k

κX

)
, (3)

〈ξ(i)X (t)ξ(j)Y (t′)〉 = DδXY δijδ(t − t′), (4)

where θ
(i)
E and θ

(i)
I are the phases of the ith excitatory neuron and the ith

inhibitory neuron, respectively. r is a parameter of the neurons that determines
whether the equilibrium of each neuron is stable or not. We used r = −0.025
to ensure that each neuron had a stable equilibrium. X = E or I denote the
excitatory or inhibitory ensemble, respectively, while t

(j)
k is the kth firing time

of the jth neuron in the ensemble X, and the firing time is defined as the time
at which θ

(j)
X exceeds π in the positive direction. The neurons communicate

The Mixed States of Associative Memories Realize Unimodal Distribution 373

with each other using the post-synaptic potentials whose waveforms are the
exponential functions as shown in Eq. (3). ξ

(i)
X (t) represents Gaussian white noise

added to the ith neuron in the ensemble X.

Fig. 1. (a) Chaotic synchronization observed in a module with D = 0.0032, r = −0.025,
gint = 4, and gext = 2.5. Raster plot of spikes of 200 randomly chosen excitatory
neurons and inhibitory neurons in a module with NE = NI = 2000 is shown. (b)
Chaotic synchronization in a module with an infinite number of neurons obtained by
analysis with Fokker-Planck equations. The values of parameters are the same as those
used in (a). Temporal changes in the instantaneous firing rates JE and JI are shown.

In the following, this network is referred to as a one-module system, which
exhibits various patterns of synchronized firing [9]. We utilized the chaotic syn-
chronization shown in Fig. 1. In Fig. 1(a), a raster plot of spikes of 200 ran-
domly chosen excitatory neurons and inhibitory neurons in a module with
NE = NI = 2000 is shown. This plot allows one to observe the synchronized
firing of neurons, and that the intervals of synchronized firing do not remain
constant. To analyze this variability, we took the limit of NE , NI → ∞ in order
to obtain the Fokker-Planck equation, which governs the dynamics of the prob-
ability densities nE(θE) and nI(θI) of θ

(i)
E and θ

(i)
I as shown in Ref. [10]. The

instantaneous firing rates JE and JI of the excitatory and inhibitory ensembles
obtained from the analysis of the Fokker-Planck equation are shown in Fig. 1(b).
The largest Lyapunov exponent of the data in Fig. 1(b) is positive [9], indicating
that the dynamics of JE and JI are chaotic.

374 T. Kanamaru

In the following, only the one-module systems with infinite neurons treated in
Fig. 1(b) are considered, as the Fokker-Planck equation does not contain noise,
allowing for the reproduction of analyses.

3 Pattern Alternations in Multiple Modules of Network

In this section, we define a network with multiple modules [10,11]. Several pat-
terns can be stored in this network according to the mechanism of associative
memory.

The synaptic inputs TEi and TIi injected to the ith excitatory ensemble Ei
and the inhibitory ensemble Ii, respectively, are defined as

TEi = (gint − γεEE)IEi − gextIIi +
M∑

j=1

εEijIEj , (5)

TIi = (gext − γεIE)IEi − gintIIi +
M∑

j=1

εIijIEj , (6)

which are composed of both intra-module and inter-module connections. By
replacing the terms IE(t) and II(t) in Eqs. (1) and (2) with TEi and TIi in
Eqs. (5) and (6), a network with multiple modules is defined.

The strengths of connections are defined as

εEij =
{

εEEKij if Kij > 0
0 otherwise , (7)

εIij = εIE |Kij |, (8)

Kij =
1

Ma(1 − a)

p∑

µ=1

ηµ
i (ηµ

j − a), (9)

where ηµ
i ∈ {0, 1} is the stored value in the ith module for the μth pattern, M is

the number of modules, p is the number of patterns, and a is the rate of modules
that store the value “1”. Note that εEE and εIE scale the strengths of the inter-
module connections to the excitatory and inhibitory ensembles, respectively. In
the following, we set M = 8, p = 3, and a = 0.5.

Three patterns stored in the network of eight modules are defined as

η1
i =

{
1 if i ≤ M/2
0 otherwise , (10)

η2
i =

{
1 if M/4 < i ≤ 3M/4
0 otherwise , (11)

η3
i =

{
1 if i mod 2 = 1
0 otherwise . (12)

In the following, the dynamics of the network are examined by regulating the
inter-module connections εIE , for the fixed values of parameters γ = 0.6 and
εEE = 1.25.

The Mixed States of Associative Memories Realize Unimodal Distribution 375

Fig. 2. Chaotic pattern alternations observed for εIE = 1.68.

In Fig. 2, the dynamics of eight modules for εIE = 1.68 are shown. The
changes in the instantaneous firing rates JEi of the excitatory ensemble in the
ith module are aligned vertically. It is observed that the retrieved pattern alters
over time. The analysis of the network is performed with the Fokker-Planck
equation, which does not contain noise because the limit NE , NI → ∞ is taken.
Therefore, the dynamics shown in Fig. 2 are not caused by noise but by chaos
that is inherent in the network. This fact can be confirmed via analysis using
Lyapunov spectra [10].

Fig. 3. Changes in three overlaps over time.

In order to investigate the retrieved pattern in the network, it is useful to
define the overlap of the network with each pattern, which is similar to the inner
product (detailed in Ref. [10]). The overlaps calculated from the dynamics during
0 ≤ t ≤ 10000 shown in Fig. 2 are shown in Fig. 3. Note that mµ takes values
close to 1 when the μth pattern is retrieved.

376 T. Kanamaru

In Figs. 2 and 3, short bursts are observed around t � 1000, 6000, 8500,
where the modules that do not store “1” in the retrieved pattern oscillate. Such
patterns are referred to as mixed states in the associative memory literature. In
our network with three patterns, we can observe six mixed states as shown in
Fig. 4.

Fig. 4. The relationships among three patterns and their mixed states.

In order to incorporate the effect of the mixed state into the duration of each
pattern, we defined the macroscopic duration. As shown in Fig. 3, when examin-
ing the macroscopic duration, we regard that the system retains the previously
retrieved pattern even during the period when 0.5 ≤ m1,m2,m3 < 1.

The macroscopic duration is based on the consideration that the mixed states
represent the internal dynamics of the brain, and that these states are thus
unobservable in psychological experiments. Mixed states were always unstable
in the range of εIE in the present study, and their time-averaged duration was
much shorter than those of three patterns, as shown below.

The dependence of the time-averaged values of the macroscopic duration on
the inter-module connection strength εIE is shown in Fig. 5. All values were
calculated using the durations of three patterns. We observed that the time-
averaged durations diverged at the critical point εIE = ε0 � 1.75, and monoton-
ically decreased with decreases in εIE . The time-averaged durations of the mixed
states were always below 200 and much shorter than those of three patterns (data
not shown).

Next we examine the distribution of the duration of each pattern when
chaotic pattern alternations occur. The distributions of the macroscopic dura-
tions are shown in Fig. 6, in which the solid lines show the fit with the log-normal
distribution. In Ref. [1], the dominant durations of binocular rivalry follow a log-
normal distribution. Similarly, the distribution of the macroscopic durations in

The Mixed States of Associative Memories Realize Unimodal Distribution 377

Fig. 5. The dependence of time-averaged macroscopic duration on the inter-module
connection strength εIE .

Fig. 6. The distributions of the macroscopic durations. The solid lines indicate the fit
with the log-normal distribution.

our system also follows a log-normal distribution, as shown in Fig. 6. Therefore,
we conclude that these macroscopic durations are appropriate as models of the
dominance durations of binocular rivalry and perceptual ambiguity.

4 Conclusions

We proposed a pulse neural network that exhibits chaotic pattern alternations
between three stored patterns as a model of multistable perception, which is
reflected in such phenomena as binocular rivalry and perceptual ambiguity.

378 T. Kanamaru

To measure the durations of each pattern, we introduced the macroscopic
duration, which treats the mixed state as part of each pattern.

The distribution of the macroscopic durations was unimodal, following a
log-normal distribution. Therefore, we conclude that the macroscopic durations
of the chaotic pattern alternations can reproduce the unimodal distribution of
dominance durations observed in multistable perception.

Based on these results, we propose that many pre-existing attractors in the
brain might relate to the general category of multistable phenomena, such as
binocular rivalry and perceptual ambiguity.

References

1. Lehky, S.R.: Binocular rivalry is not chaotic. Proc. R. Soc. Lond. B 259, 71–76
(1995)

2. Blake, R.: A primer on binocular rivalry, including current controversies. Brain
Mind 2, 5–38 (2001)

3. Alais, D., Blake, R.: Binocular rivalry and perceptual ambiguity. In: Wagemans, J.
(ed.) The Oxford Handbook of Perceptual Organization. Oxford University Press,
Oxford (2015)

4. Adachi, M., Aihara, K.: Associative dynamics in a chaotic neural network. Neural
Netw. 10, 83–98 (1997)

5. Aihara, K., Takabe, T., Toyoda, M.: Chaotic neural networks. Phys. Lett. A 144,
333–340 (1990)

6. Tsuda, I.: Dynamic link of memory - chaotic memory map in nonequilibrium neural
networks. Neural Netw. 5, 313–326 (1992)

7. Ermentrout, G.B., Kopell, N.: Parabolic bursting in an excitable system coupled
with a slow oscillation. SIAM J. Appl. Math. 46, 233–253 (1986)

8. Izhikevich, E.M.: Class 1 neural excitability, conventional synapses, weakly con-
nected networks, and mathematical foundations of pulse-coupled models. IEEE
Trans. Neural Netw. 10, 499–507 (1999)

9. Kanamaru, T., Sekine, M.: Synchronized firings in the networks of class 1 excitable
neurons with excitatory and inhibitory connections and their dependences on the
forms of interactions. Neural Comput. 17, 1315–1338 (2005)

10. Kanamaru, T.: Chaotic pattern transitions in pulse neural networks. Neural Netw.
20, 781–790 (2007)

11. Kanamaru, T., Fujii, H., Aihara, K.: Deformation of attractor landscape via cholin-
ergic presynaptic modulations: a computational study using a phase neuron model.
PLoS ONE 8, e53854 (2013)

Possibilities of Neural Networks for
Personalization Approaches for Prevention of

Complications After Endovascular Interventions

Tatiana V. Lazovskaya1(B), Dmitriy A. Tarkhov2, Gelena A. Berezovskaya3,4,
Nikolay N. Petrischev3,4, and Ildar U. Zulkarnay5

1 CC FEB RAS, 65, Kim Yu Chen Street, 680000 Khabarovsk, Russia
tatianala@list.ru

2 Peter the Great St. Petersburg Polytechnical University,
29 Politechnicheskaya str., 195251 Saint Petersburg, Russia

dtarkhov@gmail.com
3 Federal Almazov Medical Research Centre,

2 Akkuratova str., 197341 Saint Petersburg, Russia
berezovgel@mail.ru

4 Pavlov First Saint Petersburg State Medical University,
6-8 L’va Tolstogo str., 197022 Saint Petersburg, Russia

5 Bashkir State University, 32 Zaki Validi str., 450076 Ufa, Russia
zulkar@inbox.ru

Abstract. It is known that most of the diseases of the cardiovascu-
lar system are accompanied by disorders in the hemostatic system. The
hemostatic system is one of the most complex systems. It has a hierar-
chical structure with a plurality of components. We analyze the results of
thrombin generation test (TGT) which allows of estimating the actions
of all components of the hemostatic system. The problem is complicated
by the presence of too many various clinical cases. The simple statistical
methods do not provide global assessments. We suggest the universal
neural network approach for building hemostatic system models based
on the factors which don’t have a statistically significant difference for
various types of clinical post surgery cases. The neural network instru-
ments allow of taking into account the nonlinear hierarchical nature of
considered system and building individual models for each clinical cases.
The aim of our study is to develop the neural network hemostatic sys-
tem model for forecasting of disease progression and complications after
endovascular interventions.

Keywords: Artificial neural networks · Modeling · Forecasting ·
Hierarchical models · Thrombin generation test · Hemostatic system ·
Endovascular intervention

1 Introduction

Nowadays artificial neural networks are widely used for processing medical data
and medical diagnosis [1–5]. Large volumes of data make possible to study the
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 379–385, 2017.
DOI: 10.1007/978-3-319-59072-1 45

380 T.V. Lazovskaya et al.

advantages and disadvantages of various learning algorithms and types of the
neural networks architecture [2,3,5]. At the same time, the medical data obtained
from actual histories are often the small size samples. This may be a rare metrics,
results of expensive medical tests. In such case, we can speak only about studying
the neural network potential to use in medical diagnostics [4].

Requirements to medical studies become more strict every year, but find-
ings and conclusions often depend on design of study and statistical processing
methods, chosen for received data analysis. Meanwhile all pathological conditions
in the human body represent complicated processes, multiplaned assessment of
which needs integrative (total) research methods and mathematical analysis; and
the main purpose of their investigation is a possibility of individual complications
prediction [13,14].

Medical diagnostics tasks are the type of problems when all the real condi-
tions cannot be taken into account. The researcher can only distinguish some
presumed set of the most important indicators. Built on such data, the algo-
rithm will be imprecise and approximate. Moreover, the rules of construction
and finding the answer cannot be clearly defined. In such problems, the use of
neural network techniques is justified [14–18].

The present study is aimed at searching for possibilities of individual compli-
cations prediction after percutaneous coronary intervention (PCI), which is the
most popular treatment method of coronary artery disease (CAD). There are
following difficulties in the investigation of complications, developing after PCI
are that this process involves alterations in vessels wall and haemostasis system.
Haemostasis system indicators can be evaluated by thrombin generation test
(TGT), chosen in our study for scrutinizing.

In paper [5], authors explored the applications of artificial neural networks
in the prognostic evaluation of post-surgery complications too. But the model
suggested there based on the data set with a statistically significant difference
and the data volume was large enough. In our work we investigate the artificial
neural network possibility to identify patterns and nonlinear connections in the
case of a small data sample and the uniform data set in the terms of classical
methods of statistics.

2 Materials and Methods

Material in the study is venosus blood data samples, which were drawn before
PCI from 66 patients with coronary heart disease at the age of 53 to 77 years. We
assessed haemostasis system state by using TGT in two parallel assays, accom-
plished according to the method, offered by Hemker et al. [6]. Clinical outcomes
were considered version of resumption coronary artery disease symptoms, no
events (51 observations); disease progression (8 observations); acute coronary
syndrome (ACS) or myocardial infraction (MI) (7 observations).

We considered quantitative characteristics of TGT for which classical sta-
tistical method applying (correlation, regression analyses and others) had no
significant effect. Our medical researchers selected more important characteris-
tics. So, the next measures were investigated as factors.

Possibilities of Neural Networks for Personalization Approaches 381

The index of endogenous thrombin potential (ETP) was suggested by
Hemker and coauthors for quantitative expression of thrombin generation [7].

– ETP is the area under the curve of thrombin generation
– Quantitative parameters of thrombogram also include the peak thrombin

PEAK, which reflects the maximum amount of formed thrombin
– V ITM is the thrombin generation velocity changing
– ΔLT is a percentage of thrombin formation initiation period decreasing.

We used the neural network technique for mathematical modeling of the
classification of complications after surgery. The model based on TTG data
obtained just before the surgical intervention. During numerical experiments, we
considered neural networks with various architecture, numbers of the parameters
and neurons (nodes). In general, the result of modeling is a one hidden layer
neural network output [8] in the form

U(a, c; t) = c0 +
n∑

i=1

civ(ai, t), (1)

where n is the number of neurons (nodes), scalars c = (c0, . . . , cn) and vectors
a = (a0, . . . ,an) are input network weights (parameters); v is selected neural
network basis element [8], vector t is data used. In particular, we denote data of
j-th observation as tj .

After trying various types of basis function we stopped on the sigmoid basis
functions (Perceptron) [8,15] with hyperbolic tangent as basis elements in the
form

v(a, t) = th(a0 +
K∑

k=1

aktk), (2)

wher K is a number of data for each observation. In our case, four factors are
investigated in modeling

t = (ETP,PEAK,ΔLT, V ITM).

So, we can say that the hyperbolic tangent function is best suited for classifica-
tion tasks.

To avoid an overcomplicating, we constructed the neural network model in
several steps. At each step we added and made learned only one neuron. It meant
that the learning process went on until getting optimum results.

At first step, the values Gj from the error functional (3) were coded as −3
for the occurrence of the complications after surgery and 1 for the absence.
The construction of binary classification was premised on the size of the data
explored, in particular that the number of observations with complications is
small.

At next steps, Gj-s take the values of the errors of previous stage approx-
imation for every observation. These errors were approximated by new neural
network output with one neuron. At the end, we summarize all outputs of neural

382 T.V. Lazovskaya et al.

networks and the number of neurons in the model increased by one. The com-
mon number of model parameters is equal to 1 + 6n, where n means a number
of neurons.

At all steps of network learning, the neural network weights are determined
by the minimization of the so-called error functional in the discrete form

I(a, c) =
M∑

j=1

δj
(
U(a, c; tj) − Gj

)2
, (3)

where M is the number of observations, Gj are the values of the approximated
function at points tj , δj are positive penalty coefficients.

To solve the minimization problem at every step of the genetic scheme above,
we use the optimization algorithm combining RProp and the Particle Swarm
methods [8,9]. The Particle Swarm optimization is often used to solve the prob-
lems of medical diseases diagnosis and classification [2].

The initial neural networks weights were located by the aim of balancing the
scores of each factor.

After solving the global nonlinear optimization problems of all steps, we
obtain the output of neural network U(a, c; t) = Ua,c(t) with fixed parameters
(weights). This function takes real values. We could obtain the classification
function by cut-off value selection based on the ROC analysis [10].

The necessary number of neurons is the subject of study. The balance has
to be struck between the minimum of the model parameter number on the one
hand and the quality of classification model on the other hand.

3 Results of Modeling and Classification

The quality of neural network classification model was estimated by the receiver
operating characteristics (ROC) analysis [5,10]. Let us compare the results for
model with the increasing number of neurons at each step of modeling. The
Table 1 is presented the characteristics of the area under ROC curve (AUC). AUC
does not depend on the relations of different type errors. The ideal classification
corresponds to AUC equaled 1. This measure is often used to compare different
models of classification.

Table 1. The characteristics of the area under ROC curve (AUC), models in the
form (1)

Number of neurons AUC Std. error Asimpt. sign Asimpt. 95-conf. interval

1 0.695 0.074 0.022 0.551–0.840

2 0.778 0.060 0.001 0.661–0.895

3 0.824 0.064 0.000 0.697–0.950

4 0.886 0.051 0.000 0.785–0.987

Possibilities of Neural Networks for Personalization Approaches 383

The standard errors of AUC were estimated based on nonparametric method.
Admittedly, the quality of neural network classification models is good even
in the case of three neurons. If the number of neurons is equal to four the
classification quality is very good [10].

Table 2 illustrates the quality of classifications constructed after choosing
the cut-off value. The cut-off values for all our models were equal zero. Here
are presented such quality characteristics as: Sensitivity is the percentage of
people having the complications after surgery intervention who are correctly
identified; Specificity is the percentage of people not having the complications
who are correctly identified (the true negative rate). Often, for classification
quality describing used are Efficiency (the average of Specificity and Sensitivity),
True Positive Rate (TPR) is the percentage of people identified as having the
complications who are correctly identified, and True Negative (TNR) Rates.

Table 2. ROC analysis classification quality, models in the form (1)

Number of neurons 1 2 3 4

Sensitivity, perc 60,0 80,0 80,0 86,7

Specificity, perc 72,5 62,7 74,5 80,4

Efficiency, perc 66,3 71,4 77,3 83,5

TPR, perc 39,1 38,7 48,0 56,5

TNR, perc 86,0 91,4 92,67 95,3

The model with one neuron is not enough sensitive. The second neuron
adding improves the recognition of the observation with the complications but
the specificity falls. The three and four-neuron models have enough level of the
sensitivity and specificity.

4 Discussion of Results

Results of the analysis have confirmed the assumption that quantitative TGT
indicators (ETP , PEAK), reflecting intensity of its formation affect on resump-
tion CAD symptoms independently of relapse version. Received data coincide
with conclusions of other investigators researches, who used standard mathemat-
ical methods to find relationships between TGT indicators and the death from
cardiovascular causes after urgent PCI [11].

Earlier expressed hypothesis about protein C role in complications develop-
ment after PCI and possibility of using indicators describing activity level of
this system by changing thrombin generation velocity (V ITM) and percentage
of thrombin formation initiation period decreasing (ΔLT) after thrombomod-
ulin adding in reaction mixture also was confirmed. The role of protein C system
in stent thrombosis after PCI was confirmed too in another research [12], where
activity of this system was also estimated with TGT.

384 T.V. Lazovskaya et al.

5 Conclusion

Thus, indicators of TGT accomplished before PCI can be used for predicting of
the resumption of CAD symptoms after PCI and development of the individual
plan of patient management. It‘s expected that it would improve the effectiveness
of this type of CAD treatment and reduce the risk of complications after PCI.
The estimation of such risks is particularly true in the conditions of the Arctic
zone.

Our study illustrates the ability of neural network modeling to identify hidden
dependencies and complex functional nature of such processes as the human
pathological conditions. We used the genetic algorithms of neural network model
construction and learning. The dependencies above could reveal even in the
case of the uniform data set in the terms of classical methods of statistics. The
upgrowth in the number of neurons allows us to talk about increasing of the
neural network classification quality. However, it is obvious, when constructing
the real good model we must use the big data source. A special feature of neural
network models is the ability to finish learning [14–18] based on new information,
which could include the new observations and additional factors.

Acknowledgements. The work was supported by the Russian Foundation for Basic
Research, project number 14-38-00009.

References

1. Moein, S.: Medical Diagnosis Using Artificial Neural Networks. IGI Global, Hershey
(2014)

2. Beheshti, Z., Beheshti, E.: Enhancement of artificial neural network learning using
centripetal accelerated particle swarm optimization for medical diseases diagnosis.
Soft. Comput. Methodol. Appl. 18(11), 2253–2270 (2013)

3. Ince, T., Kiranyaz, S., Pulkkinen, J., Gabbouj, M.: Evaluation of global and
local training techniques over feed-forward neural network architecture spaces for
computer-aided medical diagnosis. Expert Syst. Appl. 37, 8450–8461 (2010)

4. Gorbachenko, V.I., Kuznetsova, O., Silnov, D.S.: Investigation of neural and fuzzy
neural networks for diagnosis of endogenous intoxication syndrome in patients with
chronic renal failure. Int. J. Appl. Eng. Res. 11(7), 5156–5162 (2016)

5. Souza, C., Pizzolato, E., Mendes, R., Borghi-Silva, A.: Artificial neural networks
prognostic evaluation of post-surgery complications in patients underwent to coro-
nary artery bypass graft surgery. In: International Conference on Machine Learning
and Applications (2009)

6. Hemker, H.C., Giesen, P., Al Dieri, R., Regnault, V., de Smedt, E., Wagenvoord,
R., Lecompte, T., Beguin, S.: Calibrated automated thrombin generation measure-
ment in clotting plasma. Pathophysiol. Haemost. Thromb. 33, 4–15 (2003)

7. Hemker, H.C., Wielders, S., Kessels, H., Beguin, S.: Continuous registration of
thrombin 10 generation in plasma, its use for the determination of the thrombin
potential. Thromb. Haemost. 70, 617–624 (1993)

8. Tarkhov, D.A., Vasilyev, A.N.: Neural Network Modeling. Principles. Algorithms.
Applications. SPbSPU Publishing House, Saint-Petersburg (2009). (in Russian)

Possibilities of Neural Networks for Personalization Approaches 385

9. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation
learning: the RPROP algorithm. In: Proceedings of the IEEE International (1993)

10. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–
874 (2006)

11. Attanasio, M., Marcucci, R., Gori, A.M., Paniccia, R., Valente, S., Balzi, D.,
Barchielli, A., Carrabba, N., Valenti, R., Antoniucci, D., Abbate, R., Gensini,
G.F.: Residual thrombin potential predicts cardiovascular death in acute coronary
syndrome patients undergoing percutaneous coronary intervention. Thromb. Res.
147, 52–57 (2016)

12. Loeffen, R., Godschalk, T.C., van Oerle, R., Spronk, H.M., Hackeng, C.M., ten
Berg, J.M., ten Cate, H.: The hypercoagulable profile of patients with stent throm-
bosis. Heart 101(14), 1126–1132 (2015)

13. Bolgov, I., Kaverzneva, T., Kolesova, S., Lazovskaya, T., Stolyarov, O., Tarkhov,
D.: Neural network model of rupture conditions for elastic material sample based
on measurements at static loading under different strain rates. J. Phys: Conf. Ser.
772, 012032 (2016). doi:10.1088/1742-6596/772/1/012032

14. Filkin, V., Kaverzneva, T., Lazovskaya, T., Lukinskiy, E., Petrov, A., Stolyarov,
O., Tarkhov, D.: Neural network modeling of conditions of destruction of wood
plank based on measurements. J. Phys: Conf. Ser. 772, 012041 (2016). doi:10.
1088/1742-6596/772/1/012041

15. Kaverzneva, T., Lazovskaya, T., Tarkhov, D., Vasilyev, A.: Neural network model-
ing of air pollution in tunnels according to indirect measurements. J. Phys: Conf.
Ser. 772, 012035 (2016). doi:10.1088/1742-6596/772/1/012035

16. Gorbachenko, V.I., Lazovskaya, T.V., Tarkhov, D.A., Vasilyev, A.N., Zhukov,
M.V.: Neural network technique in some inverse problems of mathematical physics.
In: Cheng, L., Liu, Q., Ronzhin, A. (eds.) ISNN 2016. LNCS, vol. 9719, pp. 310–
316. Springer, Cham (2016). doi:10.1007/978-3-319-40663-3 36

17. Tarasenko, F.D., Tarkhov, D.A.: Basis functions comparative analysis in con-
secutive data smoothing algorithms. In: Cheng, L., Liu, Q., Ronzhin, A. (eds.)
ISNN 2016. LNCS, vol. 9719, pp. 482–489. Springer, Cham (2016). doi:10.1007/
978-3-319-40663-3 55

18. Blagoveshchenskaya, E.A., Dashkina, A.I., Lazovskaya, T.V., Ryabukhina, V.V.,
Tarkhov, D.A.: Neural network methods for construction of sociodynamic models
hierarchy. In: Cheng, L., Liu, Q., Ronzhin, A. (eds.) ISNN 2016. LNCS, vol. 9719,
pp. 513–520. Springer, Cham (2016). doi:10.1007/978-3-319-40663-3 59

http://dx.doi.org/10.1088/1742-6596/772/1/012032
http://dx.doi.org/10.1088/1742-6596/772/1/012041
http://dx.doi.org/10.1088/1742-6596/772/1/012041
http://dx.doi.org/10.1088/1742-6596/772/1/012035
http://dx.doi.org/10.1007/978-3-319-40663-3_36
http://dx.doi.org/10.1007/978-3-319-40663-3_55
http://dx.doi.org/10.1007/978-3-319-40663-3_55
http://dx.doi.org/10.1007/978-3-319-40663-3_59

Relief R-CNN: Utilizing Convolutional Features
for Fast Object Detection

Guiying Li1, Junlong Liu1, Chunhui Jiang1, Liangpeng Zhang1, Minlong Lin2,
and Ke Tang1(B)

1 School of Computer Science and Technology,
University of Science and Technoloy of China,

Hefei 230027, Anhui, People’s Republic of China
{lgy147,junlong,beethove,udars}@mail.ustc.edu.cn, ketang@ustc.edu.cn

2 Tencent Company, Shenzhen 518057, People’s Republic of China
minlonglin@tencent.com

Abstract. R-CNN style methods are sorts of the state-of-the-art object
detection methods, which consist of region proposal generation and deep
CNN classification. However, the proposal generation phase in this par-
adigm is usually time consuming, which would slow down the whole
detection time in testing. This paper suggests that the value discrepan-
cies among features in deep convolutional feature maps contain plenty
of useful spatial information, and proposes a simple approach to extract
the information for fast region proposal generation in testing. The pro-
posed method, namely Relief R-CNN (R2-CNN), adopts a novel region
proposal generator in a trained R-CNN style model. The new generator
directly generates proposals from convolutional features by some simple
rules, thus resulting in a much faster proposal generation speed and a
lower demand of computation resources. Empirical studies show that R2-
CNN could achieve the fastest detection speed with comparable accuracy
among all the compared algorithms in testing.

Keywords: Object detection · R-CNN · CNN · Convolutional features ·
Deep learning · Deep neural networks

1 Introduction

One type of the state-of-the-art deep learning methods for object detection is
R-CNN [8] and its derivative models [7,18]. R-CNN consists of two main stages:
the category-independent region proposals generation and the proposal classi-
fication. The region proposals generation produces the rectangular Regions of
Interest (RoIs) [7,18] that may contain object candidates. In the proposal clas-
sification stage, the generated RoIs are fed into a deep CNN [15], which will
classify these RoIs as different categories or the background.

However, R-CNN is time inefficient in testing, especially when running on
hardwares with limited computing power like mobile phones. The time cost of
R-CNN comes from three parts: (1) the iterative RoIs generation process [12];
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 386–394, 2017.
DOI: 10.1007/978-3-319-59072-1 46

Relief R-CNN: Utilizing Convolutional Features for Fast Object Detection 387

(2) the deep CNN with a huge computation requirement [10,15,22]; and (3) the
naive combination of RoIs and the deep CNN [8]. Many attempts on these three
parts have been made to speed up R-CNN in testing. For RoI generation, Faster
R-CNN [18] trains a Region Proposal Network (RPN) to predict RoIs in images
instead of traditional data-independent methods that iteratively generate RoIs
from images like Objectness [1], Selective Search [21], EdgeBox [3] and Bing
[2]. For the time consuming deep CNN, some practical approaches [9,14] have
been proposed to simplify the CNN structure. For the combination of RoIs and
the deep CNN, SPPnet [11] and Fast R-CNN [7], which are the most popular
approaches, reconstruct the combination of RoIs and CNN by directly mapping
the RoIs to a specific pooling layer inside the deep CNN model. However, all
these methods still cannot be efficiently deployed on low-end hardwares, since
they still require considerable computing.

In this paper, we propose Relief R-CNN (R2-CNN), which aims to speed up
the deployment of RoI generation for a trained R-CNN without any extra train-
ing. For a trained R-CNN style model in deployment phase, R2-CNN abandons
the original RoIs generation process used in training, and directly extracts RoIs
from the trained CNN. R2-CNN is inspired by the analogy between relief sculp-
tures in real life and feature maps in CNN. Visualization of convolutional layers
[16,20] has shown that convolutional features with high values in a trained CNN
directly map to the recognizable objects on input images. Therefore, R2-CNN
utilizes these convolutional features for region proposal generation. That is done
by directly extracting the local region wrapping features with high values as
RoIs. This approach is faster than many other methods, since a considerably
large part of its computations are comparison operations instead of time con-
suming multiplication operations. Furthermore, R2-CNN uses the convolutional
features produced by CNN for RoI generation, while most of the methods need
additional feature extraction from raw images for RoIs. In short, R2-CNN could
reduce much more computations in RoI generation phase compared with other
methods discussed above.

The rest of the paper is organized as follows: Sect. 2 describes the details of
Relief R-CNN. Section 3 presents the experimental results about R2-CNN and
relevant methods. Section 4 concludes the paper.

2 Relief R-CNN

In this section we present the details of R2-CNN. Figure 1 shows the brief struc-
ture of R2-CNN.

General Idea. The value discrepancies among features in a feature map of
CNN are sorts of edge details. These details are similar to the textures on sculp-
ture reliefs, which describe the vision by highlighting the height discrepancies
of objects. Intuitively speaking, two nearby features that have significant value
discrepancy may indicate they are on the boundary of objects, which is a type
of edge details. There comes the basic assumption of R2-CNN: region propos-
als can be generated from the object boundaries, which consist of enough edge

388 G. Li et al.

predicted bounding box
 <x_min, y_min, x_max, y_max>

Fast R-CNNconv_1+pool_1

conv_2+pool_2 conv_3 conv_4

conv_5+pool_5

full connectionsROI layer

Integrate Feature Map

Big ROI

Small ROI

Local Search

Feature levels

Recursive Fine-tuning

feature value increase

RoI generation

Relief R-CNN

Step 1 Step 2 Step 3

Step 4

Step 5

Fig. 1. Overview of Relief R-CNN. (Step 1) First is generating an Integrate Fea-
ture Map fintegrate based on feature maps in pool1 layer of Alexnet [15], (Step 2)
followed by separating features of fintegrate into different Feature Levels. (Step 3)
Then extracting Big RoIs and Small RoIs and using (Step 4, 5) additional proposal
refinement techniques for better performance. The process conducted by solid lines is
the procedure of Fast R-CNN, while the process along with dotted lines is the special
work flow of R2-CNN

details described by significant value discrepancies in CNN feature maps, with
some simple rules based on the characteristics of convolutional feature maps.

The idea above comes from the observations on convolutional feature maps
[16,20], and the similarity between the feature maps and sculpture relief, so that
the proposed method is called Relief R-CNN. In testing phase, by searching the
regions have significant more salient features than nearby context features in
convolutional feature maps of a trained CNN, R2-CNN can locate the objects
in the source image by utilizing these region. R2-CNN can be summarized into
5 steps as follows, in which steps 1–4 replace the RoI generator in the original
trained models and step 5 boosts the performance of the fast generated RoIs in
classification phase.

Step 1: Integrate Feature Map Generation. A synthetic feature map called
Integrate Feature Map, denoted as fintegrate, is generated by adding all feature
maps up to one map. fintegrate brings two advantages, the first is dramatically
reducing the number of feature maps, the second is eliminating noisy maps. The
generation of fintegrate consists of two steps:

1 Each feature map is normalized by dividing by its maximal feature value.
2 A fintegrate is generated by adding all the normalized feature maps together

in element-wise.

Step 2: Separating Feature Levels by Feature Interrelationship. Once
the fintegrate is ready, feature levels in fintegrate should be formulated. As wrote in

Relief R-CNN: Utilizing Convolutional Features for Fast Object Detection 389

General Idea, R2-CNN tries to locate objects by a special sort of edge details,
which is depicted by feature value discrepancies. However, it is hard to define
how large the discrepancy between two features indicates a part of a boundary.
To overcome this obstacle, we propose to separate features into different feature
levels, and features in different feature levels are considered to be discriminative.
Therefore, the contours formated by nearby features in a feature level directly
represent the boundaries.

In this paper, feature levels in a fintegrate are generated by dividing the value
range of all the features into several subranges. Each subrange is a specific level
which covers a part of features in the fintegrate. The number of subranges is
a hyper-parameter, denoted as l. R2-CNN uniformly divides the fintegrate into
l feature levels, see Algorithm 1. The step 2 in Fig. 1 shows some samples of
feature levels generated from the first pooling layer of CaffeNet model (CaffeNet
is a caffe implementation of AlexNet [15]).

Algorithm 1. Feature Level Separation
Input: (fintegrate, l) �Integrate Feature Map and Feature Level Number
1: Finding the maximal value valuemax and minimal value valuemin in fintegrate
2: �uniformly dividing the value range into l subranges
3: stride = (valuemax − valuemin)/l
4: �featurelevel i is the feature level i for fintegrate
5: for i = 1 → l do
6: Finding features bigger than valuemin + (i − 1) ∗ stride and smaller than

valuemin + i ∗ stride in fintegrate as feautrelevel i

7: end for
8: return < featurelevel 1, ..., featurelevel l >

Step 3: RoIs Generation. The approach R2-CNN adopted for RoIs generation
is, as be mentioned in step 2, finding the contours formated by nearby features
in a feature level, which needs the help of some deep network structure related
observations. As the step 3 shown in Fig. 1, the neighboring features, which are
surely belong to the same object, can form a small RoI. Furthermore, a larger
RoI can be assembled from several small RoIs, in case of some large objects be
consisted of small ones. Here’s the summarized operations:

– Small RoIs: Firstly, it searches for the feature clusters (namely the neighboring
features) in the given featurelevel i, and then mapping the feature clusters to
the input image as Small RoIs.

– Big RoI: For the purpose of simplicity (avoiding the combinatorial explosion),
only one Big RoI is generated in a feature level by assembling all the small
RoIs.

Step 4: Local Search. Convolutional features from source image are not pro-
duced by seamless sampling. As a result, RoIs extracted in convolutional feature

390 G. Li et al.

maps might be quite coarse. Local Search in width and height is applied to tackle
this problem. For each RoI, which its width and height are denoted as (w, h),
local search algorithm needs two scale ratios α and β to generate 4 more RoIs:
(β ∗ w, β ∗ h), (β ∗ w,α ∗ h), (α ∗ w,α ∗ h), (α ∗ w, β ∗ h). In experiments, α was
fixed to 0.8 and β was fixed to 1.5. The Local Search can give about 1.8 mAP
improvement in detection performance.

Step 5: Recursive Fine-Tuning. Previous steps provide a fast RoI generation
for testing. However, the accuracy of testing is restricted because of the different
proposals distribution between training and testing. Owing to this fact, we pro-
pose the method called recursive fine-tuning to boost the detection performance
during the classification phase of RoIs.

The recursive fine-tuning is a very simple step. It does not need any changes
to existing R-CNN style models, but just a recursive link from the output of
a trained box regressor back to its input. Briefly speaking, it is a trained box
regressor wrapped up into a closed-loop system from a R-CNN style model. This
step aims at making full use of the box regressor, by recursively refining the RoIs
until their performance have been converged.

It should be noticed that there exists a similar method called Iterative Local-
ization [5]. It needs a bounding box regressor be trained in another settings and
starts the refinement from the proposals generated by Selective Search, while the
recursive fine-tuning bases on the regressor in a unified trained R-CNN and starts
refinement from the RoIs generated by above steps (namely Step 1–4). Further-
more, recursive fine-tuning does not reject any proposals but only improve them
if possible, while iterative localization drops the proposals below a threshold at
the beginning.

3 Experiments

3.1 Setup

In this section, we compared our R2-CNN with some state-of-the-art methods
for accelerating trained R-CNN style models. The proposals of Bing, Objectness,
EdgeBoxes and Selective Search were the pre-generated proposals published by
[12], since the the algorithm settings were the same. The evaluation code used
for generating Fig. 2 was also published by [12].

The baseline of R-CNN style model is Fast R-CNN with CaffeNet. The Fast
R-CNN model was trained with Selective Search just the same as in [7]. The
Faster R-CNN [18] used in experiments was based on project py-faster-rcnn [6].
Despite the difficulty of Faster R-CNN for low power devices, RPN of Faster R-
CNN is still one of the state-of-the-art proposal methods. Therefore, RPN was
still adopted in experiments using the same Fast R-CNN model consistent with
other methods for detection. The RPN in experiments was trained on the first
stage of Faster R-CNN training phases. This paradigm is the unshared Faster R-
CNN model mentioned in [18]. For the R2-CNN model, the number of recursive
loops was set as 3, and the number of feature levels was 10.

Relief R-CNN: Utilizing Convolutional Features for Fast Object Detection 391

All experiments were tested on PASCAL VOC 2007 [4]. Deep CNNs in this
section got support from Caffe [13], a famous open source deep learning frame-
work. All the proposal generation methods were running on CPU (inc. R2-CNN
and RPN) while the deep neural networks of classification were running on GPU.
All the deep neural networks had run on one NVIDIA GTX Titan X, and the
CPU used in the experiments was Intel E5-2650V2 with 8 cores, 2.6 GHZ.

3.2 Speed and Detection Performance

Table 1 contains the results of comparison about time in testing. The testing
time is separated into proposal time and classification time. The proposal time
is the time cost for proposal generation, and the classification time is the time
cost for verifying all the proposals.

Table 1. Testing time & performance comparison. The object detection model used
here is Fast R-CNN. The R2-CNN needs recursive fine-tuning which makes classifica-
tion be time-consuming. “Total Time” is the sum of values in “Proposal Time” and
“Classification Time”. “*” indicates the runtime reported in [12]. “RPN” is the pro-
posal generation model used in Faster R-CNN. Bold items are the results of R2-CNN.
R2-CNN presents the fastest speed and comparable detection performance.

Methods Proposal
time (sec.)

Proposals Classification
time (sec.)

Total time
(sec.)

mAP Mean
precision (%)

R2-CNN 0.00048 760.19 0.146 0.14648 53.8 9.2

Bing 0.2* 2000 0.115 0.315 41.2 2

EdgeBoxes 0.3* 2000 0.115 0.415 55.5 4.2

RPN 1.616 2000 0.115 1.731 55.2 3.5

Objectness 3* 2000 0.115 3.115 44.4 1.7

Selective search 10* 2000 0.115 10.115 57.0 5.9

Table 1 has also shown the detection performances of R2-CNN and other
comparison methods. Precision [17] is a well known metric to evaluate the pre-
cision of predictions, mAP (abbreviation of mean Average Precision) is a highly
accepted evaluation in the object detection task [19].

The empirical results in Table 1 reveal that R2-CNN could achieve a very
competitive detection performance compared with state-of-the-art Selective
Search, EdgeBoxes and Faster R-CNN with a much more fast CPU speed, which
means it’s a more suitable RoI method for deploying trained R-CNN style models
on low-end hardwares.

3.3 Proposal Quality

To evaluate the quality of proposals, the evaluation metric [12] Recall-to-IoU
curve was adopted, see Fig. 2. The metric IoU (abbreviation of intersection

392 G. Li et al.

IoU overlap threshold
0.5 0.6 0.7 0.8 0.9 1

re
ca

ll

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bing
EdgeBoxes
Faster R-CNN
Objectness
Relief R-CNN
SelectiveSearch

Fig. 2. Recall to IoU threshold with 200 proposals in count. R2-CNN had nearly
dominated other methods.

over union) [19], is an evaluation criterion to measure how similar two regions
are. A larger IoU indicates more similar regions.

In Fig. 2, it could be found that R2-CNN had nearly dominated other meth-
ods in IoU threshold between 0.5–0.9, and became the secondary best in IoU
threshold 0.9–1.0.

It should be noticed that R2-CNN could not control the number of propos-
als, but it got the best results with hundreds of proposals while others need
thousands. The experiments in this section have shown that R2-CNN could get
a very good performance in the situation of limit proposals with a high speed,
which is also a good character for platforms with limited computation resources.

4 Conclusion

This paper presents a unified object detection model called Relief R-CNN (R2-
CNN). By directly extracting region proposals from convolutional feature dis-
crepancies, namely the location information of salient features in local regions,
R2-CNN reduces the RoI generation time required for a trained R-CNN style
model in testing phase. Hence, R2-CNN is more suitable to be deployed on low-
end hardwares than existing R-CNN variants. Moreover, R2-CNN introduces no
additional training budget. Empirical studies demonstrated that R2-CNN was
faster than previous works with competitive detection performance.

Relief R-CNN: Utilizing Convolutional Features for Fast Object Detection 393

Acknowledgments. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant 61329302 and Grant 61672478, and in part by
the Royal Society Newton Advanced Fellowship under Grant NA150123.

References

1. Alexe, B., Deselaers, T., Ferrari, V.: What is an object?. In: 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pp. 73–80 (2010)

2. Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.: BING: binarized normed gradients
for objectness estimation at 300fps. In: 2014 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3286–3293 (2014)

3. Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE Trans.
Pattern Anal. Mach. Intell. 37(8), 1558–1570 (2015)

4. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisser-
man, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput.
Vis. 111(1), 98–136 (2015)

5. Gidaris, S., Komodakis, N.: Object detection via a multi-region and semantic
segmentation-aware CNN model. In: The IEEE International Conference on Com-
puter Vision (ICCV), pp. 1134–1142 (2015)

6. Girshick, R.: Project of Faster R-CNN (python implementation). https://github.
com/rbgirshick/py-faster-rcnn

7. Girshick, R.: Fast R-CNN. In: 2015 IEEE International Conference on Computer
Vision (ICCV), pp. 1440–1448 (2015)

8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In: 2014 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 580–587 (2014)

9. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and huffman coding. In: International
Conference on Learning Representations (ICLR) (2016)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778 (2016)

11. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional
networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). doi:10.
1007/978-3-319-10578-9 23

12. Hosang, J., Benenson, R., Dollár, P., Schiele, B.: What makes for effective detection
proposals? IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 814–830 (2016)

13. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding.
In: ACM Multimedia, pp. 675–678. ACM (2014)

14. Kim, Y.D., Park, E., Yoo, S., Choi, T., Yang, L., Shin, D.: Compression of deep
convolutional neural networks for fast and low power mobile applications. In: Inter-
national Conference on Learning Representations (ICLR) (2016)

15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–
1105. Curran Associates, Inc. (2012)

https://github.com/rbgirshick/py-faster-rcnn
https://github.com/rbgirshick/py-faster-rcnn
http://dx.doi.org/10.1007/978-3-319-10578-9_23
http://dx.doi.org/10.1007/978-3-319-10578-9_23

394 G. Li et al.

16. Mahendran, A., Vedaldi, A.: Understanding deep image representations by invert-
ing them. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 5188–5196 (2015)

17. Özdemir, B., Aksoy, S., Eckert, S., Pesaresi, M., Ehrlich, D.: Performance measures
for object detection evaluation. Pattern Recogn. Lett. 31(10), 1128–1137 (2010)

18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Cortes, C., Lawrence, N.D., Lee, D.D.,
Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Sys-
tems, vol. 28, pp. 91–99. Curran Associates, Inc. (2015)

19. Russakovsky, O., Deng, J., Su, H., et al.: ImageNet large scale visual recognition
challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

20. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol.
8689, pp. 818–833. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1 53

21. Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., Smeulders, A.W.M.: Selective
search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015)

http://dx.doi.org/10.1007/978-3-319-10590-1_53

The Critical Dynamics in Neural Network
Improve the Computational Capability of Liquid

State Machines

Xiumin Li1,2, Qing Chen1,2, Fangzheng Xue1,2, and Hongjun Zhou3(B)

1 Key Laboratory of Dependable Service Computing in Cyber Physical Society
of Ministry of Education, Chongqing University, Chongqing 400044, China

{xmli,chenqing,xuefangzheng}@cqu.edu.cn
2 College of Automation, Chongqing University, Chongqing 400044, China
3 School of Economics and Business Administration, Chongqing University,

Chongqing 400044, China
hjzhou@cqu.edu.cn

Abstract. In recent years, increasing studies have shown that the net-
works in the brain can reach a critical state where dynamics exhibit
a mixture of synchronous and asynchronous firing activity. It has been
hypothesized that the homeostatic level balanced between stability and
plasticity of this critical state may be the optimal state for performing
diverse neural computational tasks. Motivated by this, the role of critical
state in neural computation based on liquid state machines (LSM), which
is one of the neural network application model of liquid computing, has
been investigated in this note. Different from a randomly connect struc-
ture in liquid component of LSM in most studies, the synaptic weights
among neurons in proposed liquid are refined by spike-timing-dependent
plasticity (STDP); meanwhile, the degrees of neurons excitability are
regulated to maintain a low average activity level by Intrinsic Plasticity
(IP). The results have shown that the network yield maximal computa-
tional performance when subjected to critical dynamical states.

Keywords: Computation capability · LSM · Critical dynamic · STDP ·
IP

1 Introduction

Recently, many studies have been advanced to study the critical state of the
network in the brain [1–3]. A remarkable phenomena that critical state exhibits
is power law distributions of the spontaneous neuronal avalanches sizes approxi-
mately with a slope of −1.5 [4]. The functional rule of this dynamical criticality
can bring about optimal transmission [1], storage of information [5] and sen-
sitivity to external stimuli [6]. The influences of network structures on critical
state have been widely researched considering from the perspective of complex

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 395–403, 2017.
DOI: 10.1007/978-3-319-59072-1 47

396 X. Li et al.

network, such as scale-free network [7,8], small-world network [9,10] and hier-
archical modular network [11,12]. However, critical dynamics are rarely used in
computational neuroscience.

In this paper, the influences of critical state on the computational perfor-
mance of LSM for real-time computing have been studied. As shown in Fig. 1(a),
LSMs include three components: input component, liquid component, readout
component [13]. Synaptic inputs, which are integrated from the input parts, are
send to the neurons in liquid component and then it can be described in a higher
dimensional state known as liquid state. As to specific assignments, the outputs
of liquid component are projecting to the readout component, which plays a role
as a memory-less function. In the process of computations, all the connections
in the liquid component will always keep unchanged once the structure is setted
up, except that readouts are trained through linear regression algorithm. As a
result, many researchers are concentrating on studying the network dynamics
under a predefined topological network. Considering the flexibility of neuronal
connectivity in the brain, it is more reasonable to consider self-organizing neural
networks based on neural plasticity.

One of the widely known forms of synaptic plasticity is the spike-timing-
dependent plasticity [14]. In our previous work [15], we have given a novel liquid
component of LSM refined by STDP. Compared with the LSM with tradition
random liquid, LSM with new liquid has better computational performance on
complex input streams. Besides, recent experimental results show that the intrin-
sic excitability of individual biological neurons can be adjusted to match the
synaptic input by the activity of their voltage gated channels [17]. This adap-
tion of neuronal intrinsic excitability called intrinsic plasticity (IP) has been
observed in cortical areas and plays an important role on cortical functions of
neural circuits [18]. It is hypothesized that IP can keep the mean firing activ-
ity of neuronal population in a homeostatic level [19], which is essential for
avoiding highly intensive and synchronous firing caused by the STDP learning.
Therefore, it is necessary to investigate it in combination with existing network
learning algorithms to maximize the information capacity.

In this paper, we have refined the liquid component of LSM though STDP and
IP learning. Therein, the synaptic weights among neurons in liquid are updated
by STDP; while IP learning regulates the degrees of neurons excitability. The
influence of critical dynamics on the computational performance of proposed
LSM has been investigated. Results demonstrate that the network yield maximal
computational performance when subjected to critical dynamical states. These
results may be very significant in finding out the relationship between network
learning and efficiency of information processing.

2 Network Description

2.1 Network Architecture

In this paper, as described in Fig. 1(a), we have added four different inputs to
four equivalently divided groups in the liquid component. Each input is made

The Critical Dynamics in Neural Network Improve 397

Fig. 1. (a) Network structure. Neurons marked with different colors are subjected to
different inputs. (b) Left: Four independent input. Right: The response of neurons
in STDP+IP network(up) and the corresponding output of the readouts (bottom)
according to the target signal r1 + r3. (Color figure online)

of eight independent signal streams and generated by the Poisson process with
randomly varying rates as ri(t), i = 1, ...4 (Fig. 1(b)-left), which are chosen as
follows [20]. The baseline firing rates for input 1 and 2 are chosen to be 5 Hz, with
randomly distributed bursts of 120 Hz for 50 ms. The rates for input 3 and 4 are
periodically updated, by randomly drawn from the two values of 30 Hz and 90 Hz.
The curves in Fig. 1(b)-left represents the final firing rates. Figure 1(b)-right show
the responses of the neurons in liquid networks and the corresponding outputs
of LSM compared with the target teaching signal r1 + r3. The results show that
input signal can be expressed well as the high-dimensional liquid state, where
information can be encoded into the intrinsic dynamical of neuronal population,
thus the high precision of computational capability can be realized.

2.2 Neuron Model

The network used in this article is composed of 200 Izhikevich neuron [21]
described by

v̇i = 0.04v2
i + 5vi + 140 − ui + I + Isyn

i

u̇i = a(bvi − ui) + Dξi
(1)

if vi > 30 mV, then
{

vi ← c
ui ← ui + d

(2)

where i = 1, 2, ..., 200. vi and ui is the membrane potential and membrane recov-
ery variable of the neurons, respectively. The parameters a, b, c, d are constant.
Choosing different values of these parameters can obtain various firing dynamic
[21]. The parameter ξi stand for the independent Gaussian noise with zero mean
and intensity D is the noisy background. I is the external current. Isyn

i is the
total synaptic current through neuron i and is governed by the dynamics of the
synaptic variable sj :

398 X. Li et al.

Isyn
i = −∑N

1(j �=i) gjisj(vi − vsyn)
ṡj = α(vj)(1 − sj) − sj/τ
α(vj) = α0/(1 + e−vj/vshp)

(3)

here, α(vj) is the synaptic recovery function. If the presynaptic neuron is in the
silent state vj < 0, sj reduces to ṡj = −sj/τ ; if not, sj jumps quickly to 1. The
excitatory synaptic reversal potential vsyn is set to be 0. The synaptic weight
gij will be updated by the STDP function F :

Δgij = gijF (Δt)

F (Δt) =
{

A+ exp(−Δt/τ+) if Δt > 0
−A− exp(Δt/τ−) if Δt < 0

(4)

where Δt = tj −ti, ti and tj is the spike time of the presynaptic and postsynaptic
neuron, respectively. τ+ and τ− determine the temporal window for synaptic
modification. F (Δt) = 0 when Δt = 0. A+ and A− determine the maximum
amount of synaptic modification. Here, τ− = τ+ = 20, A+ = 0.05 and A−/A+ =
1.05. The synaptic weights are distribute in [0, gmax], where gmax = 0.015 is the
maximum value.

Particularly, parameter b has a significant influence on the neurons excitabil-
ity. To get a heterogeneous network, the initial values of b are randomly dis-
tributed in [0.12, 0.2]. The neurons with larger value b can exhibit stronger
excitability, thus fire with a higher frequency. As a result we consider plastic
modifications of b as a representative scheme describing IP mechanisms. The
model we proposed is based on neurons’ inter-spike interval (ISI), in which a
function φi is used to determine the amount of excitability modification:

Δbi = biφi

φi =

⎧⎨
⎩

−ηIP · exp(Tmin−ISIi
Tmin

) if ISIi < Tmin

ηIP · exp(ISIi−Tmax

Tmax
) if ISIi > Tmax

0, others

(5)

where ηIP is learning rate. The neuronal inter-spike interval (ISI) is ISIk
i =

tk+1
i − tki , where tki is the kth firing time of neuron i; Tmin and Tmax are thresh-

olds, they determine the expected ranges of ISI. During the learning process,
the most recent ISI is examined every tck time and used to adjust the neuronal
excitability: If ISIi is larger than the threshold Tmax, the neuronal excitability
is strengthened to make the neuron more sensitive to input stimuli; if ISIi is
less than the threshold Tmin, the neuronal excitability is weakened to make the
neuron less sensitive to input stimuli. The histogram of firing rate response dur-
ing IP learning for a randomly driven network is shown in Fig. 2, from which an
normal distribution of firing rate is observed, and this result is consistent with
the theory that the maximum-entropy distribution is Gaussian if the desired
(p(x) = exp[−(x−μ)2/2σ2]

σ
√
2π

) variance is fixed. It indicates that our IP model is
reasonable. Additionally, the values of other parameters are α0 = 3, τ = 2,
Vshp = 5, a = 0.02, c = −65, d = 8, D = 0.1, Tmax = 110, Tmin = 90.

The Critical Dynamics in Neural Network Improve 399

10.6 10.8 11 11.2 11.4 11.6 11.8
0

20

40

60

80

Firing rate (HZ)

Fig. 2. Histogram of firing rate response by IP learning and its Gassian fit: μ = 11.2795,
σ = 0.1736.

Neuron i with bi increasingN
eu

ro
n

i w
ith

 b
i i

nc
re

as
in

g STDP

50 100 150 200

50

100

150

200

0

0.5

1

Neuron i with bi increasingN
eu

ro
n

i w
ith

 b
i i

nc
re

as
in

g STDP+IP

50 100 150 200

50

100

150

200

0

0.5

1

0 0.5 1
0

0.1

0.2

0.3

0.4

Pr
op

or
tio

n

g
ij
/g

max

0 0.5 1
0

0.1

0.2

0.3

0.4

Pr
op

or
tio

n

g
ij
/g

max

0.12 0.14 0.16 0.18 0.2
0

50

100

150

200

b

nu
m

be
r

out
in

0.12 0.14 0.16 0.18 0.2
0

50

100

150

200

b

nu
m

be
r

out
in

(a)

(b)

Fig. 3. Network structures obtained from learning rules. Left: STDP alone; Right:
STDP plus IP. (a) Schematic diagram of the normalized synaptic matrix. (b) Histogram
of the normalized synaptic weights. (c) Scatter plots of neurons strong synaptic weights
for in-degrees and out-degrees.

At the beginning of the learning, each neuron in liquid network is bidirec-
tionally connected to each other with the same synaptic weight of gmax/2 and
the same external current of 6. After sufficient time the updated network struc-
ture by STDP alone or STDP+IP is shown in Fig. 3. Figure 3(a) indicates the
active-neuron dominant structure obtained by STDP learning, where the strong
connections are mainly distributed to the synapses from neurons with large val-
ues of b to inactive ones with small values of b, and most of the synapses are
rewired to be either 0 or 1; while IP strengthens the competition among different
neurons and makes the connectivity structure more complex and the distribu-
tion is not bimodal, but rather is skewed toward smaller values. The degree
distribution for different networks are also examined, the out-degree(out) and
in-degree(in) are defined as in [16]. It is demonstrated that neurons with larger
values of b have larger out-degrees and smaller in-degrees in STDP condition,
while only neurons with intermediate sensitivity keep this principle when IP is
switched on.

400 X. Li et al.

3 Results

In this section, lists of real-time computational tasks were conducted to investi-
gate the influence of critical dynamic on the computational perfromance of LSM
updated by STDP+IP. To characterize and quantify the computational perfor-
mance of networks systematically, we purposely tested the sensitivity of different
types of LSM by varying the external current I. The results of average MSEs
shown in Fig. 4(a) were obtained from 20 times independent simulations. The
results of the three network are non-monotonic, which reaches the minimal value
when the external stimulus current is about 5. The computational performance
becomes worse when the external stimulus current I is too strong or too weak.
Besides, it illustrates that LSMs refined from STDP+IP performs much better
than the one with random reservoir or the one with STDP alone.

0 2 4 6 8 10
80

100

120

140

160

180

200

220

240

I

M
SE

(a)

STDP+IP

STDP

Random

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

H

I

(b)
STDP+IP

STDP

Random

Fig. 4. (a) Computational capability of networks with different topologies. (b) Entropy
of network activity for networks with different topologies. i.e. STDP network, random
network and STDP+IP network.

In order to get an insight into the potential advantages of the turning point,
we have specially investigated the influence of stimulus external current on net-
work activity. Figure 5 has shown the network activities of different network
with different stimulus. It can be seen that the synchronization degree of net-
work activity has been increased with the increase of external stimulus. Par-
ticularly, the activity exhibit a mixture of synchronous and asynchronous firing
activity when the stimulus current is about 5, indicating the highly complexity
of network activity. To further quantify the complexity of network activity, we
have computed the information entropy of network activity, which measures the
complexity of activity patterns in a neural network and defined as

H = −
n∑

i=1

pi log2 pi (6)

where, n is the number of unique binary patterns. pi is the probability that pat-
tern i occurs [22]. For calculation convenience, neuronal activities are measured
in pattern units consisting of a certain number of neurons. In each time bin, if

The Critical Dynamics in Neural Network Improve 401

2000 2500 3000
0

50

100

150

200

Time(ms)

ne
ur

on
 id

x

I=3

2000 2500 3000
0

50

100

150

200

Time(ms)

ne
ur

on
 id

x

I=5

2000 2500 3000
0

50

100

150

200

Time(ms)

ne
ur

on
 id

x

I=8

2000 2500 3000
0

50

100

150

200

Time(ms)

ne
ur

on
 id

x

2000 2500 3000
0

50

100

150

200

Time(ms)
ne

ur
on

 id
x

2000 2500 3000
0

50

100

150

200

Time(ms)

ne
ur

on
 id

x

2000 2500 3000
0

50

100

150

200

Time(ms)

ne
ur

on
 id

x

2000 2500 3000
0

50

100

150

200

Time(ms)

ne
ur

on
 id

x

2000 2500 3000
0

50

100

150

200

Time(ms)

ne
ur

on
 id

x

random

STDP

STDP+IP

Fig. 5. Firing activity of the three network with different stimulates (I= 3, 5, 8).

any neuron of the unit is firing then the event of this unit is active; otherwise it
is inactive. Surprisingly, the results have shown that the maximal entropy has
been reached when the current is about 5 (see Fig. 4(b)) where networks have the
optimal computational performance. Therefore, these results demonstrate that
the critical state with dynamics between synchronized firings and unsynchro-
nized firings makes the system have maximal dynamical complexity and thus
achieve optimal computational performance.

4 Conclusion

In this paper, the effect of critical dynamics on computational capability of liq-
uid state machine updated by STDP+IP has been investigated. Our results have
shown that the critical dynamic can remarkable improve the computation per-
formance of liquid state machine. At the critical state, the information entropy
of network activity is maximized indicating the complexity of activity patterns
are maximized, which can encode the rich dynamics of different neurons. These
results may be very significant in finding out the relationship between network
learning and efficiency of information processing.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China (Nos. 61473051 and 61304165).

402 X. Li et al.

References

1. Beggs, J.M., Plenz, D.: Neuronal avalanches in neocortical circuits. J. Neurosci.
Off. J. Soc. Neurosci. 23(35), 11167–11177 (2003)

2. Chialvo, D.R.: Critical brain networks. Phys. A Stat. Mech. Appl. 340(4), 756–765
(2004)

3. De, A.L., Perronecapano, C., Herrmann, H.J.: Self-organized criticality model for
brain plasticity. Phys. Rev. Lett. 96(2), 028107 (2006)

4. Beggs, J.M., Plenz, D.: Neuronal avalanches are diverse and precise activity pat-
terns that are stable for many hours in cortical slice cultures. J. Neurosci. Off. J.
Soc. Neurosci. 24(22), 5216–5229 (2004)

5. Haldeman, C., Beggs, J.M.: Critical branching captures activity in living neural
networks and maximizes the number of metastable states. Phys. Rev. Lett. 94(5),
058101 (2005)

6. Kinouchi, O., Copelli, M.: Optimal dynamical range of excitable networks at crit-
icality. Nat. Phys. 2(5), 348–351 (2006)

7. Goh, K.I., Lee, D.S., Kahng, B., Kim, D.: Sandpile on scale-free networks. Phys.
Rev. Lett. 91(14), 148701 (2003)

8. Pasquale, V., Massobrio, P., Bologna, L.L., Chiappalone, M., Martinoia, S.: Self-
organization and neuronal avalanches in networks of dissociated cortical neurons.
Neuroscience 153(4), 1354–1369 (2008)

9. Lin, M., Chen, T.: Self-organized criticality in a simple model of neurons based on
small-world networks. Phys. Rev. E 71(1), 016133 (2005)

10. Pajevic, S., Plenz, D.: Efficient network reconstruction from dynamical cascades
identifies small-world topology of neuronal avalanches. PLoS Comput. Biol. 5(1),
e1000271 (2009)

11. Wang, S.J., Zhou, C.: Hierarchical modular structure enhances the robustness of
self-organized criticality in neural networks. New J. Phys. 14(2), 023005 (2012)

12. Wang, S.J., Hilgetag, C., Zhou, C.: Sustained activity in hierarchical modu-
lar neural networks: self-organized criticality and oscillations. Front. Comput.
Neurosci. 5, 30 (2011)

13. Natschläger, T., Maass, W., Markram, H.: The “liquid computer”: a novel strat-
egy for real-time computing on time series. In: Special issue on Foundations of
Information Processing of TELEMATIK, vol. 8 (LNMC-ARTICLE-2002-005), pp.
39–43 (2002)

14. Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic effi-
cacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297), 213–215
(1997)

15. Xue, F., Hou, Z., Li, X.: Computational capability of liquid state machines with
spike-timing-dependent plasticity. Neurocomputing 122, 324–329 (2013)

16. Li, X., Small, M.: Enhancement of signal sensitivity in a heterogeneous neural
network refined from synaptic plasticity. New J. Phys. 12(8), 083045 (2010)

17. Daoudal, G., Debanne, D.: Long-term plasticity of intrinsic excitability: learning
rules and mechanisms. Learn. Mem. 10(6), 456–465 (2003)

18. Marder, E., Abbott, L.F., Turrigiano, G.G., Liu, Z., Golowasch, J.: Memory from
the dynamics of intrinsic membrane currents. Proc. Nat. Acad. Sci. 93(24), 13481–
13486 (1996)

19. Triesch, J.: Synergies between intrinsic and synaptic plasticity in individual model
neurons. In: NIPS, pp. 1417–1424 (2004)

The Critical Dynamics in Neural Network Improve 403

20. Maass, W., Joshi, P., Sontag, E.D.: Computational aspects of feedback in neural
circuits. PLoS Comput. Biol. 3(1), e165 (2007)

21. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw.
14(6), 1569–1572 (2003)

22. Shew, W.L., Yang, H., Yu, S., Roy, R., Plenz, D.: Information capacity and trans-
mission are maximized in balanced cortical networks with neuronal avalanches. J.
Neurosci. 31(1), 55–63 (2011)

Exponential Stability of the Coupled Neural
Networks with Different State Dimensions

Jieyin Mai, Manchun Tan(B), Yunfeng Liu, and Desheng Xu

College of Information Science and Technology,
Jinan University, Guangzhou 510632, China

tanmc@jnu.edu.cn

Abstract. In this paper, the exponential stability is studied for a class
of coupled neural networks, in which the model has nodes of different
dimensions, and has different internal time-delays and coupling delays.
Based on Lyapunov stability theory and linear matrix inequality tech-
nique, some sufficient conditions are derived for ensuring the exponential
stability of the equilibrium of system. Finally, a numerical example is
given to show the effectiveness of our results.

Keywords: Coupled neural networks · Exponential stability · Different
state dimensions · Different coupling time delays

1 Introduction

During the past decade, coupled neural networks (CNNs) have received increas-
ing attention of researchers, due to the fact that coupled networks may exhibit
more complicated and unpredictable behaviors than a single neural network
(see [1–4] and references therein). Since the properties of dynamic behaviors are
important in design and application of neural networks, stability is one of the hot
topics [5,6]. Various different coupled neural networks can be found in the litera-
ture, e.g. coupled term with or without time delays, or hybrid both (see [7–14]).
Some global stability criteria for arrays of linearly coupled delayed neural net-
works with nonsymmetric coupling are established on the basis of linear matrix
inequality (LMI) method in [7]. By applying the theory of Kronecker product of
matrices, the Wirtinger-based inequality, and the method of reciprocally convex
combination, the authors derived some delay-dependent synchronization condi-
tions for CNNs in terms of linear matrix inequalities in [1].

Although there are lots of researches for the exponential stability or stabi-
lization problems of neural networks with time delay, most of them concern with
the same dimension of the states. If a network is constructed by nodes with dif-
ferent state dimension, the network will exhibit different dynamical behaviours
(see [15–17] and references therein). Dimensions of nodes are actually different in
many practical situations, so such coupled complex networks need more in-depth
study. The global stability of a class of CNNs with nodes of different dimensions
is studied in [2], as an extension of this work, we discuss the exponential stability
of CNNs.
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 404–412, 2017.
DOI: 10.1007/978-3-319-59072-1 48

Exponential Stability of the Coupled Neural Networks 405

2 System Description and Preliminaries

Consider the coupled neural networks (CNNs) with nodes of different
dimensions:

dxi(t)
dt

= −Dixi(t) + Aifi(xi(t)) + Bifi(xi(t − τi1)) + αi

N∑

j=1

gijCijxj(t)

+βi

N∑

j=1

gijΓijxj(t − τi2), (1)

where i = 1, 2, · · · , N ; xi(t) = (xi1(t), xi2(t), · · · , xini
(t))T ∈ R

ni is the state
vector of the ith node; Ai, Bi ∈ R

ni×ni are constant matrices representing the
feedback matrix without and with time delays respectively; Di > 0 is a constant
and diagonal matrix; fi(∗) is the activation function; G = (gij)N×N is an outer
coupling matrix representing the coupling strength and the topological structure
of the neural networks; Cij , Γij ∈ R

ni×nj are inner coupling matrices represent-
ing the inner-linking strengths between the cells without and with time delays
respectively; αi, βi are the strengths of the constant coupling and delayed cou-
pling, respectively; τi1, τi2 are the constant internal delays and coupling delays,
respectively; and 0 ≤ τi1 < τ , 0 ≤ τi2 < τ .

Remark 1. The dimension of isolated node network is different from each other
in this paper. Most results in the literature (e.g., [1,9,10,14,18]) concern with
the CNNs with nodes of the same dimension.

Remark 2. The zero-row-sum condition gii = −
N∑

j=1,j �=i

gij for G is required in

some references (see [7,17]). However, the condition is removed in this paper.

The initial condition associated with (1) is given as follows:

xij(s) = ϕij(s) ∈ C ([−τ, 0] ,R) , (2)

where τi = max{τi1, τi2}, τ = max{τ1, τ2, · · · , τN}, i = 1, 2, · · · , N , j =
1, 2, · · · , ni.

Assumption 1. The activation function fi(xi(t)) = (fi1(xi1(t)), fi2(xi2(t)),
· · · , fini

(xini
(t)))T is Lipschitz continuous, i.e., there exist constants wil > 0,

such that |fil(ξ1) − fil(ξ2)| ≤ wil |ξ1 − ξ2| holds for any ξ1, ξ2 ∈ R, and ξ1 �= ξ2,
where i = 1, 2, · · · , N ; l = 1, 2, · · · , ni.

For convenience, the notations are givens as follows:
M = n1+n2+ · · ·+nN ; Ini

denotes ni×ni identity matrix; I denotes M ×M

identity matrix; diag(· · ·) denotes a block-diagonal matrix; ‖y‖ =
√

yT y denotes
the norm of y; X(t) = (xT

1 (t), xT
2 (t), · · · , xT

N (t))T ; D = diag(D1,D2, · · · ,DN);
A = diag(A1, A2, · · · , AN); B = diag(B1, B2, · · · , BN);

406 J. Mai et al.

Wi = diag(wi1, wi2, · · · , wini
); W = diag(W1,W2, · · · ,WN);

F (X(t − τ1)) = (fT
1 (x1(t − τ11)), fT

2 (x2(t − τ21)), · · · , fT
N (xN (t − τN1)))T ;

X(t − τ2) = (xT
1 (t − τ12), xT

2 (t − τ22), · · · , xT
N (t − τN2))T ;

λmax(∗) and λmin(∗) respectively denote the maximum and minimum eigen-

value of ∗;
[

X Y
∗ Z

]
is defined as a matrix in form of

[
X Y
Y T Z

]
.

Hence, Eq. (1) can be rewritten as

dX(t)
dt

= −DX(t) + AF (X(t)) + BF (X(t − τ1)) + HX(t) + KX(t − τ2), (3)

where

H =

⎡

⎢⎣
α1g11C11 α1g12C12 · · · α1g1NC1N

...
...

. . .
...

αNgN1CN1 αNgN2CN2 · · · αNgNNCNN

⎤

⎥⎦ ,

K =

⎡

⎢⎣
β1g11Γ11 β1g12Γ12 · · · β1g1NΓ1N

...
...

. . .
...

βNgN1ΓN1 βNgN2ΓN2 · · · βNgNNΓNN

⎤

⎥⎦ .

Assume that X∗ is the equilibrium point of the CNNs (1), then it satisfies

− DX∗ + Af(X∗) + Bf(X∗) + HX∗ + KX∗ = 0, (4)

where X∗ = (x∗
1
T , x∗

2
T , · · · , x∗

N
T)T and x∗

i = (x∗
i1, x

∗
i2, · · · , x∗

ini
)T .

Define the linear coordinate transformation E(t) = X(t)−X∗, then the new
dynamical systems can be described as follows:

dei(t)
dt

= −Diei(t) + Aiφi(ei(t)) + Biφi(ei(t − τi1))

+αi

N∑

j=1

gijCijej(t) + βi

N∑

j=1

gijΓijej(t − τi2). (5)

That is

dE(t)
dt

= −DE(t) + AΦ(E(t)) + BΦ(E(t − τ1)) + HE(t) + KE(t − τ2), (6)

where ei(t) = (ei1(t), ei2(t), · · · , eini
(t))T = (xi1(t) − x∗

i1, · · · , xini
(t) − x∗

ini
)T ,

φi(ei(t)) = fi(xi(t)) − fi(x∗
i), φi(ei(t − τi1)) = fi(xi(t − τi1)) − fi(x∗

i),
E(t) = (eT

1 (t), eT
2 (t), · · · , eT

N (t))T , E(t) = X(t) − X∗,
Φ(E(t)) = (φT

1 (e1(t)), φT
2 (e2(t)), · · · , φT

N (eN (t)))T = F (X(t)) − F (X∗),
Φ(E(t − τ1)) = F (X(t − τ1)) − F (X∗),
E(t − τ2) = (eT

1 (t − τ12), eT
2 (t − τ22), · · · , eT

N (t − τN2))T .

Definition 1 [13]. For given k > 0, the dynamical system (1) is said to be expo-
nentially stable, if there exist constant Z > 0 such that the following inequality

Exponential Stability of the Coupled Neural Networks 407

holds: ‖E(t)‖2 ≤ Z ‖ϕ‖2 e−kt, for all initial conditions eij(s)(i = 1, · · · , N ; j =
1, · · · , ni) of system (5) and any t ≥ T0 (sufficiently large T0 > 0), where

‖ϕ‖ = sup
−τ≤s≤0

√
N∑

i=1

ni∑
j=1

|eij(s)|2.

Lemma 1 [6]. For any x, y ∈ R
n and positive definite matrix Q ∈ R

n×n, the
following matrix inequality holds: 2xT y ≤ xT Qx + yT Q−1y.

Lemma 2 (Schur Complement) [20]. The linear matrix inequality (LMI)[
Q(x) S(x)
ST (x) R(x)

]
> 0, where QT (x) = Q(x), RT (x) = R(x), is equivalent to

R(x) > 0, and Q(x) − S(x)R−1(x)ST (x) > 0.

Lemma 3 [19]. If Q, R are real symmetric matrices, and Q > 0, R ≥ 0, there
exists a positive constant σ, such that the inequality holds: −Q + σR < 0.

3 Exponential Stability Analysis

Theorem 1. Under the Assumption 1, the CNNs (1) is exponentially stable, if
there exist M × M positive definite diagonal matrices P , Q, R, such that the
following linear matrix inequality holds:

Ξ =

⎡

⎢⎢⎢⎢⎣

ψ PA PB PH PK
∗ Q 0 0 0
∗ ∗ R 0 0
∗ ∗ ∗ Q 0
∗ ∗ ∗ ∗ Q

⎤

⎥⎥⎥⎥⎦
> 0, (7)

where ψ = PD + DT P − WQW − WRW − 2Q,
Pi = diag(pi1, pi2, · · · , pini

), P = diag(P1, P2, · · · , PN),
Qi = diag(qi1, qi2, · · · , qini

), Q = diag(Q1, Q2, · · · , QN),
Ri = diag(ri1, ri2, · · · , rini

), R = diag(R1, R2, · · · , RN).

Proof. From Lemmas 2 and 3 and inequality (7), we know that there exists a
positive constant λ, such that

Ξ1 =

⎡

⎢⎢⎢⎢⎣

ψ∗ PA PB PH PK
∗ −Q 0 0 0
∗ ∗ −R 0 0
∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ −Q

⎤

⎥⎥⎥⎥⎦
< 0,

where ψ∗ = −ψ + λP + (eλτ − 1)(Q + WRW).

Consider the Lyapunov functional as

V (t) = V1(t) + V2(t) + V3(t), (8)

408 J. Mai et al.

where V1(t) = eλt
N∑

i=1

eT
i (t)Piei(t), V2(t) =

N∑
i=1

∫ t

t−τi2
eλ(s+τ)eT

i (s)Qiei(s)ds,

V3(t) =
N∑

i=1

∫ t

t−τi1
eλ(s+τ)φT

i (ei(s))Riφi(ei(s))ds.

Calculating the time derivatives of V1(t), V2(t) and V3(t), we have

V̇1(t) = eλt[λET (t)PE(t) − ET (t)(PD + DT P)E(t)] + 2eλtET (t)P [AΦ(E(t))
+BΦ(E(t − τ1)) + HE(t) + KE(t − τ2)], (9)

V̇2(t) ≤ eλ(t+τ)ET (t)QE(t) − eλtET (t − τ2)QE(t − τ2), (10)
V̇3(t) ≤ eλ(t+τ)ΦT (E(t))RΦ(E(t)) − eλtΦT (E(t − τ1))RΦ(E(t − τ1)). (11)

From Lemma 1 and Assumption 1, we obtain

2ET (t)PAΦ(E(t)) ≤ ET (t)PAQ−1AT PE(t) + ΦT (E(t))QΦ(E(t))
≤ ET (t)PAQ−1AT PE(t) + ET (t)WQWE(t),

2ET (t)PBΦ(E(t − τ1)) ≤ ET (t)PBR−1BT PE(t)
+ΦT (E(t − τ1))RΦ(E(t − τ1)),

2ET (t)PKE(t − τ2) ≤ ET (t)PKQ−1KT PE(t) + ET (t − τ2)QE(t − τ2),
2ET (t)PHE(t) ≤ ET (t)PHQ−1HT PE(t) + ET (t)QE(t). (12)

Substituting (9)–(12) into V̇ (t), we have

V̇ (t) ≤ eλt{[λET (t)PE(t) − ET (t)(PD + DT P)E(t)] + ET (t)PAQ−1AT PE(t)
+ET (t)WQWE(t) + ET (t)PBR−1BT PE(t)
+ΦT (E(t − τ1))RΦ(E(t − τ1)) + ET (t)PHQ−1HT PE(t) + ET (t)QE(t)
+ET (t)PKQ−1KT PE(t) + ET (t − τ2)QE(t − τ2)
+eλτET (t)QE(t) − ET (t − τ2)QE(t − τ2)
+eλτET (t)WRWE(t) − ΦT (E(t − τ1))RΦ(E(t − τ1))}

= eλt{ET (t)ΔE(t)}, (13)

where Δ = λP −PD −DT P +WQW + eλτQ+ eλτWRW +Q+PAQ−1AT P +
PBR−1BT P + PHQ−1HT P + PKQ−1KT P .

From Lemma 2, we know that Ξ1 < 0 is equivalent to Δ < 0. Therefore,
V̇ (t) ≤ 0 is negative-definite, and V (t) is decreasing from t=0, and V (t) ≤ V (0).

From the initial conditions (2) of the coupled dynamical system (1), we obtain
the initial conditions of the new dynamical system (5) are eij(s) = ϕij(s) −
x∗

ij(s) ∈ C ([−τ, 0] ,R). It follows from (8) that

V (0) = ET (0)PE(0) +
N∑

i=1

∫ 0

−τi2

eλ(s+τ)eT
i (s)Qiei(s)ds

+
N∑

i=1

∫ 0

−τi1

eλ(s+τ)φT
i (ei(s))Riφi(ei(s))ds, (14)

Exponential Stability of the Coupled Neural Networks 409

and

N∑

i=1

∫ 0

−τi2

eλ(s+τ)eT
i (s)Qiei(s)ds ≤ eλτ

∫ 0

−τ

eλsET (s)QE(s)ds

≤ eλτλmax(Q)
∫ 0

−τ

eλsds · ‖ϕ‖2 =
eλτ − 1

λ
· λmax(Q)‖ϕ‖2, (15)

N∑

i=1

∫ 0

−τi2

eλ(s+τ)φT
i (ei(s))Riφi(ei(s))ds ≤ eλτ

∫ 0

−τ

eλsΦT (E(s))RΦ(E(s))ds

≤ eλτ

∫ 0

−τ

eλsET (s)WRWE(s)ds ≤ eλτ − 1
λ

· λmax(WRW)‖ϕ‖2. (16)

Substituting (15)–(16) into (14), we get

V (0) ≤ {λmax(P) +
eλτ − 1

λ
· [λmax(Q) + λmax(WRW)]} ‖ϕ‖2 . (17)

From eλt · λmin(P) ‖E(t)‖2 ≤ V1(t) ≤ V (t) and V (t) ≤ V (0), we have

eλt · λmin(P) ‖E(t)‖2 ≤ V (0). (18)

Combining (17) with (18), we obtain ‖E(t)‖2 ≤ Z ‖ϕ‖2 e−λt, where Z =
1

λmin(P) · {λmax(P) + eλτ −1
λ · [λmax(Q) + λmax(WRW)]}. That is, the CNNs (1)

is exponentially stable. This completes the proof.

4 Numerical Examples

Example 1. Consider the CNNs (1) that are composed of two isolated node
networks, in which the parameters are given as follows:

N = 2, n1 = 2, n2 = 3, f(xil) = 2 cos(xil) + 1, i = 1, 2, l = 1, ..., ni,

G =
[

0.8 −0.7
−0.1 0.4

]
, D1 =

[
35 0
0 36

]
, A1 =

[
1 −1
5 −4

]
, B1 =

[−3 1
4 5

]
,

D2 =

⎡

⎣
33 0 0
0 21 0
0 0 34

⎤

⎦ , A2 =

⎡

⎣
−3 1 4
1 1 −1

−2 1 1

⎤

⎦ , B2 =

⎡

⎣
−5 −5 4
1 2 4
2 −4 3

⎤

⎦ ,

C11 =
[−5 −1

1 −2

]
, C12 =

[
4 −2 −4

−2 −4 2

]
, Γ11 =

[−1 −2
−1 2

]
,

Γ12 =
[

3 −5 −5
−1 −3 1

]
, C21 =

⎡

⎣
1 4

−5 −2
2 4

⎤

⎦ , C22 =

⎡

⎣
−4 2 1
3 −5 4

−4 4 4

⎤

⎦ ,

410 J. Mai et al.

Γ21 =

⎡

⎣
3 −3
2 1

−3 5

⎤

⎦ , Γ22 =

⎡

⎣
−4 3 −3
−5 2 3
−2 4 3

⎤

⎦ , α1 = 0.1, α2 = 0.4,

and β1 = 0.9, β2 = 0.6, τ11 = 0.5, τ12 = 1, τ21 = 0.8, τ22 = 0.4.

It is easy to derive that wil = 2, and W = 2 ∗ I5, for i = 1, 2; l = 1, 2, · · · , ni.
Solving the linear matrix inequalities Ξ > 0 in Theorem 1, we obtain the follow-
ing feasible solutions:

P = diag (2.5743, 2.6871, 3.0825, 3.6538, 5.3390),
Q = diag (12.7886, 13.4662, 15.2123, 17.0441, 17.4001),
R = diag (11.6732, 13.6302, 17.5218, 19.9204, 24.7094).
According to Theorem1, the CNNs (1) can achieve the exponential stability.

Given the random initial condition, the simulation results are plotted in Fig. 1,
in which all state trajectories converge to the equilibrium point.

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

0

5

10

t

x 1
(t
)

x
11
(t)

x
12
(t)

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

0

5

10

t

x 2
(t
)

x
21
(t)

x
22
(t)

x
23
(t)

Fig. 1. The state trajectories of coupled neural networks

5 Conclusions

In this paper, we study the exponential stability of the coupled neural networks.
The state dimensions in each isolated network can be different, so the derived
results will have wider applicability. The criteria of exponential stability are
derived on basis of the linear matrix inequality (LMI) and Lyapunov functional.
The effectiveness of the proposed theoretical results has been demonstrated by
a numerical simulation example.

Acknowledgments. This work was partly supported by grants from the National
Natural Science Foundation of China (No.61572233, No.11471083), and the Funda-
mental Research Funds for the Central Universities (No. 21612443).

Exponential Stability of the Coupled Neural Networks 411

References

1. Zhang, J., Gao, Y.B.: Synchronization of coupled neural networks with time-
varying delay. Neurocomputing 219, 154–162 (2017)

2. Tan, M.C.: Stabilization of coupled time-delay neural networks with nodes of dif-
ferent dimensions. Neural Process. Lett. 43(1), 255–268 (2016)

3. Liu, X.Y., Cao, J.D., Yu, W.W.: Nonsmooth finite-time synchronization of switched
coupled neural networks. IEEE Trans. Cybern. 46(10), 2360–2371 (2016)

4. Wang, J.L., Wu, H.N., Huang, T.W.: Pinning control for synchronization of cou-
pled reaction-diffusion neural networks with directed topologies. IEEE Trans. Syst.
Man. Cybern. Syst. 46(8), 1109–1120 (2016)

5. Mahmoud, M.S., Selim, S.Z., Shi, P.: Global exponential stability criteria for neural
networks with probabilistic delays. IET Control Theory Appl. 4(11), 2405–2415
(2010)

6. Tan, M.C., Zhang, Y.N.: New sufficient conditions for global asymptotic stability of
Cohen-Grossberg neural networks with time-varying delays. Nonlinear Anal. RWA
10, 2139–2145 (2009)

7. Wang, Z.S., Zhang, H.G.: Synchronization stability in complex interconnected
neural networks with nonsymmetric coupling. Neurocomputing 108, 84–92 (2013)

8. Song, Q.K.: Synchronization analysis in an array of asymmetric neural networks
with time-varying delays and nonlinear coupling. Appl. Math. Comput. 216(5),
1605–1613 (2010)

9. Wang, G., Yin, Q., Shen, Y.: Exponential synchronization of coupled fuzzy neural
networks with disturbances and mixed time-delays. Neurocomputing 106, 77–85
(2013)

10. Lu, J.Q., Ho, D.W.C., Cao, J.D., Kurths, J.: Exponential synchronization of lin-
early coupled neural networks with impulsive disturbances. IEEE Trans. Neural
Netw. 22(2), 329–335 (2011)

11. Zhang, H.G., Gong, D.W., Wang, Z.S., Ma, D.Z.: Synchronization criteria for an
array of neutral-type neural networks with hybrid coupling: a novel analysis app-
roach. Neural Process. Lett. 35(1), 29–45 (2012)

12. Cao, J.D., Chen, G.R., Li, P.: Global synchronization in an array of delayed neural
networks with hybrid coupling. IEEE Trans. Syst. Man. Cybern. B 38(2), 488–498
(2008)

13. Zhang, G.B., Wang, T., Li, T., Fei, S.M.: Exponential synchronization for delayed
chaotic neural networks with nonlinear hybrid coupling. Neurocomputing 85, 53–
61 (2012)

14. Chen, G.R., Zhou, J., Liu, Z.R.: Global synchronization of coupled delayed neural
networks and applications to chaotic CNN models. Int. J. Bifurcat. Chaos 14(7),
2229–2240 (2004)

15. Wang, Y.H., Fan, Y.Q., Wang, Q.Y., Zhang, Y.: Stabilization and synchronization
of complex dynamical networks with different dynamics of nodes via decentralized
controllers. IEEE Trans. Circ. Syst. I 59(8), 1786–1795 (2012)

16. Fan, Y.Q., Wang, Y.H., Zhang, Y., Wang, Q.R.: The synchronization of complex
dynamical networks with similar nodes and coupling time-delay. Appl. Math. Com-
put. 219(12), 6719–6728 (2013)

17. Tan, M.C., Tian, W.X.: Finite-time stabilization and synchronization of complex
dynamical networks with nonidentical nodes of different dimensions. Nonlinear
Dyn. 79(1), 731–741 (2015)

412 J. Mai et al.

18. Hua, C.C., Wang, Q.G., Guan, X.P.: Exponential stabilization controller design
for interconnected time delay systems. Automatica 44(10), 2600–2606 (2008)

19. Tan, M.C., Zhang, Y., Su, W.L., Zhang, Y.N.: Exponential stability of neural
networks with variable delays. Int. J. Bifurcat. Chaos 20(5), 1541–1549 (2010)

20. Thuan, M.V., Hien, L.V., Phat, V.N.: Exponential stabilization of non-autonomous
delayed neural networks via Riccati equations. Appl. Math. Comput. 246, 533–545
(2014)

Critical Echo State Networks that Anticipate
Input Using Morphable Transfer Functions

Norbert Michael Mayer(B)

Department of Electrical Engineering and AIM-HI,
National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan

mikemayer@ccu.edu.tw

Abstract. The paper investigates a new type of truly critical echo state
networks where individual transfer functions for every neuron can be
modified to anticipate the expected next input. Deviations from expected
input are only forgotten slowly in power law fashion. The paper outlines
the theory, numerically analyzes a one neuron model network and finally
discusses technical and also biological implications of this type of app-
roach.

1 Introduction

Recurrent neural networks (RNNs) with input are examples for non-autonomous
dynamical systems. One fundamental property is their dependence on their ini-
tial states (i.e. the initial settings of the recurrent layer neurons) with regard to
one given input sequence. On one hand and for obvious reasons, networks that
sensitively and for all future states depend on the setting of the initial state, will
not work very well. On the other hand, if the network forgets too fast information
about the past, it essentially works in the same way as a feed-forward network,
and if that is good enough for the given task it is much easier to replace the
recurrent network with the feed-forward solution. In the field of reservoir com-
puting [1,2] and particularly in the case of echo state networks (ESNs) [3–5]
much efforts have been undertaken in order to quantify to which extent an RNN
is sensitive to the initial state. As a result several methods exist to detect the
fine line between network parameters that – in combination with a given input
sequence – finally result in a forgetting of the past within the network versus such
parameter values for which essentially differences in the initial settings prevail in
all the future. More interestingly, heuristics show that parameter settings that
are near the border line, however, on the side of the forgetting type of networks,
show the best performance for certain relevant tasks [6–8]. These networks are
called near critical networks. An important notice from experimental biology is
that also the statistics of dynamics of neurons in brain slices hint towards a near
critical or even critical tuning of biological neurons in the brain [9]. Practical
state of the art near critical networks usually require a certain margin towards
the critical state because by design unexpected input deviations may push the
state of the network over the critical point, in which case the performance dete-
riorates. In contrast to near critical networks, a relatively new study [10,11]
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 413–420, 2017.
DOI: 10.1007/978-3-319-59072-1 49

414 N.M. Mayer

brought up the idea to train the synaptic weights of the recurrent layer in the
way that certain points (so-called epi-critical points, ECPs) within the transfer
function are hit. If the network receives unexpected input, these special points
are missed and result in an under-critical behavior. Given an expected input, the
resulting network is tuned exactly to the critical point; other network features
are power law forgetting of an unexpected input if it is succeeded by a sequence
of expected input. Although that approach lines up a complete and new concept
of designing critical ESNs, for practical purposes, there are still some problems.
Most important, the proposed learning algorithm does not guarantee for a good
performance of the network for many tasks. Different from that approach, the
present work does not apply learning to the input weights and the recurrent
weights. Rather, it proposes adaptive transfer functions for each neuron where
the ECPs are always shifted towards the next expected transition point.

2 Echo State Networks and Criticality

The system is intended to resemble the dynamics of a biological recurrent neural
network. We follow here the notation of Jäger:

xlin,t = Wxt−1 + winut (1)
xt = θ (xlin,t) = f(xt−1 ,ut), (2)

where ut ∈ R
n are items that form a left infinite time series that in total are

called ū∞ Supervised learning is done by linear regression using xt as input
[3], xt ∈ R

k represents activity in the hidden layer. W and win are matrices
that represent (constant) synaptic weights. In principal, the complete time series
xt is determined by the tuple of the initial state x0 and a time series ū∞.
Comparing any two time series yt = f(yt−1,ut) and xt = f(xt−1,ut), such that
y0 �= x0, one can quantify how the difference develops over time. Important for
the definition of echo state networks is the concept of state contraction that is if

lim
t→∞ ||yt − xt||2 = 0, (3)

i.e. the Euclidean distance converges to zero. In combination with the assumption
that the processing of the neural network is acting in a time invariant manner, the
concept has been named uniformly state contracting system [3]. Uniformly state
contracting networks are echo state networks and thus capable to learn by linear
regression. There has been some confusion about the definition of uniformly state
contracting networks. Some researches define it to describe the dynamics of a
network with regard to a specific input sequence (cf. [12]). Within this paper
networks are called uniformly state contracting only if for a given network the
relation of Eq. 3 holds for any input. Some calculus shows that a network with
the dynamics of Eq. 2 is always an ESN if the recurrent connectivity matrix is
orthogonal (W ∈ O(k)) and the derivative of the transfer function is in the
range 0 ≤ θ̇(.) < 1. Single inflection points where θ̇(.) = 1 may be permissible
[3,11]. These points are important in the following considerations, and are called

Critical Echo State Networks that Anticipate Input 415

epi-critical points (ECPs). In analogy to calculating the Lyapunov exponent in
autonomous dynamic systems, one can define also a Lyapunov exponent for
ESNs with regard to a certain input sequence ū∞ [11,13]

Λū∞ = lim
|y0−x0|→0

lim
t→∞

1
t

log
||yt − xt||2
||y0 − x0||2 . (4)

If the Lyapunov exponent for all ū∞ is negative, the network is shown to be
uniformly state contracting and thus is an ESN. If the Lyapunov exponent for
any input time series is positive the network is not an ESN. In addition, it is
worthwhile to introduce the following definition: A network that for some input
sequences has a Lyapunov exponent of zero but for which Eq. 3 still holds for
any input sequence shall be called a critical ESN. According to this definition,
an ESN is critical with respect to a particular input sequence. Technically, this
can be achieved by training the network towards a setting where for some input
sequences θ̇(xlin,t) = 1. A deeper insight into the theory behind that formula
can be found in [10,11]. That is the aim of the training is to direct the input to
those single inflection points of the transfer function.

3 Adaptive Transfer Functions

Instead of implementing plasticity on W and win, the proposal for the current
work is to implement the plasticity on the shape of the transfer function θ.
Assuming that each neuron has an intrinsic mechanism to predict several possible
values of xlin,t (that is one item in the vector xlin,t) the prediction happens before
the input ut is perceptible to the neuron (compare [14,15] for another scenario
for self-prediction in ESNs). The neuron does not need to restrict itself to one
prediction, instead a list of those values are possible. So, the ECPs Πi should be
shifted towards the predicted values of the linear response. The transfer function
can thus be defined as

θ(xlin) = tanh(xlin − Πi) + tanh(Πi), (5)

for all values xlin near any of the Πi. Else, the transfer function is

θ(xlin) = tanh(xlin). (6)

Figure 1 depicts two possible resulting transfer functions. The transfer function
is designed in the way that θ̇(Πi) = 1.

4 Synthetic One Neuron Reservoirs

In order to illustrate the proposed methodology, we designed a reservoir with
one neuron that expects an alternating input of ut = 1s and −1s. The following
update equation can then be used

xt = θ (−αxt−1 + (1 − α tanh(1))ut) , (7)

416 N.M. Mayer

Fig. 1. The plots show examples of two versions of a transfer function x = θ(xlin)
according to Eqs. 5–6 as blue curve where the ECPs can be organized in an adaptive
way. The green curve depicts the underlying tanh function on which all ECPs are
located. Green dots indicate ECPs for this particular example. The version at the right
side is the version that is used in Sect. 3. Here areas of the transfer function where
θ̇ = 0 have been avoided, which leads to better results in the following graphs. Since
the derivative of tanh(0) is 1, the point (0, 0) is marked as an additional ECP in both
plots. (Color figure online)

where the factor α takes the role of a W ∈ R1×1 matrix and the factor (1 −
α tanh(1)) takes the role of win. Note that if α = 1 one may call W = O(1) a
one dimensional orthogonal matrix. For any α and in case the network receives
the expected alternating input the linear response converges to xlin = ±1. So,
two ECPs may be used Π0 = −1 and Π1=1. With regard to the resulting
transfer function (that includes the ECPs) one can now measure the Lyapunov
exponent according to Eq. 4 and for differing values of α. Figure 2 (left) depicts
the results. One can see that although independent from α for the predicted
input, the dynamics are always alternating 1s and −1s; this dynamic is only
stable for the range of α between 0 and 1. In this range the network is an
echo state network that is under-critical if α < 1. Further numerical tests and
also theoretical considerations show that at the point α = 1 the network is
still an ESN; however, it is critical. For values of α > 1, the network is not
an ESN anymore. The purpose of this work is to propose ESNs of α = 1 as
optimal critical ESNs. For comparison one may consider a one neuron version of
a traditional near edge of chaos approach which basically relates to the common
experience that the given theoretical limits for the ESNs can be significantly
overtuned for many practical time series. Those overtuned ESNs in many cases
show a much better performance than those that actually obey Jäger initial
limit. So recently researchers came up with theoretical insights with regard to
ESNs that are subject to a network and a particular input statistic [12] which
fundamentally relate a network and an input statistic to a limit. One might
assume that those approaches show similar properties as the one that has been
presented above. However, for a good reason those approaches all are coined as
‘near edge of chaos’ approaches. In order to illustrate the problems that arise
from those approaches one may consider what happens if those overtuned ESNs

Critical Echo State Networks that Anticipate Input 417

Fig. 2. Left: Depicted is the Lyapunov exponent for the example system of Eq. 7 for
different values of α. At α = 1 the Lyapunov exponent crosses zero if the input sequence
is the expected alternating sequence of 1s and −1s. Right: Lyapunov exponents for two
one neuron networks: In both cases the amplitude of the alternating input ut is varied
in a series of measurements of the Lyapunov exponent. In the case of the network
according to Eq. 7 (blue) one can see that the Lyapunov exponent never becomes
larger than 0. In the case of Eq. 8 (green) positive Lyapunov exponents occur if the
amplitude of the input is larger than the critical value. (Color figure online)

are set exactly to the critical point. Here, just for the general understanding one
may consider again a one neuron network and a tanh as a transfer function, so

xt = tanh(−bxt−1 + ut). (8)

Note that the ESC limit as outlined above requires that the recurrent connectiv-
ity should be b < 1. From the previous section one can now take the input time
series ut = (−1)tπ/4. Slightly tedious but basically simple calculus results in a
critical value of b ≈ 2.344 for the input time series, where xt ≈ (−1)t × 0.757.
For the following results, the value of b is always set to the critical value. In this
situation one can test for convergence of two slightly different initial conditions
and one can get a power law decay of the difference. However, setting up the
amplitude of the input just a tiny bit higher is going to result in two diverging
time series xt and yt. In other words, if the conditions of the ESN are chosen to
be exactly at the critical point it is possible that a not trained input sequence
very near to the trained input sequence can turn the ESN into a state where
Jäger’s echo state condition is not fulfilled anymore, i.e. the Lyapunov exponent
is positive for the given network in combination with these input sequences. In
order to illustrate this difference numerical experiments (cf. Fig. 2 right side)
have been done where both the networks according to Eq. 7 and Eq. 8 receive
input with a slightly higher or lower input amplitude, i.e. an input sequence
ũt = γ · ut is perceived, where γ is a constant factor and ut in both cases is
the expected input that produces the critical behavior. Here, the amplitude γ is
used as an example as an arbitrary continuous parameter that defines properties
of the input sequences. If γ is equal to one, the resulting input sequences for
both the examples of Eqs. 7 and 8 result in a critical dynamics with a Lyapunov
exponent of 1. The difference between the two networks is that in the case of
Eq. 8 positive Lyapunov are possible for γ-factors larger than one whereas for

418 N.M. Mayer

any input sequence of the proposed network the Lyapunov coefficient is smaller
than or equal to one. This means that the network of Eq. 8 is not an ESN accord-
ing to the definition given in Sect. 2, while the proposed network is an ESN if
the convergence condition of Eq. 3 holds. Analytic calculus [11] shows that in
the critical case the nature of the transfer function determines if a network is
an ESN or not. Figure 3 depicts the convergence process of two exemplary start
values at the critical state and the one neuron network of Eq. 7 and compares
the results of the expected alternating input (1s and −1s) with constant input
of the same amplitude and an iid. random set of 1s and −1s. In the first case,
double log plots reveal that the vanishing follows a power law, i.e. forgetting is
a slow process. Thus,

d(xt, yt) ∝∼ t−ca , (9)

with a constant ca. The other type of input statistics result in faster forgetting.
Here, every input value may be seen as an event that demands memory capacity.
The result is effectively an exponential forgetting, i.e.

Fig. 3. The graphs depict different versions of the same data. Each red curve is the
forgetting curve of the initial difference between 2 networks if the input sequence is
alternating between 1s and −1s. The orange curves depict the forgetting curve for
constant input with amplitude 1. The other curves show several iid. random sequences
of 1s and −1s with equal probability. The left plot is a log-log plot with a focus on the
alternating and constant inputs. The red curve converges towards a straight line, which
indicates an underlying power law of this data. The curve resulting from constant input
shows large values even at later time steps. However, the convergence appears to be
faster than a power law, hence the curve bends toward the bottom. Finally random
input shows the fastest convergence. The middle and right side graphs clearly indicate
that all except for the alternating input show (roughly) an exponential decay. Both the
middle and the right side plot show a scale down to 10−15, which is about the limit
of precision of double precision floating point numbers. Once a difference between two
initial states reaches zero, it is beyond the logarithmic scale and not plotted anymore.
So, the curve ends at that iteration. (Color figure online)

Critical Echo State Networks that Anticipate Input 419

d(xt, yt) ∝∼ cb
t, (10)

with a constant cb. This is the same result that one would also expect for all mem-
ory decay in under-critical networks. Exponential decay appears as a straight line
in semi-logarithmic plots. The single neuron network simulations have been
done by using double precision floating point variables, i.e. in 64 bits. Since the
experimental setting in Fig. 3 organizes the initial difference between the 2 net-
works in an identical way as the randomness of the following inputs (that are
identical to both networks) one would expect that the differences vanish over the
time of 64 iterations. So one expects that the difference between the 2 network
vanishes roughly in about 64 iterations. Considering the result of Fig. 3, one can
see that indeed the difference vanishes in about 64 to 200 iterations. The fact
that the forgetting process is slower than 64 iterations may indicate that several
variant input histories can result in the same identical reservoir state.

5 Discussion

ESNs can be tuned to the critical value on the spot. At the same time it can be
guaranteed that no input can push the network over the permissible limit. The set-
ting of the ECPs leads to new insights into the network dynamics and relate those
to information theory. If the next input is predictable, the next state of the network
is going to hit one ECP exactly. One may interpret the resulting network in the way
that predictable input is always directed to the ECPs and in this way prevented
from consuming too much space (i.e. entropy) in the reservoir. Instead, devia-
tions from predicted input materialize in the reservoir as distances to the ECPs.
These deviations prevail than in a power-law fashion. This is true for both the
present approach and the approach proposed in [10]. Different from [10], the app-
roach here focuses on an adaptive transfer function. Overall there is very limited
literature about adaptive transfer functions in neural networks (e.g. [16]). With
regard to reservoir computing investigations into adaptive transfer functions may
be promising. In the present approach, one target of the investigation was to find a
way of training where the position of the transition point θ(xlin,t) was unchanged,
only the environment around it was transformed in the way that θ̇(xlin,t) = 1.
This method in some sense changes the topology of the reservoir: By design, in
every transition reservoirs lose information about previous inputs, however this
information loss is not homogeneous and independent from the input time series.
Rather it varies depending on features of the network, on the current input value
and other parameters. Using the method of ECPs, the reservoir transforms then
into a magnifying glass around those predicted states, which allows the network
to look deep into the past if the incidence of aberrations from the predicted values
are rare. So, aberrations from the predicted states can leave traces in the reservoir
for very long times – if they are rare. In this sense the input-driven network turns
into an event-driven network, i.e. a system that reacts strongly to an unpre-
dicted event in contrast to the everyday and usual input. This can thought of as a
lossy memory compression of a sliding window with an infinite but more and more
lossy reproducibility of the far past.

420 N.M. Mayer

Acknowledgements. This manuscript has been posted at arxiv.org. The authors
thanks MOST of Taiwan for financial support and O. Obst for all his help.

References

1. Lukoševičius, M., Jäger, H.: Reservoir computing approaches to recurrent neural
network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

2. Schrauwen, B., Verstraeten, D., Van Campenhout, J.: An overview of reservoir
computing: theory, applications and implementations. In: Proceedings of the 15th
European Symposium on Artificial Neural Networks. Citeseer (2007)

3. Jäger, H.: The “echo state” approach to analysing and training recurrent neural
networks - with an erratum note. In: GMD Report 148, GMD German National
Research Insitute for Computer Science (2010). http://www.gmd.de/People/
Herbert.Jaeger/Publications.html

4. Jäger, H.: Adaptive nonlinear system identification with echo state networks. In:
Proceedings of NIPS 2002, AA14 (2003)

5. Jäger, H., Maass, W., Principe, J.: Special issue on echo state networks and liquid
state machines. Neural Netw. 20(3), 287–289 (2007)

6. Natschläger, T., Bertschinger, N., Legenstein, R.: At the edge of chaos: real-
time computations and self-organized criticality in recurrent neural networks. In:
Advances in Neural Information Processing Systems, vol. 17 (2005)

7. Hajnal, M.A., Lörincz, A.: Critical echo state networks. In: Kollias, S.D., Stafy-
lopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 658–667.
Springer, Heidelberg (2006). doi:10.1007/11840817 69

8. Boedecker, J., Obst, O., Lizier, J., Mayer, N., Asada, M.: Information processing
in echo state networks at the edge of chaos. Theory Biosci. 131, 205–213 (2012)

9. Beggs, J., Plenz, D.: Neuronal avalanches in neocortical curcuits. J. Neurosci.
24(22), 5216–5229 (2004)

10. Mayer, N.M.: Adaptive critical reservoirs with power law forgetting of unexpected
input events. Neural Comput. 27, 1102–1119 (2015)

11. Mayer, N.M.: Critical echo state networks that anticipate input using adaptive
transfer functions (2016). http://arxiv.org/abs/1606.03674

12. Manjunath, G., Jaeger, H.: Echo state property linked to an input: exploring a
fundamental characteristic of recurrent neural networks. Neural Comput. 25(3),
671–696 (2013)

13. Wainrib, G., Galtier, M.N.: A local echo state property through the largest lya-
punov exponent. Neural Netw. 76, 39–45 (2016)

14. Mayer, N.M., Browne, M.: Self-prediction in echo state networks. In: Proceedings of
the First International Workshop on Biological Inspired Approaches to Advanced
Information Technology (BioAdIt2004), Lausanne (2004)

15. Mayer, N.M., Asada, M.: Is self-prediction a useful paradigm for echo state net-
works that are driven by robotic sensory input? In: 20th Neural Information
Processing Systems Conference (NIPS 2006): Workshop on Echo State Networks
and Liquid State Machines, H. Jaeger, W. Maass, Jose C. Principe (Organisers),
December 2006

16. Wang, L., Chen, X., Li, S., Cai, X.: General adaptive transfer functions design
for volume rendering by using neural networks. In: King, I., Wang, J., Chan, L.-
W., Wang, D.L. (eds.) ICONIP 2006. LNCS, vol. 4233, pp. 661–670. Springer,
Heidelberg (2006). doi:10.1007/11893257 74

https://arxiv.org/
http://www.gmd.de/People/Herbert.Jaeger/Publications.html
http://www.gmd.de/People/Herbert.Jaeger/Publications.html
http://dx.doi.org/10.1007/11840817_69
http://arxiv.org/abs/1606.03674
http://dx.doi.org/10.1007/11893257_74

INFERNO: A Novel Architecture for Generating
Long Neuronal Sequences with Spikes

Alex Pitti(B), Philippe Gaussier, and Mathias Quoy

Laboratoire ETIS, CNRS UMR 8051, University of Cergy-Pontoise,
ENSEA, Cergy, France

alexandre.pitti@u-cergy.fr

http://www.etis.ensea.fr

Abstract. Human working memory is capable to generate dynamically
robust and flexible neuronal sequences for action planning, problem solv-
ing and decision making. However, current neurocomputational models
of working memory find hard to achieve these capabilities since intrinsic
noise is difficult to stabilize over time and destroys global synchrony. As
part of the principle of free-energy minimization proposed by Karl Fris-
ton, we propose a novel neural architecture to optimize the free-energy
inherent to spiking recurrent neural networks to regulate their activ-
ity. We show for the first time that it is possible to stabilize iteratively
the long-range control of a recurrent spiking neurons network over long
sequences. We identify our architecture as the working memory com-
posed by the Basal Ganglia and the Intra-Parietal Lobe for action selec-
tion and we make some comparisons with other networks such as deep
neural networks and neural Turing machines. We name our architecture
INFERNO for Iterative Free-Energy Optimization for Recurrent Neural
Network. abstract environment.

Keywords: Free-energy · Predictive coding · Working memory ·
Neuronal sequences · Spiking neurons · STDP · Basal ganglia · Cortico-
basal loops · Habit learning

1 Introduction

Hierarchical plans and tree structures are a hallmark for human language and
cognition [2]. But how the brain does to construct and retrieve them dynami-
cally? For instance, the spontaneous activity within the network rapidly perturbs
the neural dynamics and it is rather difficult then to maintain any stability for
controlling long-range synchrony.

Making an analogy with the butterfly effect in chaos theory, small perturba-
tions can destroy the dynamics even after few iterations. At reverse, exploiting
this intrinsic noise can serve to make to converge neural dynamics to attractors,
as a chaotic itinerancy [12]. In spiking neural networks, we propose that the tiny
control of the neurons’ sub-threshold activity (small events) can drive at another
order of magnitude the generation of spikes (big events).
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 421–428, 2017.
DOI: 10.1007/978-3-319-59072-1 50

422 A. Pitti et al.

As a novel mechanism, we propose to exploit this intrinsic noise to regu-
late the neural activity and the neurons’ firing; an idea in line with the free-
energy minimization principle proposed by Friston [3]. The minimization of the
free energy means to predict for one particular policy its expected state and to
optimize it over time in order to minimize future errors [4]. Our neural model
is based on this principle of Iterative Free-Energy Optimization for Recurrent
Neural Networks, and we named it INFERNO [9], see Fig. 1.

Moreover, this architecture is supported by several proposals and observa-
tions that consider the functional organization between the cortex with the sub-
cortical regions (the basal ganglia); c.f. [1,6–8,10,11].

Fig. 1. Neural architecture INFERNO for iterative free-energy optimization of recur-
rent neural networks. This neural architecture is based on the coupled system formed
by an associative memory (AM) and a recurrent neural network (RNN). INFERNO
generates, selects and stores a set of rules in AM to assemble dynamically a neuronal
sequence from a reservoir of dynamics in RNN toward a desired goal and based on
free-energy minimization. It has some similarities with a turing machine that a table
of instructions, write and read heads to generate a code from an infinite tape. (Color
figure online)

2 Methods

We use the Rank-Order Coding (ROC) algorithm to model spiking neurons and
the learning mechanism of Spike Timing-Dependent Plasticity [13]. The neurons’
output y is computed by multiplying the rank order of the sensory signal vector
x, f(x) = 1

rank(x) , by the synaptic weights w so that y =
∑

wf(x). The function
rank(x) corresponds to the argsort function in Matlab and the synaptic weights
of the neurons Δw are updated at each iteration.

INFERNO: Iterative Free Energy Optimization in RNN 423

The first neural architecture consists of one recurrent neural network of spik-
ing neurons RNN arranged as in Fig. 1(a) in red. The second neural network
consists on one associate neural network ANN as in Fig. 1(a) in blue. The out-
put vector y of RNN is compared to one desired goal activity y∗ to compute
the error prediction e = y∗ − y. Based on the variational error Δe, a stochastic
descent gradient is used to generate the input vector x that will minimize error
e on the long-term. The ANN learns to reconstruct the RNN input vector x
based on the error prediction e on the output vector y so that x =

∑
vf(y).

The coupled system composed of ANN and RNN attempts to minimize error
dynamically. The former learns to control the latter system to generate a tem-
poral sequence directly based on the feeded back activity. We describe below the
stochastic search algorithm (Table 1).

Table 1. Free-energy optimization based on stochastic gradient descent to minimize
prediction error.

3 Results

We propose at first to explain how ANN controls the neural dynamics of RNN
with respect to one goal vector and error prediction relative to it. We plot in
Fig. 2 the dynamics of RNN after several iteration of error descent gradient and
explorative search till discovery of the solution (a). After few iterations, ANN
finds the input dynamics that makes to converge RNN (b). That is, the coupled
system self-organizes itself to minimize error toward a goal dynamically (c–d).

We propose to use the ANN-RNN architecture for controlling one 3 DOF arm
motion toward goals that we give on the fly, see Fig. 3. Only three RNN neurons

424 A. Pitti et al.

Fig. 2. Explored dynamics toward a goal. (a) ANN makes to converge the RNN neurons
(in blue) to some desired dynamics (in black) thanks to prediction error. (b) the ANN
prediction error diminishes to reach a local minimal value during the first 20 iterations.
(c–d) dynamics of the ANN to control the dynamics of the RNN. (Color figure online)

control the normalized angles of the robot. We emphasize also hat ANN has no
information about it, just about distance error between the location of the end
effector and the location of the target. We change dynamically the target place
and the arm is searching for a new configuration that minimizes error. ANN
dynamics are changing everytime the target is placed at a new location (middle,
upper chart), as do the three neurons of RNN, which converge to angles that
reach the goal (middle, lower chart). Over time, each ANN neuron learns the
dynamics that control the RNN, see Fig. 3. This neural architecture is capable
to generate neuronal sequences based on habit learning once ANN has learned
to control RNN (exploitation), before this happens, ANN searches to minimize
error in a supervised manner toward a desired goal (exploration).

We can let the two coupled networks to self-organize their dynamics so that
ANN triggers one specific neural trajectory in RNN, which triggers back one
ANN neuron, the most problable one from the generated neural trajectory, see
Fig. 4. For each neuron in ANN, ANN triggers one specific rule to direct RNN
dynamics. The most probable ANN rule is then selected depending on the y
vector found in RNN. In this way, the two systems control themselves to generate
serial neuronal sequence several for hundreds of iterations without error. We
emphasize that these dynamics are not completely learned but generated off-
the-shelf.

INFERNO: Iterative Free Energy Optimization in RNN 425

Fig. 3. RNN arm control based on predictive coding. On the left, RNN controls the
three joint angles of one planar robot. ANN controls RNN based on error prediction
toward targets. In the middle, ANN and RNN dynamics when switching dynamically
to the euclidean distance to the goal location furnishes a reward to the motor neurons.
On the right, ANN controls the neural activity of RNN over time.

Fig. 4. ANN-RNN long-range neuronal sequences. Each neuron of ANN can control the
neural dynamics of RNN for a relative long period (20 iterations in our case), which in
return selects the correct ANN neuron to pursue the sequence. By doing so, the coupled
system can produce the serial ordering of chunks toward multistep computation. The
same sequence is generated within the dashed lines.

426 A. Pitti et al.

In an experience of serial ordering computation, ANN learns simple connect-
ing rules to trigger the RNN dynamics. During this task, eventhough error and
variability occur they are minimized dynamically to retrieve the goal vector. The
three trajectories of spiking neurons present similar dynamics, mixing variability
and robustness. The coupled system ANN-RNN formed by INFERNO presents
some of the properties of a working memory to be robust and flexible at the
same time. To some point, INFERNO appears to overcome the exploration and
exploitation dilemna of machine learning algorithms thanks to predictive coding
(Fig. 5).

Fig. 5. Self-organized serial ordering sequence. Three examples of dynamic sequence
ordering show that self-organization is not rigid and that variability occurs during time.
The error minimization serves to rebind the two systems from each other.

INFERNO: Iterative Free Energy Optimization in RNN 427

Fig. 6. Working memory for tree-like sequences. Unwrapped in time, INFERNO gener-
ates tree-like trajectories as a A* algorithm and as a virtually deep feed-forward neural
network. RNN has neuronal primitives that ANN can selects, amplifies. This is similar
to cortico-basal loops, having the basal ganglia to control the dynamics of the cortical
maps and learns context-dependent rules depending on prefrontal cortex goal state.

4 Discussion

We propose a framework based on a coupled recurrent spiking neuronal system
that achieves to perform long sequential planning by controlling the amplitude
level of the spiking neurons through reinforcement signals. The control done is
weak so that the propagated reinforced signals let the working memory plastic
enough to converge to the desired internal states from various trajectories. Used
in a robotic simulation, the neural dynamics can drive a three d.o.f. arm to reach
online different locations.

The neural control is done by controlling tiny variations injected into the
recurrent network that can iteratively change its dynamics to make it to converge
to attractors. To this respect, our framework embodies some aspects of the free-
energy optimization principle proposed by [4].

INFERNO generates, selects and stores a set of rules to assemble dynamically
a neuronal sequence from a reservoir of dynamics toward a desired goal and based
on free-energy minimization.

While the RNN working memory provides, stores, and manipulates represen-
tations; the ANN maps current states to courses of action. ANN can serve for
selection of complex, sequenced actions at RNN. Thus, it can be interpreted as
a repertoire of if-then rules or a set of stimulus-response associations to select
appropriate cortical chains. To some points, we think it has some similarities
with a Turing machine with a table of instructions, Write and Read heads to
generate a code from an infinite tape [5,14]. Unwrapped in time, INFERNO
generates tree-like trajectories as a A* algorithm and as a virtually deep feed-
forward neural network, see Fig. 6. With INFERNO, we make a parallel with
the cortico-basal system to construct a working memory. Iteratively, the basal
ganglia forms ‘habits’ or rules that select cortical primitives in order to generate
neuronal sequences based on a desired goal provided by the prefrontal cortex.
The reinforcement signals given by the dopaminergic neuromodulator is similar
to error prediction optimization or to free-energy minimization.

428 A. Pitti et al.

Acknowledgments. This work was partially funded by EQUIPEX-ROBOTEX
(CNRS), chaire dexcellence CNRS-UCP and project Labex MME-DII (ANR11-LBX-
0023-01).

References

1. Benedek, M., Jauk, E., Beaty, R., Fink, A., Koschutnig, K., Neubauer, A.:
Brain mechanisms associated with internally directed attention and self-generated
though. Sci. Rep. 6, 22959 (2016)

2. Dehaene, S., Meyniel, F., Wacongne, C., Wang, L., Pallier, C.: The neural rep-
resentation of sequences: from transition probabilities to algebraic patterns and
linguistic trees. Neuron 88, 2–19 (2015)

3. Friston, K.: A theory of cortical responses. Philos. Trans. R. Soc. Lond. Ser. B
Biol. Sci. 360(1456), 815–836 (2005)

4. Friston, K., Kilner, J.: A free energy principle for the brain. J. Physiol. Paris 100,
70–87 (2006)

5. Graves, A.: Hybrid computing using a neural network with dynamic external mem-
ory. Nature 538, 471–476 (2016)

6. Guthrie, M., Leblois, A., Garenne, A., Boraud, T.: Interaction between cognitive
and motor cortico-basal ganglia loops during decision making: a computational
study. J. Neurophysiol. 109, 3025–3040 (2013)

7. Koechlin, E.: Prefrontal executive function and adaptive behavior in complex envi-
ronments. Curr. Opin. Neurobiol. 37, 1–6 (2016)

8. Miller, E.: The “working” of working memory. Dialog. Clin. Neurosci. 15(4), 411–
418 (2015)

9. Pitti, A., Gaussier, P., Quoy, M.: INFERNO: iterative free-energy optimization for
recurrent neural networks. PLoS ONE 12(3), e0173684 (2017)

10. Seger, C., Miller, E.: Category learning in the brain. Annu. Rev. Neurosci. 33,
203–219 (2010)

11. Topalidou, M., Rougier, N.: [Re] interaction between cognitive and motor cortico-
basal ganglia loops during decision making: a computational study. ReScience 1(1),
1–6 (2015)

12. Tsuda, I., Fujii, H., Tadokoro, S., Yasuoka, T., Yamaguti, Y.: Chaotic itinerancy as
a mechanism of irregular changes between synchronization and desynchronization
in a neural network. J. Integr. Neurosci. 3, 159–182 (2004)

13. Van Rullen, R., Gautrais, J., Delorme, A., Thorpe, S.: Face processing using one
spike per neurone. BioSystems 48, 229–239 (1998)

14. Zylberberg, A., Dehaene, S., Roelfsema, P., Sigman, M.: The human turing
machine: a neural framework for mental programs. Trends Cogn. Sci. 7, 293–300
(2011)

Global Exponential Stability for Matrix-Valued
Neural Networks with Time Delay

Călin-Adrian Popa(B)

Department of Computer and Software Engineering,
Polytechnic University Timişoara,

Blvd. V. Pârvan, No. 2, 300223 Timişoara, Romania
calin.popa@cs.upt.ro

Abstract. Complex-, quaternion-, and Clifford-valued neural networks
can all be generalized to matrix-valued neural networks, which have
matrix states. This paper derives a sufficient criterion given in the form
of linear matrix inequalities that guarantees the global exponential sta-
bility of the equilibrium point for matrix-valued Hopfield neural networks
with time delay. A simulation example demonstrates the effectiveness of
the theoretical results.

Keywords: Matrix-valued neural networks · Global stability · Linear
matrix inequality · Time delay

1 Introduction

Multidimensional neural networks have received an increasing interest during
recent years. The simplest type of multidimensional neural networks are the
complex-valued ones, which were proposed in the 1970’s (see, for example, [22]).
Due to their wide range of applications, including the ones in telecommunica-
tions, complex-valued signal processing, and image processing (see, for example,
[5]), they have gained more interest in the past decade. Hyperbolic numbers,
which also form a 2-dimensional algebra, represent the basis for hyperbolic-
valued neural networks, which are another type of multidimensional networks,
see [10,14]. The 4-dimensional algebra of quaternion numbers represents the
domain of quaternion-valued neural networks. First developed in the 1990’s, see
[1], they have been applied since then, for example, to the 4-bit parity problem,
chaotic time series prediction, and quaternion-valued signal processing.

First defined in [15,16], and later discussed, for example, in [2,10], were
the Clifford-valued neural networks. Clifford algebras have dimension 2n, where
n ≥ 1, and represent a generalization of the complex, hyperbolic, and quaternion
algebras. Their applications in engineering and physics make them appealing as
novel types of data representation also for the neural network domain.

The complex, hyperbolic, quaternion, and Clifford numbers all have a matrix
representation. For instance, the complex number a + ib, i =

√−1, can be

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 429–438, 2017.
DOI: 10.1007/978-3-319-59072-1 51

430 C.-A. Popa

represented as
(

a b
−b a

)
, the hyperbolic number a + ub, u2 = 1, u �= ±1, as(

a b
b a

)
, and the quaternion a + ib + jc + kd, i2 = j2 = k2 = ijk = −1, as⎛

⎜⎜⎝
a b c d

−b a −d c
−c d a −b
−d −c b a

⎞
⎟⎟⎠ .

This means that each of these algebras can be represented as a subalgebra of
the square matrix algebra. This observation gave rise to the idea of generalizing
the above-discussed neural networks to matrix-valued neural networks, first in
their feedforward variant, see [17], and then in the recurrent Hopfield variant,
see [18]. Due to the degree of generality given by their definition, these neural
networks have the potential to be applied in the future to problems at which the
traditional neural networks have performed poorly or failed.

On the other hand, at the beginning of the 1980’s, Hopfield introduced an
energy function with the purpose of studying the dynamical behavior of recurrent
neural networks, see [6,7]. Starting then, recurrent Hopfield neural networks had
numerous applications to image processing, speech processing, the synthesis of
associative memories, control systems, pattern matching, signal processing, etc.

Multidimensional Hopfield neural networks were proposed in recent years.
The complex-valued Hopfield neural networks have been discussed in [3,11,19,
20], the hyperbolic-valued ones in [8,10], the quaternion-valued ones in [13,21],
and the Clifford-valued ones in [9,12,23].

All these facts led to the idea of introducing matrix-valued recurrent neural
networks, which, as stated earlier, generalize all the before-mentioned models.
Their potential applications include pattern matching and image processing,
where data can be represented as matrices, and the synthesis of matrix-valued
associative memories. Time delays unavoidably appear in real life implementa-
tions of neural networks, and they can lead to unwanted behavior such as oscilla-
tions and chaos. Because of this, we consider, in the present paper, matrix-valued
Hopfield neural networks with time delay, and study the global exponential sta-
bility of their equilibrium point.

Thus, the outline of the rest of the paper is the following. Hopfield neural
networks with matrix values are introduced, and one assumption and one useful
lemma are presented in Sect. 2. A sufficient condition for the global exponential
stability of matrix-valued Hopfield neural networks with time delay is established
in Sect. 3. A numerical example that proves the effectiveness of the theoretical
results is presented in Sect. 4. The conclusions are given in Sect. 5.

Notations: R denotes the real number set and R
n denotes the n dimensional

Euclidean space. The algebra of real square matrices of order n is Mn. AT

represents the transpose of matrix A. In denotes the identity matrix of order
n. A > 0 (A < 0) means that matrix A is positive definite (negative definite).
λmin(P) is defined as the smallest eigenvalue of positive definite matrix P . || · ||
is the vector Euclidean norm or the matrix Frobenius norm.

Global Exponential Stability for Matrix-Valued Neural Networks 431

2 Preliminaries

A matrix-valued recurrent Hopfield neural network model has all the states,
weights, and outputs given in the form of square matrices, i.e., they all belong to
Mn. The following system of differential equations describes this type of network:

Ẋi(t) = −diXi(t) +
N∑

j=1

Aijfj(Xj(t)) +
N∑

j=1

Bijgj(Xj(t − τ)) + Ui, (1)

for i ∈ {1, . . . , N}, where Xi(t) ∈ Mn is the state of the ith neuron at time t,
di ∈ R, di > 0, is the self-feedback weight of the ith neuron, Aij ∈ Mn is the
weight from the jth neuron to the ith neuron without time delay, Bij ∈ Mn is the
weight from the jth neuron to the ith neuron with time delay, fj : Mn → Mn

constitutes the nonlinear activation function of the jth neuron without time
delay, gj : Mn → Mn constitutes the nonlinear activation function of the jth
neuron with time delay, τ ∈ R is the time delay and we assume τ > 0, and
Ui ∈ Mn is the external input of neuron i, ∀i, j ∈ {1, . . . , N}.

The derivative is simply the matrix whose elements are the derivatives of the
entries of the state Xi(t) with respect to t:

Ẋi(t) =
dXi(t)

dt
:=

(
d([Xi(t)]ab)

dt

)
1≤a,b≤n

=
(
[Ẋi(t)]ab

)
1≤a,b≤n

.

The activation functions fj , gj are each formed of n2 functions fab
j , gab

j :
Mn → R, 1 ≤ a, b ≤ n, ∀j ∈ {1, . . . , N}:

fj(X) =
(
fab

j (X)
)
1≤a,b≤n

, gj(X) =
(
gab

j (X)
)
1≤a,b≤n

.

In order to study the stability of the above defined network, we need to make
an assumption about the activation functions.

Assumption 1. The following Lipschitz conditions are satisfied by the matrix-
valued activation functions fj, gj, for any X,X ′ ∈ Mn:

||fj(X) − fj(X ′)|| ≤ lfj ||X − X ′||,
||gj(X) − gj(X ′)|| ≤ lgj ||X − X ′||,

where lfj > 0, lgj > 0 are the Lipschitz constants, ∀j ∈ {1, . . . , N}. Furthermore,
we denote Lf = diag(lf1 In2 , lf2 In2 , . . . , lfNIn2), Lg = diag(lg1In2 , lg2In2 , . . . , lgNIn2).

Firstly,wewill transform thematrix-valued set of differential Eq. (1) into a real-
valued one. For this, we expand each equation in (1) into n2 real-valued equations:

[Ẋi(t)]ab = −di[Xi(t)]ab +
N∑

j=1

n∑
c=1

[Aij]acf
cb
j (Xj(t))

+
N∑

j=1

n∑
c=1

[Bij]acg
cb
j (Xj(t − τ)) + [Ui]ab, (2)

for 1 ≤ a, b ≤ n, i ∈ {1, . . . , N}. Now, using the vectorization operation, we can
write

432 C.-A. Popa

vec(Ẋi(t)) = −diIn2vec(Xi(t)) +
N∑

j=1

(In ⊗ Aij)vec(fj(Xj(t)))

+
N∑

j=1

(In ⊗ Bij)vec(gj(Xj(t − τ))) + vec(Ui), (3)

for i ∈ {1, . . . , N}. Finally, by denoting

Y (t) = (vec(X1(t))T , vec(X2(t))T , . . . , vec(XN (t))T)T ,

D = diag(d1In2 , d2In2 , . . . , dNIn2), A =

⎡
⎢⎢⎢⎣

In ⊗ A11 In ⊗ A12 · · · In ⊗ A1N

In ⊗ A21 In ⊗ A22 · · · In ⊗ A2N

...
...

. . .
...

In ⊗ AN1 In ⊗ AN2 · · · In ⊗ ANN

⎤
⎥⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎣

In ⊗ B11 In ⊗ B12 · · · In ⊗ B1N

In ⊗ B21 In ⊗ B22 · · · In ⊗ B2N

...
...

. . .
...

In ⊗ BN1 In ⊗ BN2 · · · In ⊗ BNN

⎤
⎥⎥⎥⎦ ,

f(Y (t)) = (vec(f1(X1(t)))T , vec(f2(X2(t)))T , . . . , vec(fN (XN (t)))T)T , g(Y (t −
τ)) = (vec(g1(X1(t − τ)))T , vec(g2(X2(t − τ)))T , . . . , vec(gN (XN (t − τ)))T)T ,
U = (vec(U1)T , vec(U2)T , . . . , vec(UN)T)T , with the simplifying notations Y =
Y (t) and Y τ = Y (t − τ), system (1) becomes

Ẏ = −DY + A f(Y) + B g(Y τ) + U. (4)

Now shifting to the origin the equilibrium point of (4), the system (4) becomes

˙̃Y = −DỸ + A f̃(Ỹ) + B g̃(Ỹ τ), (5)

where f̃(Ỹ) = f(Ỹ + Ŷ) − f(Ŷ) and g̃(Ỹ τ) = g(Ỹ τ + Ŷ) − g(Ŷ).

Remark 1. The system (5) is equivalent with the system (1), which means that
any property proved about system (5) will also hold for system (1). For this
reason, from now on we will only study stability properties for the origin of
system (5).

Remark 2. It can be clearly seen from the above derivation that the Hopfield
neural network with matrix values, defined in (1), is not equivalent with a gen-
eral nN -dimensional real-valued Hopfield neural network, because, for such a
network, the matrices A and B would be general unconstrained matrices, and
wouldn’t have the particular form given above.

We will also need the following lemma:

Global Exponential Stability for Matrix-Valued Neural Networks 433

Lemma 1 [4]. The following inequality holds for any positive definite matrix
M ∈ Mn2N and vector function Y : [a, b] → R

n2N :
(∫ b

a

Y (u)du

)T

M

(∫ b

a

Y (u)du

)
≤ (b − a)

∫ b

a

Y T (u)MY (u)du,

in which the integrals are well defined.

3 Main Results

We give a sufficient condition that ensures the global exponential stability of the
origin of system (5).

Theorem 1. If Assumption 1 holds, then the origin of system (5) is globally
exponentially stable if there are positive definite matrices P , Q1, Q2, Q3, S1,
S2, S3, S4, positive block-diagonal matrices R1, R2, R3, R4, all from Mn2N ,
and ε > 0, so that the following linear matrix inequality (LMI) is true

(Π)9×9 < 0, (6)

where Π1,1 = 2εP −PD−DP +Q1 + τS2 − τ−1e−2ετS1 + τDS1D+Lf
T
R1Lf +

Lg
T
R3Lg, Π1,2 = τ−1e−2ετS1, Π1,3 = PA − τDS1A, Π1,6 = PB − τDS1B,

Π2,2 = −e−2ετQ1 − τ−1e−2ετS1 + Lf
T
R2Lf + Lg

T
R4Lg, Π3,3 = Q2 + τS3 −

R1 + τA
T
S1A, Π3,6 = τA

T
S1B, Π4,4 = −e−2ετQ2 −R2, Π5,5 = Q3 + τS4 −R3,

Π6,6 = −e−2ετQ3 − R4 + τB
T
S1B, Π7,7 = −τ−1e−2ετS2, Π8,8 = −τ−1e−2ετS3,

Π9,9 = −τ−1e−2ετS4.

Proof. Consider the Lyapunov-Krasovskii functional

V (Ỹ (t)) = e2εtỸ T (t)PỸ (t)

+
∫ t

t−τ

e2εuỸ T (u)Q1Ỹ (u)du

+
∫ t

t−τ

e2εuf̃T (Ỹ (u))Q2f̃(Ỹ (u))du

+
∫ t

t−τ

e2εug̃T (Ỹ (u))Q3g(Ỹ (u))du

+
∫ 0

−τ

∫ t

t+θ

e2εu ˙̃Y T (u)S1
˙̃Y (u)dudθ

+
∫ 0

−τ

∫ t

t+θ

e2εuỸ T (u)S2Ỹ (u)dudθ

+
∫ 0

−τ

∫ t

t+θ

e2εuf̃T (Ỹ (u))S3f̃(Ỹ (u))dudθ

+
∫ 0

−τ

∫ t

t+θ

e2εug̃T (Ỹ (u))S4g(Ỹ (u))dudθ.

434 C.-A. Popa

Its derivative with respect to t for system (5) is

V̇ (Ỹ) = e2εt
[
2εỸ T PỸ + ˙̃Y T PỸ + Ỹ T P ˙̃Y + Ỹ T Q1Ỹ − e−2ετ Ỹ τT Q1Ỹ

τ

+f̃T (Ỹ)Q2f̃(Ỹ) − e−2ετ f̃T (Ỹ τ)Q2f̃(Ỹ τ) + g̃T (Ỹ)Q3g̃(Ỹ)

−e−2ετ g̃T (Ỹ τ)Q3g̃(Ỹ τ) + τ ˙̃Y T S1
˙̃Y −
∫ t

t−τ

e2ε(u−t) ˙̃Y T (u)S1
˙̃Y (u)du

+τ Ỹ T S2Ỹ −
∫ t

t−τ

e2ε(u−t)Ỹ T (u)S2Ỹ (u)du + τ f̃T (Ỹ)S3f̃(Ỹ)

−
∫ t

t−τ

e2ε(u−t)f̃T (Ỹ (u))S3f̃(Ỹ (u))du + τ g̃T (Ỹ)S4g̃(Ỹ)

−
∫ t

t−τ

e2ε(u−t)g̃T (Ỹ (u))S4g(Ỹ (u))du

]

≤ e2εt
[
2εỸ T PỸ + (−DỸ + A f̃(Ỹ) + B g̃(Ỹ τ))T PỸ + Ỹ T P (−DỸ

+A f̃(Ỹ) + B g̃(Ỹ τ)) + Ỹ T Q1Ỹ − e−2ετ Ỹ τT Q1Ỹ
τ + f̃T (Ỹ)Q2f̃(Ỹ)

−e−2ετ f̃T (Ỹ τ)Q2f̃(Ỹ τ) + g̃T (Ỹ)Q3g̃(Ỹ) − e−2ετ g̃T (Ỹ τ)Q3g̃(Ỹ τ)

+τ ˙̃Y T S1
˙̃Y − τ−1e−2ετ

(∫ t

t−τ

˙̃Y (u)du

)T

S1

(∫ t

t−τ

˙̃Y (u)du

)

+τ Ỹ T S2Ỹ − τ−1e−2ετ

(∫ t

t−τ

Ỹ (u)du

)T

S2

(∫ t

t−τ

Ỹ (u)du

)

+τ f̃T (Ỹ)S3f̃(Ỹ) − τ−1e−2ετ

(∫ t

t−τ

f̃(Ỹ (u))du

)T

S3

(∫ t

t−τ

f̃(Ỹ (u))du

)

+τ g̃T (Ỹ)S4g̃(Ỹ) − τ−1e−2ετ

(∫ t

t−τ

g̃(Ỹ (u))du

)T

S4

(∫ t

t−τ

g̃(Ỹ (u))du

)]
, (7)

where we used Lemma 1 for the inequality.
Assumption 1 can be written as

||fj(X) − fj(X ′)|| ≤ lfj ||X − X ′||

⇔ ||vec(fj(X)) − vec(fj(X ′))|| ≤ lfj ||vec(X) − vec(X ′)||,
for j ∈ {1, . . . N}. Taking into account this inequality (and the analogous one for
the functions gj), and the above notations, there exist positive block-diagonal
matrices R1 = diag(r11In2 , r12In2 , . . . , r1NIn2), R2 = diag(r21In2 , r22In2 , . . . , r2NIn2),
R3 = diag(r31In2 , r32In2 , . . . , r3NIn2), R4 = diag(r41In2 , r42In2 , . . . , r4NIn2), such
that

0 ≤ Ỹ T Lf
T
R1Lf Ỹ − f̃T (Ỹ)R1f̃(Ỹ), 0 ≤ Ỹ τT Lf

T
R2Lf Ỹ τ − f̃T (Ỹ τ)R2f̃(Ỹ τ),

(8)
0 ≤ Ỹ T Lg

T
R3LgỸ − g̃T (Ỹ)R3g̃(Ỹ), 0 ≤ Ỹ τT Lg

T
R4LgỸ

τ − g̃T (Ỹ τ)R4g̃(Ỹ τ).
(9)

Global Exponential Stability for Matrix-Valued Neural Networks 435

Combining (8) and (9) with (7), yields

V̇ (Ỹ) ≤ e2εtζT Πζ, (10)

where

ζ =
[
Ỹ T Ỹ τT f̃T (Ỹ) f̃T (Ỹ τ) g̃T (Ỹ)g̃T (Ỹ τ)
(∫ t

t−τ
Ỹ (u)du

)T (∫ t

t−τ
f̃(Ỹ (u))du

)T (∫ t

t−τ
g̃(Ỹ (u))du

)T
]T

,

and Π is given by (6). Also from condition (6) we have that Π < 0, so (10)
becomes V̇ (Ỹ) < 0, from which we infer that V (Ỹ (t)) is strictly decreasing for
t ≥ 0. This fact, together with the definition of V (Ỹ (t)), imply that

e2εtλmin(P)||Ỹ (t)||2 ≤ e2εtỸ T (t)PỸ (t) ≤ V (t) ≤ V0, ∀t ≥ T, T ≥ 0,

where V0 = max
0≤t≤T

V (t). Consequently, we have that

||Ỹ (t)||2 ≤ V0

e2εtλmin(P)
⇔ ||Ỹ (t)|| ≤ Me−εt, ∀t ≥ 0,

for M =
√

V0
λmin(P) . Thus, we obtained the global exponential stability for the

origin of system (5).

4 Numerical Example

Next, we give a numerical example to prove the correctness of the above-derived
criterion.

Example 1. Let us consider the following delayed matrix-valued Hopfield neural
network with two neurons:{

Ẋ1(t) =−d1X1(t) +
∑2

j=1 A1jfj(Xj(t)) +
∑2

j=1 B1jgj(Xj(t − τ)) + U1,

Ẋ2(t) =−d2X2(t) +
∑2

j=1 A2jfj(Xj(t)) +
∑2

j=1 B2jgj(Xj(t − τ)) + U2,

(11)
where d1 = d2 = 11,

A11 =
[
1 1
2 2

]
, A12 =

[
1 −1

−1 1

]
, A21 =

[−1 1
2 −2

]
, A22 =

[
1 2
2 1

]
,

B11 =
[−1 1

2 −2

]
, B12 =

[
1 −1

−1 1

]
, B21 =

[
1 1
2 2

]
, B22 =

[
1 2
2 1

]
,

U1 =
[

5 −10
15 10

]
, U2 =

[
5 15

−10 −15

]
,

436 C.-A. Popa

f
(
([X]ab)1≤a,b≤n

)
=

(
1

1 + e−[X]ab

)
1≤a,b≤n

,

g
(
([X]ab)1≤a,b≤n

)
=

(
1 − e−[X]ab

1 + e−[X]ab

)
1≤a,b≤n

,

from which we get that lf1 = lf2 = 1
2 and lg1 = lg2 = 2.

The state trajectories of the elements of matrices X1 and X2 are given in
Fig. 1, for four initial values. The time delay was taken to be τ = 0.5.

Fig. 1. State trajectories of elements of X1 and X2 in Example 1

Solving the LMI condition (6) in Theorem 1, we obtain that the equilib-
rium point of system (11) is globally exponentially stable for ε = 0.2, R1 =
diag(3.8444I4, 4.3276I4), R2 = diag(0.4434I4, 0.3695I4), R3 = diag(1.8953I4,
1.1550I4), R4 = diag(0.3570I4, 0.2839I4),

Global Exponential Stability for Matrix-Valued Neural Networks 437

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.2130 0.0891 0 0 0.0534 −0.0414 0 0
0.0891 1.0538 0 0 −0.0239 0.0199 0 0

0 0 1.2130 0.0891 0 0 0.0534 −0.0415
0 0 0.0891 1.0538 0 0 −0.0239 0.0199

0.0534 −0.0239 0 0 0.8634 −0.1098 0 0
−0.0414 0.0199 0 0 −0.1098 0.7639 0 0

0 0 0.0534 −0.0239 0 0 0.8634 −0.1098
0 0 −0.0415 0.0199 0 0 −0.1098 0.7639

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(The values of the other matrices are not given due to space limitations.)

5 Conclusions

A sufficient criterion expressed as a linear matrix inequality was given, which
assures that the equilibrium point of delayed Hopfield neural networks with
matrix values is globally exponentially stable, by making the assumption that
the Lipschitz conditions are satisfied by the activation functions. The correctness
of the proposed criterion was showed by providing a numerical example.

Because of their degree of generality, encompassing the complex-, hyperbolic-,
quaternion-, and Clifford-valued particular cases, matrix-valued recurrent neural
networks provide the potential for further study, both in terms of stability prop-
erties as well as in applications.

References

1. Arena, P., Fortuna, L., Muscato, G., Xibilia, M.: Multilayer perceptrons to approx-
imate quaternion valued functions. Neural Netw. 10(2), 335–342 (1997)

2. Buchholz, S., Sommer, G.: On Clifford neurons and Clifford multi-layer percep-
trons. Neural Netw. 21(7), 925–935 (2008)

3. Chen, X., Zhao, Z., Song, Q., Hu, J.: Multistability of complex-valued neural net-
works with time-varying delays. Appl. Math. Comput. 294, 18–35 (2017)

4. Gu, K.: An integral inequality in the stability problem of time-delay systems. In:
Proceedings of the 39th IEEE Conference on Decision and Control, pp. 2805–2810
(2000)

5. Hirose, A.: Complex-Valued Neural Networks, Studies in Computational Intelli-
gence, vol. 400. Springer, Heidelberg (2012)

6. Hopfield, J.J.: Neural networks and physical systems with emergent collective com-
putational abilities. Proc. Nat. Acad. Sci. U.S.A. 79(8), 2554–2558 (1982)

7. Hopfield, J.J.: Neurons with graded response have collective computational proper-
ties like those of two-state neurons. Proc. Nat. Acad. Sci. U.S.A. 81(10), 3088–3092
(1984)

8. Kobayashi, M.: Hyperbolic Hopfield neural networks. IEEE Trans. Neural Netw.
Learn. Syst. 24(2), 335–341 (2013)

9. Kuroe, Y.: Models of Clifford recurrent neural networks and their dynamics. In:
International Joint Conference on Neural Networks (IJCNN), pp. 1035–1041. IEEE
(2011)

438 C.-A. Popa

10. Kuroe, Y., Tanigawa, S., Iima, H.: Models of Hopfield-type clifford neural networks
and their energy functions - hyperbolic and dual valued networks -. In: Lu, B.-L.,
Zhang, L., Kwok, J. (eds.) ICONIP 2011. LNCS, vol. 7062, pp. 560–569. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-24955-6 67

11. Liu, X., Chen, T.: Global exponential stability for complex-valued recurrent neural
networks with asynchronous time delays. IEEE Trans. Neural Netw. Learn. Syst.
27(3), 593–606 (2016)

12. Liu, Y., Xu, P., Lu, J., Liang, J.: Global stability of Clifford-valued recurrent neural
networks with time delays. Nonlinear Dyn. 84(2), 767–777 (2016)

13. Liu, Y., Zhang, D., Lu, J., Cao, J.: Global μ-stability criteria for quaternion-
valued neural networks with unbounded time-varying delays. Inf. Sci. 360, 273–288
(2016)

14. Nitta, T., Buchholz, S.: On the decision boundaries of hyperbolic neurons. In:
International Joint Conference on Neural Networks (IJCNN), pp. 2974–2980. IEEE
(2008)

15. Pearson, J., Bisset, D.: Back propagation in a Clifford algebra. Int. Conf. Artif.
Neural Netw. 2, 413–416 (1992)

16. Pearson, J., Bisset, D.: Neural networks in the Clifford domain. In: International
Conference on Neural Networks, vol. 3, pp. 1465–1469. IEEE (1994)

17. Popa, C.-A.: Matrix-valued neural networks. In: Matoušek, R. (ed.) Mendel
2015. AISC, vol. 378, pp. 245–255. Springer, Cham (2015). doi:10.1007/
978-3-319-19824-8 20

18. Popa, C.-A.: Matrix-valued hopfield neural networks. In: Cheng, L., Liu, Q.,
Ronzhin, A. (eds.) ISNN 2016. LNCS, vol. 9719, pp. 127–134. Springer, Cham
(2016). doi:10.1007/978-3-319-40663-3 15

19. Song, Q., Yan, H., Zhao, Z., Liu, Y.: Global exponential stability of complex-valued
neural networks with both time-varying delays and impulsive effects. Neural Netw.
79, 108–116 (2016)

20. Song, Q., Zhao, Z.: Stability criterion of complex-valued neural networks with both
leakage delay and time-varying delays on time scales. Neurocomputing 171, 179–
184 (2016)

21. Valle, M.: A novel continuous-valued quaternionic Hopfield neural network. In:
Brazilian Conference on Intelligent Systems (BRACIS), pp. 97–102. IEEE, October
2014

22. Widrow, B., McCool, J., Ball, M.: The complex LMS algorithm. Proc. IEEE 63(4),
719–720 (1975)

23. Zhu, J., Sun, J.: Global exponential stability of Clifford-valued recurrent neural
networks. Neurocomputing 173, Part 3, 685–689 (2016)

http://dx.doi.org/10.1007/978-3-642-24955-6_67
http://dx.doi.org/10.1007/978-3-319-19824-8_20
http://dx.doi.org/10.1007/978-3-319-19824-8_20
http://dx.doi.org/10.1007/978-3-319-40663-3_15

Global Asymptotic Stability
for Octonion-Valued Neural Networks

with Delay

Călin-Adrian Popa(B)

Department of Computer and Software Engineering,
Polytechnic University Timişoara,

Blvd. V. Pârvan, No. 2, 300223 Timişoara, Romania
calin.popa@cs.upt.ro

Abstract. Over the last few years, neural networks with values in multi-
dimensional domains have been intensely studied. This paper introduces
octonion-valued neural networks with delay, for which the states and
weights are octonions. The octonion algebra represents a non-associative
normed division algebra which generalizes the complex and quaternion
algebras and doesn’t fall into the category of Clifford algebras, which
are associative. A sufficient criterion is derived in terms of linear matrix
inequalities that ensures the existence, uniqueness, and global asymptotic
stability of the equilibrium point for the proposed networks. Finally, a
simulation example illustrates the effectiveness of the theoretical results.

Keywords: Octonion-valued neural networks · Global stability · Linear
matrix inequality · Time delay

1 Introduction

In recent years, neural networks with values in multidimensional domains have
been studied with increasing interest. Complex-valued neural networks are the
most popular form of multidimensional neural networks. Although they were
first introduced in the 1970’s (see, for example, [22]), they have received more
attention in the 1990’s and in the past decade, especially due to their numerous
applications, ranging from those in complex-valued signal processing to those in
telecommunications and image processing (see, for example, [6,13]).

Next, came the neural networks defined on the 4-dimensional quaternion
algebra, which started gaining interest in the recent years. Quaternion-valued
neural networks were first introduced in the 1990’s, first as a generalization of
the complex-valued neural networks, see [1,2]. But later, an increasing number
of applications of quaternion-valued neural networks appeared in chaotic time
series prediction, the 4-bit parity problem, and, very recently, in quaternion-
valued signal processing.

One of the most general types of multidimensional neural networks are the
ones defined on Clifford algebras, which have dimension 2n, n ≥ 1, and repre-
sent a generalization of both the complex and quaternion algebras. The numerous
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 439–448, 2017.
DOI: 10.1007/978-3-319-59072-1 52

440 C.-A. Popa

applications in physics and engineering of Clifford or geometric algebras, made
them appealing also for the field of neural networks. Clifford-valued neural net-
works were defined in [15,16], and later discussed, for example, in [3]. Possible
applications of neural networks with values in Clifford algebras include process-
ing different geometric objects and applying different geometric models to data,
because of the Clifford algebras’ underlying connection with geometry.

A different generalization of the complex and quaternion numbers, which
doesn’t fall into the Clifford algebra category, is the 8-dimensional algebra of
octonions. The easiest way to see this is by considering the fact that Clifford
algebras are associative, whereas the octonion algebra is not. Nonetheless, it has
an important property, especially for applications, which Clifford algebras don’t
have: the octonion algebra is a normed division algebra, which means that a norm
and a multiplicative inverse can be defined on it. In fact, complex, quaternion
and octonion algebras are the only normed division algebras that can be defined
over the field of real numbers.

Octonions have many applications in physics and geometry (see [4,14]), and
they have also been successfully applied to signal processing in the very recent
years (see [18]). Taking all the above facts into consideration, defining octonion-
valued neural networks seemed a promising idea, first in the form of feedforward
networks [17]. Octonion-valued neural networks may be applied in signal process-
ing and all other areas related to higher-dimensional object processing.

On the other hand, at the beginning of the 1980’s, Hopfield had the idea of
introducing an energy function in order to study the dynamics of fully connected
recurrent neural networks, see [7,8]. He showed that combinatorial problems can
be solved by using this type of networks. Since then, Hopfield neural networks
have been applied to the synthesis of associative memories, image processing,
speech processing, control systems, signal processing, pattern matching, etc.

Generalizations of the Hopfield neural networks to multidimensional domains
appeared over the last few years. Complex-valued Hopfield networks were
discussed in [10,19,20], quaternion-valued Hopfield networks in [12,21], and
Clifford-valued Hopfield networks in [11,23]. Taking these facts into account,
in this paper, we introduce octonion-valued neural networks with delay, which
could be applied to solve octonion optimization problems.

The rest of the paper is organized as follows: Sect. 2 gives the definition of
octonion-valued neural networks with delay, and an assumption and useful lem-
mas. A sufficient condition for the existence, uniqueness, and global asymptotic
stability of the equilibrium point of these networks is given in Sect. 3. The effec-
tiveness of the theoretical results is illustrated by a numerical example in Sect. 4.
Section 5 presents the conclusions of the study.

Notations: R denotes the set of real numbers, R
n denotes the n dimensional

Euclidean space, and R
n×n the set of real matrices of dimension n×n. AT denotes

the transpose of matrix A and ∗ denotes the symmetric terms in a matrix. In

denotes the identity matrix of dimension n. || · || stands for the Euclidean vector
norm or the induced matrix 2-norm. A > 0 (A < 0) means that A is a positive
definite (negative definite) matrix.

Global Asymptotic Stability for Octonion-Valued Neural Networks 441

2 Preliminaries

We start by defining the algebra of octonions and highlighting some of its
properties.

The algebra of octonions is defined as

O :=

{
x =

7∑
p=0

[x]pep

∣∣∣∣∣ [x]0, [x]1, . . . , [x]7 ∈ R

}
,

where ep represent the octonion units, 0 ≤ p ≤ 7, and satisfy the following
multiplication table

× e0 e1 e2 e3 e4 e5 e6 e7

e0 e0 e1 e2 e3 e4 e5 e6 e7

e1 e1 −e0 e3 −e2 e5 −e4 −e7 e6

e2 e2 −e3 −e0 e1 e6 e7 −e4 −e5

e3 e3 e2 −e1 −e0 e7 −e6 e5 −e4

e4 e4 −e5 −e6 −e7 −e0 e1 e2 e3

e5 e5 e4 −e7 e6 −e1 −e0 −e3 e2

e6 e6 e7 e4 −e5 −e2 e3 −e0 −e1

e7 e7 −e6 e5 e4 −e3 −e2 e1 −e0

The addition of octonions is defined by x + y =
∑7

p=0([x]p + [y]p)ep, and
the multiplication is given by the multiplication of the unit octonions shown
in the above table. Scalar multiplication is given by αx =

∑7
p=0(α[x]p)ep, and

thus O is a real algebra. It can be verified using the multiplication table that
eiej = −ejei �= ejei, ∀i �= j, 0 < i, j ≤ 7, which means that O is not commuta-
tive, and that (eiej)ek = −ei(ejek) �= ei(ejek), for i, j, k distinct, 0 < i, j, k ≤ 7,
or eiej �= ±ek, which shows that O is also not associative.

The conjugate of an octonion x is defined by x = [x]0e0 − ∑7
p=1[x]pep.

Using the conjugate, the norm of an octonion can be defined as ||x|| =
√

xx =√∑7
p=0[x]2p, and the inverse of an octonion as x−1 = x

||x||2 . Thus, O is a
normed non-associative division algebra, unlike the 8-dimensional Clifford alge-
bras, which are associative algebras, but not division algebras. In fact, the only
three real division algebras that can be defined are the complex, quaternion, and
octonion algebras.

We can now introduce octonion-valued Hopfield neural networks for which
the states and weights are from O. The following set of differential equations
describes this type of networks:

ẋi(t) = −dixi(t) +
N∑

j=1

aijfj(xj(t)) +
N∑

j=1

bijgj(xj(t − τ)) + ui, (1)

442 C.-A. Popa

for i ∈ {1, . . . , N}, where xi(t) ∈ O is the state of neuron i at time t, di ∈ R,
di > 0, is the self-feedback connection weight of neuron i, aij ∈ O is the weight
connecting neuron j to neuron i without delay, bij ∈ O is the weight connecting
neuron j to neuron i with delay, fj : O → O is the nonlinear octonion-valued
activation function of neuron j without delay, gj : O → O is the nonlinear
octonion-valued activation function of neuron j with delay, τ ∈ R is the delay and
we assume τ > 0, and ui ∈ O is the external input of neuron i, ∀i, j ∈ {1, . . . , N}.

The derivative dxi(t)
dt is considered to be the octonion formed by the deriv-

atives of each element [xi(t)]p of the octonion xi(t) with respect to t: ẋi(t) =
dxi(t)

dt :=
∑7

p=0
d([xi]p)

dt ep. Thus, the above set of differential equations has values
in O, and the multiplication between the weights and the values of the activation
functions is the octonion multiplication.

We need to make an assumption about the activation functions, in order to
study the stability of the above defined network.

Assumption 1. The octonion-valued activation functions fj and gj satisfy the
following Lipschitz conditions:

||fj(x) − fj(x′)|| ≤ lfj ||x − x′||, ∀x, x′ ∈ O,

||gj(x) − gj(x′)|| ≤ lgj ||x − x′||, ∀x, x′ ∈ O,

where lfj > 0 and lgj > 0 are the Lipschitz constants, ∀j ∈ {1, . . . , N}. Moreover,
we denote Lf = diag((lf1)2I8, (l

f
2)2I8, . . . , (l

f
N)2I8), Lg = diag((lg1)

2I8, (l
g
2)

2I8, . . . ,
(lgN)2I8).

We will first transform the octonion-valued differential Eq. (1) into real-
valued ones. To do so, we will detail each equation in (1) into 8 real-valued
equations:

[ẋi(t)]p = −di[xi(t)]p +
N∑

j=1

7∑
q=0

[aij]pq[fj(xj(t))]q

+
N∑

j=1

7∑
q=0

[bij]pq[gj(xj(t − τ))]q + [ui]p, (2)

for 0 ≤ p ≤ 7, i ∈ {1, . . . , N}, where [x]pq is an element of the matrix mat(x),
defined by

mat(x) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[x]0 −[x]1 −[x]2 −[x]3 −[x]4 −[x]5 −[x]6 −[x]7
[x]1 [x]0 −[x]3 [x]2 −[x]5 [x]4 [x]7 −[x]6
[x]2 [x]3 [x]0 −[x]1 −[x]6 −[x]7 [x]4 [x]5
[x]3 −[x]2 [x]1 [x]0 −[x]7 [x]6 −[x]5 −[x]4
[x]4 [x]5 [x]6 [x]7 [x]0 −[x]1 −[x]2 −[x]3
[x]5 −[x]4 [x]7 −[x]6 [x]1 [x]0 [x]3 −[x]2
[x]6 −[x]7 −[x]4 [x]5 [x]2 −[x]3 [x]0 [x]1
[x]7 [x]6 −[x]5 −[x]4 [x]3 [x]2 −[x]1 [x]0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Global Asymptotic Stability for Octonion-Valued Neural Networks 443

Now, if we denote vec(x) = ([x]0, [x]1, . . . , [x]7)T , the Eq. (2) can be written as

vec(ẋi(t)) = −diI8vec(xi(t)) +
N∑

j=1

mat(aij)vec(fj(xj(t)))

+
N∑

j=1

mat(bij)vec(gj(xj(t − τ))) + vec(ui), (3)

for i ∈ {1, . . . , N}. Denoting w(t) = (vec(x1(t))T , vec(x2(t))T , . . . , vec(xN (t))
T)T , D = diag(d1I8, d2I8, . . . , dNI8), A = (mat(aij))1≤i,j≤N , B =
(mat(bij))1≤i,j≤N , f(w(t)) = (vec(f1(x1(t)))T , vec(f2(x2(t)))T , . . . , vec(fN (xN

(t)))T)T , g(w(t − τ)) = (vec(g1(x1(t − τ)))T , vec(g2(x2(t −
τ)))T , . . . , vec(gN (xN (t − τ)))T)T , u = (vec(u1)T , vec(u2)T , . . . , vec(uN)T)T ,
with the simplifying notations w = w(t) and wτ = w(t− τ), system (1) becomes

ẇ = −Dw + A f(w) + B g(wτ) + u. (4)

Remark 1. The system (4) is equivalent with the system (1), which means that
any property proven about system (4) will also hold for system (1). Because
of this, from now on we will only study the existence, uniqueness, and global
asymptotic stability of the equilibrium point of system (4).

We will also need the following lemmas:

Lemma 1 [5]. If H(w) : R
8N → R

8N is a continuous map that satisfies the
following conditions:

(i) H(w) is injective on R
8N ,

(ii) ||H(w)|| → ∞ as ||w|| → ∞,

then H(w) is a homeomorphism of R8N onto itself.

Lemma 2 [9]. For any vectors x, y ∈ R
8N , positive definite matrix P ∈

R
8N×8N , and real constant ε > 0, the following linear matrix inequality (LMI)

holds:
2xT y ≤ εxT Px +

1
ε
yT P−1y.

3 Main Results

In this section, we give an LMI-based sufficient condition for the existence,
uniqueness, and global asymptotic stability of the equilibrium point for (4).

Theorem 1. If Assumption 1 holds, then system (4) has a unique equilibrium
point which is globally asymptotically stable if there exist real numbers ε1 > 0
and ε2 > 0, and positive definite matrix P ∈ R

8N×8N such that the following
LMI holds

444 C.-A. Popa

⎡
⎣PD + DP − ε1Lf − ε2Lg PA PB

∗ ε1I8N 0
∗ ∗ ε2I8N

⎤
⎦ > 0. (5)

Proof. Define the function H : R8N → R
8N ,

H(w) = −Dw + A f(w) + B g(w) + u. (6)

We will first prove that H is injective. Assume by contradiction that there
exist w, w′ ∈ R

8N , w �= w′, such that H(w) = H(w′). This equality is equivalent
with

− D(w − w′) + A(f(w) − f(w′)) + B(g(w) − g(w′)) = 0. (7)

By left multiplying this relation by 2(w − w′)T P , we get that

2(w − w′)T P (−D(w − w′) + A(f(w) − f(w′)) + B(g(w) − g(w′))) = 0, (8)

which can be rewritten as

(w − w′)T (−PD − DP)(w − w′) + 2(w − w′)T PA(f(w) − f(w′))
+2(w − w′)T PB(g(w) − g(w′)) = 0, (9)

From Assumption 1, we can deduce that

(f(w) − f(w′))T (f(w) − f(w′)) ≤ (w − w′)T Lf (w − w′), (10)

(g(w) − g(w′))T (g(w) − g(w′)) ≤ (w − w′)T Lg(w − w′). (11)

Now, taking into account Lemma2 and inequalities (10) and (11), we have
from (9) that

(w − w′)T (−PD − DP)(w − w′) + 2(w − w′)T PA(f(w) − f(w′))
+2(w − w′)T PB(g(w) − g(w′))

≤ (w − w′)T (−PD − DP)(w − w′) + ε1(f(w) − f(w′))T (f(w) − f(w′))

+ε−1
1 (w − w′)T PA A

T
P (w − w′) + ε2(g(w) − g(w′))T (g(w) − g(w′))

+ε−1
2 (w − w′)T PB B

T
P (w − w′)

≤ (w − w′)T (−PD − DP)(w − w′) + ε1(w − w′)T Lf (w − w′)

+ε−1
1 (w − w′)T PA A

T
P (w − w′) + ε2(w − w′)T Lg(w − w′)

+ε−1
2 (w − w′)T PB B

T
P (w − w′)

= −(w − w′)T (PD + DP − ε1Lf − ε2Lg − ε−1
1 PA A

T
P

−ε−1
2 PB B

T
P)(w − w′). (12)

Using Schur’s complement, from condition (5), we get that

PD + DP − ε1Lf − ε2Lg − ε−1
1 PA A

T
P − ε−1

2 PB B
T
P > 0, (13)

Global Asymptotic Stability for Octonion-Valued Neural Networks 445

which, plugged back into (12), finally yields H(w) − H(w′) < 0, which is a
contradiction with our initial assumption. We deduce that H is injective.

Next, we prove that ||H(w)|| → ∞ as ||w|| → ∞. To this end, we deduce
from (13) that there exists a sufficiently small ε > 0, such that −PD − DP +
ε1Lf +ε2Lg +ε−1

1 PA A
T
P +ε−1

2 PB B
T
P < −εI8N . Considering w′ = 0 in (12),

we have

2wT P (H(w) − H(0)) ≤ wT (−PD − DP + ε1Lf + ε2Lg + ε−1
1 PA A

T
P

+ε−1
2 PB B

T
P)w < −ε||w||2. (14)

By applying the Cauchy-Schwarz inequality in relation (14), we get that

2||w||||P ||(||H(w)|| + ||H(0)||) > ε||w||2,
from which we conclude that ||H(w)|| → ∞ when ||w|| → ∞.

Now we can use Lemma 1 to deduce that H is a homeomorphism of R
8N

onto itself. This means that the equation H(w) = 0 has a unique solution, and
so system (4) also has a unique equilibrium point, which we will denote by ŵ.

We shift this equilibrium point to the origin, and thus system (4) is equivalent
with

˙̃w = −Dw̃ + A f̃(w̃) + B g̃(w̃τ), (15)

where w̃ = w − ŵ, w̃τ = wτ − ŵ, f̃(w̃) = f(w̃ + ŵ) − f(ŵ), and g̃(w̃τ) =
g(w̃τ + ŵ) − g(ŵ). Construct the following Lyapunov-Krasovskii functional:

V (w̃(t)) = w̃T (t)Pw̃(t) +
∫ t

t−τ

w̃(s)T Qw̃(s)ds,

where Q ∈ R
8N×8N , Q > 0.

The derivative of V (w̃(t)) with respect to t along the trajectories of system
(15) is computed as

V̇ (w̃) = ˙̃wT Pw̃ + w̃T P ˙̃w + w̃T Qw̃ − w̃τT Qw̃τ

= w̃T P (−Dw̃ + A f̃(w̃) + B g̃(w̃τ))
(−Dw̃ + A f̃(w̃) + B g̃(w̃τ))T Pw̃ + w̃T Qw̃ − w̃τT Qw̃τ

= w̃T (−PD − DP)w̃ + w̃T PA f̃(w̃) + f̃T (w̃)A
T
Pw̃ + w̃T PB g̃(w̃τ)

+ g̃T (w̃τ)B
T
Pw̃ + w̃T Q ˜w̃ − w̃τT Qw̃τ . (16)

If we multiply relations (10) and (11) by ε1 > 0 and ε2 > 0, we obtain

0 ≤ ε1(w̃T Lf w̃ − f̃T (w̃)f̃(w̃)), (17)

0 ≤ ε2(w̃τT Lgw̃
τ − g̃T (w̃τ)g̃(w̃τ)). (18)

Adding inequalities (17) and (18) to (16), gives

V̇ (w̃) ≤ ξT Ωξ, (19)

446 C.-A. Popa

where
ξ =

[
w̃T w̃τT f̃T (w̃) g̃T (w̃τ)

]T
,

Ω =

⎡
⎢⎢⎣
−PD − DP + Q + ε1Lf 0 PA PB

∗ −Q + ε2Lg 0 0
∗ ∗ −ε1I8N 0
∗ ∗ ∗ −ε2I8N

⎤
⎥⎥⎦ .

Now, we have Ω < 0 if and only if Q > ε2Lg and⎡
⎣−PD − DP + Q + ε1Lf PA PB

∗ −ε1I8N 0
∗ ∗ −ε2I8N

⎤
⎦ < 0. (20)

Together, the linear matrix inequalities (20) and Q > ε2Lg are equivalent with
condition (5), which means that (19) becomes V̇ (w̃) < 0, from which we can
conclude that the equilibrium point of (4) is globally asymptotically stable, thus
ending the proof of the theorem.

4 Numerical Example

A numerical example is given to demonstrate the effectiveness of our results.

Example 1. Consider the following two-neuron octonion-valued recurrent neural
network with time delay:{

ẋ1(t) = −d1x1(t) +
∑2

j=1 a1jfj(xj(t)) +
∑2

j=1 b1jgj(xj(t − τ)) + u1,

ẋ2(t) = −d2x2(t) +
∑2

j=1 a2jfj(xj(t)) +
∑2

j=1 b1jgj(xj(t − τ)) + u2,
(21)

where d1 = 50, d2 = 40,

vec(a11) = (1, 1, 2, 2, 1,−1,−1, 1)T , vec(a12) = (2, 1, 1,−2, 2, 1,−2, 2)T

vec(a21) = (2,−2, 2, 1, 2,−2, 1, 2)T , vec(a22) = (1, 2, 2,−2, 1, 1, 2,−2)T ,

vec(b11) = (2, 1, 2, 1,−2, 2,−1, 2)T , vec(b12) = (−2, 2,−2, 2, 1, 2,−2, 2)T ,

vec(b21) = (1,−2, 2,−2, 1, 2, 2, 2)T , vec(b22) = (1, 2, 2, 1, 2,−2,−2, 1)T ,

vec(u1) = (10,−20, 30,−40, 50,−70, 80,−90)T ,

vec(u2) = (90,−40, 10,−60, 30,−80, 50,−20)T ,

fj ([x]p) =
1

1 + e−[x]p
, gj ([x]p) =

1 − e−[x]p

1 + e−[x]p
, p ∈ {0, 1, . . . , 7}, j ∈ {1, 2},

from which we deduce that lf1 = lf2 = 1√
2

and lg1 = lg2 = 2
√

2. The time delay is
taken to be τ = 0.5.

By solving the LMI condition (5) in Theorem 1, we get that system (21) has a
unique equilibrium point which is globally asymptotically stable for ε1 = 1.3270,
ε2 = 0.7199. (The value of P is not given due to space limitations.) The state
trajectories of the elements of octonions x1 and x2 are given in Fig. 1, for four
initial values.

Global Asymptotic Stability for Octonion-Valued Neural Networks 447

Fig. 1. State trajectories of elements of x1 and x2 in Example 1

5 Conclusions

The existence and uniqueness of the global equilibrium point for octonion-valued
recurrent neural networks with time delay was proved using the homeomorphism
theory. A sufficient criterion was derived in terms of linear matrix inequalities,
which assures that the equilibrium point is also globally asymptotically stable,
by making the assumption that the activation functions satisfy the Lipschitz
condition. The effectiveness of the proposed criterion was illustrated by giving a
numerical example.

It is very likely that the future will bring even more applications for the
complex- and quaternion-valued neural networks, and also for their generaliza-
tion, namely the Clifford-valued neural networks. Especially due to the property
of being a normed division algebra that the octonion algebra has, octonion-valued
neural networks can represent an alternative to networks defined on Clifford alge-
bras of dimension 8.

References

1. Arena, P., Fortuna, L., Muscato, G., Xibilia, M.: Multilayer perceptrons to approx-
imate quaternion valued functions. Neural Netw. 10(2), 335–342 (1997)

2. Arena, P., Fortuna, L., Occhipinti, L., Xibilia, M.: Neural networks for quaternion-
valued function approximation. In: International Symposium on Circuits and Sys-
tems (ISCAS), vol. 6, pp. 307–310. IEEE (1994)

3. Buchholz, S., Sommer, G.: On Clifford neurons and Clifford multi-layer percep-
trons. Neural Netw. 21(7), 925–935 (2008)

4. Dray, T., Manogue, C.: The Geometry of the Octonions. World Scientific, Singapore
(2015)

5. Forti, M., Tesi, A.: New conditions for global stability of neural networks with
application to linear and quadratic programming problems. IEEE Trans. Circ.
Syst. I: Fundam. Theory Appl. 42(7), 354–366 (1995)

448 C.-A. Popa

6. Hirose, A.: Complex-Valued Neural Networks, Studies in Computational Intelli-
gence, vol. 400. Springer, Heidelberg (2012)

7. Hopfield, J.J.: Neural networks and physical systems with emergent collective com-
putational abilities. Proc. Nat. Acad. Sci. U.S.A. 79(8), 2554–2558 (1982)

8. Hopfield, J.J.: Neurons with graded response have collective computational proper-
ties like those of two-state neurons. Proc. Nat. Acad. Sci. U.S.A. 81(10), 3088–3092
(1984)

9. Liao, X., Chen, G., Sanchez, E.: LMI-based approach for asymptotically stability
analysis of delayed neural networks. IEEE Trans. Circ. Syst. I: Fundam. Theory
Appl. 49(7), 1033–1039 (2002)

10. Liu, X., Chen, T.: Global exponential stability for complex-valued recurrent neural
networks with asynchronous time delays. IEEE Trans. Neural Netw. Learn. Syst.
27(3), 593–606 (2016)

11. Liu, Y., Xu, P., Lu, J., Liang, J.: Global stability of Clifford-valued recurrent neural
networks with time delays. Nonlinear Dyn. 84(2), 767–777 (2016)

12. Liu, Y., Zhang, D., Lu, J., Cao, J.: Global µ-stability criteria for quaternion-
valued neural networks with unbounded time-varying delays. Inf. Sci. 360, 273–288
(2016)

13. Mandic, D.P., Goh, V.S.L.: Complex Valued Nonlinear Adaptive Filters: Noncir-
cularity, Widely Linear and Neural Models. Wiley-Blackwell, Hoboken (2009)

14. Okubo, S.: Introduction to Octonion and Other Non-Associative Algebras in
Physics. Cambridge University Press, Cambridge (1995)

15. Pearson, J., Bisset, D.: Back propagation in a Clifford algebra. In: International
Conference on Artificial Neural Networks, vol. 2, pp. 413–416 (1992)

16. Pearson, J., Bisset, D.: Neural networks in the Clifford domain. In: International
Conference on Neural Networks, vol. 3, pp. 1465–1469. IEEE (1994)

17. Popa, C.-A.: Octonion-valued neural networks. In: Villa, A., Masulli, P., Pons
Rivero, A. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 435–443. Springer, Cham
(2016). doi:10.1007/978-3-319-44778-0 51

18. Snopek, K.M.: Quaternions and octonions in signal processing - fundamentals and
some new results. Przeglad Telekomunikacyjny + Wiadomosci Telekomunikacyjne
6, 618–622 (2015)

19. Song, Q., Yan, H., Zhao, Z., Liu, Y.: Global exponential stability of complex-valued
neural networks with both time-varying delays and impulsive effects. Neural Netw.
79, 108–116 (2016)

20. Song, Q., Zhao, Z.: Stability criterion of complex-valued neural networks with both
leakage delay and time-varying delays on time scales. Neurocomputing 171, 179–
184 (2016)

21. Valle, M.: A novel continuous-valued quaternionic Hopfield neural network. In:
Brazilian Conference on Intelligent Systems (BRACIS), pp. 97–102. IEEE, October
2014

22. Widrow, B., McCool, J., Ball, M.: The complex LMS algorithm. Proc. IEEE 63(4),
719–720 (1975)

23. Zhu, J., Sun, J.: Global exponential stability of Clifford-valued recurrent neural
networks. Neurocomputing 173, Part 3, 685–689 (2016)

http://dx.doi.org/10.1007/978-3-319-44778-0_51

Convolutional Neural Networks for Thai
Poem Classification

Nuttachot Promrit(&) and Sajjaporn Waijanya(&)

Department of Computing, Faculty of Science, Silpakorn University,
Sanam Chandra Palace Campus, Muang District, Nakhon Pathom, Thailand

{promrit_n,waijanya_s}@silpakorn.edu

Abstract. In this work, we propose a Convolutional Neural Networks (CNNs)
that able to be unsupervised feature learning to classify Thai poem (Klon-8)
categories and Thai poem sentiment analysis. Thai poem has prosody, syllable
rhyme and rhythm, there are challenges and different from prose text classifi-
cation. The input of model representation by the vector (word2vec) generated
from Thai-Text corpus 5.9 Million words. We perform the experiments by
comparing with Support Vector Machine (SVM) and Naïve Bayes. CNNs
showed the performance of poem categories 83% and performance of sentiment
analysis 61%. CNNs showed a good performance, although unused knowledge
about the composition of the poem for feature extraction.

Keywords: Poem classification � Poem sentiment analysis � Convolutional
neural networks � Thai poem � Klon-8 � Word2Vec

1 Introduction

Klon-8 is the poem that has been most popular in Thailand since 200 years ago [1].
Nevertheless, writing klon-8 by corrects prosody and beautiful melodious must practice
very hard. Since the poem is the language art that has exquisiteness and beautiful
language. To continue the cultural heritage as Thai Poem Klon-8 by computer and
information technology. Then we started the project for developing Artificial intelli-
gence to compose Klon-8. At the beginning, machine is able to understand klon-8 by
poem category classification and poem sentiment analysis.

The poem classification have to use feature extraction same with other text clas-
sification. However, the stringent prosody of the poem such as a number of syllables,
rhyme position and words rhymes to be the cause of incomplete sentence. Incomplete
sentence in klon-8 has no subject and object in sometimes. The example of klon-8
1 unit (1 baat) in Thai is the phonetic
alphabet is “din^1 nam^4 fai^1 fon^5 fa;^4 lom^1 ?a;^1ka;d^2 - phv;d^3
rx;^3tha;d^3 kha;w^3 pla;^1 than^1ja;^1ha;n^5”. Then translate to English is
“earth, water, fire, rain, sky, wind, air. - plants, minerals, fish, rice, cereals”. From the
example the underline word is internal rhyme and bold is external rhyme. All words
from the example are only “noun”. Feature extractions such as syntactic feature and
entity feature need the quite complete sentence. By these reason we will not use the

© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 449–456, 2017.
DOI: 10.1007/978-3-319-59072-1_53

syntactic feature and entity feature for poem classification and sentiment analysis. Then
we use Word2Vec that is embedding feature extraction for Thai poem klon-8 instead.

The appearance of above feature extraction, the embedding feature is effortless
method and the knowledge of Thai-poem klon-8 is not required. This research selected
the embedding feature to extract the feature of klon-8. The result of feature extraction to
be the input of convolutional neural networks (CNNs) for classifications. We use
Word2Vec that is embedding feature extraction to classify poem into 7 categories
include “Royalty”, “Festival”, “Parent+Teacher”, “Advise”, “Happy in Love”, “Bro-
ken” and “Depress”. And sentiment analysis 3 emotional include “good”, “normal” and
“bad”. We estimated and expected the result by CNNs will be better than Support
Vector Machine and Naïve Bayes.

2 Related Works

Text Classification is one important task in Natural Language Processing (NLP). Key
task of most researches text classification is feature extraction. Text engineering for
feature extraction including syntactical parsing, entity extraction, statistical features and
word embedding. The popular methodologies of prose and poem text category clas-
sification are Support Vector Machine (SVM), Latent Dirichlet Allocation (LDA) and
Term Frequency–Inverse Document Frequency (TF-IDF) [2–4]. Besides category
classification, the sentiment analysis is another important task. Traditional NLP
research often use Naive Bayes and SVM to analyze user’s text such as reviews and
social post [5–7]. For poem sentiment analysis we found only 1 work, they use
weighted personalized page rank and lexical network to analyze sentiment of classical
Chinese poem [8].

Text feature extraction technique such as TF-IDF and LDA must have huge
training dataset to build bag of word. On the other hand, Word2Vec [9] has use bag of
word from text corpus instead of training data. Normally, collecting Thai text corpus is
easier than collecting Thai Poem training set. For other text feature extractions such as
syntactical parsing or named entity recognition, they are necessary for prose text and
completed sentence but the characteristic of Thai poem is not similar. Thai poem has
quite complexity prosody and most of them have the incomplete sentence.

This research used Word2Vec instead of TF-IDF to embedding words in the poem.
Word2Vec is used for learning vector representations of words. We applied the con-
tinuous skip-gram model in Word2Vec that used the current word to predict the sur-
rounding window. Then the position of words in vector space can represent the
semantic of words.

Since, Thai Poem text feature extraction used Word2Vec represent word not whole
sentence. The effortless way to extract feature be applied by Convolutional Neural
Networks (CNNs) [10, 11]. CNNs is popular methodology in many domain [12–14].
However we never found researcher uses CNNs for Poem Category Classification and
Poem Sentiment Analysis before.

450 N. Promrit and S. Waijanya

3 Model and Methodology

3.1 Process Overview

This research use Thai language to be input of process. We separated processes into 2
main process groups include (1) the preparation process and (2) the word embedding
and classification process has shown in Fig. 1. The preparation process including with
Thai word segmentation and Thai poem transformation. Because of the sentence in
Thai language has no spaces, that mean it’s no stop word. Thus, we must have word
segmentation process. Thai word segmentation will separate words from 2 types of
content Thai-poem and Thai-prose (news, encyclopedia, books, etc.). The output of
word segmentation will be Thai Text corpus and only output of word segmentation
from Thai-poem will send to Thai poem transformation process and creating to Thai
poem training data and test data.

In the word embedding and classification process, Word2Vec process use data from
ThaiText corpus and the result of this process is Thai word embedding (Thai-
Word2Vec), it is input for Word2Vec lookup process. The result of Word2Vec lookup
is input to classification process both poem category classification and poem sentiment
analysis.

The evaluation process is last step to evaluate the performance of our model versus
SVM and Naïve Bayes.

Fig. 1. Process overview of convolutional neural networks for Thai poem classification model

Convolutional Neural Networks for Thai Poem Classification 451

3.2 Thai Poem (Input)

To understand what is klon-8 poem, the rhyme and prosody term of klon-8 has shown
in Fig. 2, it has prosody for number of syllable in line. In each line are 7 to 9 syllables
allowed. If one line is having more than 9 or less than 7 syllables, an error is implicated
in the length of the line. Moreover, Thai poem klon-8 has rhyme. The rhyme of klon-8
means syllables in “rhyme positions” must have same vowel sound and same
spelling-sound such as “rak^4” (: love) and “nak^2” (: hard) but its phoneme must
not duplicated.

For prose writing, Syntactic will complete by grammar. But each “Wak”, “Baat”
and “Bot” in Thai poem can write without syntactic grammar. Sometimes poets may be
starting their poem by “verb”. An example of “Wak” that starting with “verb” such as

translates word by word to English is “hold the hands look in eyes
saylove”. It’s not right grammar and incomplete the sentence, but in Thai language,
reader can understand the meaning of this “Wak”. It’s mean “2 people hold the hands
of each other and look in their eyes then say the word love”. This is challenge to
convert text data as Thai poem to Feature.

3.3 Thai Word Segmentation

Refer to Thai poem Klon-8 structure in Fig. 2, Syllables are very important in prosody
of Thai Poetry. Each “Wak” has a rule for number of syllables. The relation between
“Wak” and “Bot” has to check the sound of the syllable. But the syllable has no
meaning by itself because it is sound. The unit with meaning is word and word consists
of one syllable or many syllables.

In this work used Thai word segmentation API [15] to cut words from Thai Poem
both training set and test set by using longest matching with dictionary base technique.
We also cut word from Thai prose content in preparation process to be ThaiText
corpus.

Fig. 2. Thai poem Klon-8 structure and prosody

452 N. Promrit and S. Waijanya

3.4 Word2Vec

To preparing Word Vectors to be input data for Convolutional Neural Network model,
we selected Word2Vec by define size of word vectors 200 dimension and train
Word2Vec by skip-gram model using ThaiText corpus 5.9 Million words from 5 online
resources including with (1) “BEST I Corpus” by NECTEC (2) Contemporary Poets
Society-www.kawethai.com (3) www.wannakadee.com (4) www.thaipoem.com and
(5) www.aromklon.com

The result of Word2Vec from Thai Text corpus in Fig. 3 shows a vector of con-
tinuous value that represents semantic attributes of the words with t-SNE [16]. The
example of words with similar meaning in Thai are = “you” and = “you”.
The example of words with semantic relation in Thai are = “speak”, =
“think”, = “ask”, =“call”.

speak, think,
ask, call

you

Fig. 3. Word2Vec from ThaiText corpus

Convolutional Neural Networks for Thai Poem Classification 453

http://www.kawethai.com
http://www.wannakadee.com
http://www.thaipoem.com
http://www.aromklon.com

3.5 Convolutional Neural Network

Our model in Fig. 4 shows the process of Convolutional Neural Network model. The
input of this model is Thai Poem Word Embedding. Each word in the poem is rep-
resented by each vector. Size of vector is k-dimension and the number of words is n.

Fig. 4. Convolutional neural network model

In case of the poem category classification, n is 72 words and for the poem sen-
timent analysis, n is 18 words. In the step of input matrix preparation, if number of
word has not full we will be padding by zero vectors. Then the shape of input matrix is
n � k.

Convolutional Layer has input shape is n � k then transforms to be feature maps 3
shapes. The filter had been slide down on input matrix by 1 word for create the feature
map. The shape of filter is ROW � k, when ROW including with 2, 3 and 4. Then the
shape of feature maps isW1 � H1 � D1. TheW1can calculate by (1)H1 is 1 andD1 is 64.

W1 ¼ ðn� ROW þ 1Þ ð1Þ

Next step, we create the new feature maps by add the previous feature maps with
bias and sent to Relu activate function.

After new feature maps layer, we create the matrix shape 192 � 1 by used
1_maxpooling method. It was selected maximum value in each feature map and
concatenates each other. We also used dropout technique to solve the over fitting
problem by define dropout rate is 0.5 while training the model. Finally, after dropout in
fully connected layer, the max value was selected to represent the poem category and
sentiment type without applied softmax activates function.

4 Experimental and Result

The experiments in this work had focusing on 2 main tasks poem category classifi-
cation and sentiment analysis. Training data for the poem category classification is 500
poems and testing data is 55 poems. Each poem has its length 2 “bot” (see in Fig. 2).
Training data for the poem sentiment analysis is 2000 “baat” and testing data is 220
“baat”.

454 N. Promrit and S. Waijanya

We selected the Word2Vec parameter (k-dimension) and CNNs parameter (number
of feature map) by adjusting in an experimental. The results of poem category clas-
sification and poem sentiment analysis by CNNs as shown in Table 1. Then we
compare with SVM and Naïve Bayes. The results of poem category classification and
poem sentiment analysis by SVM and Naïve Bayes as shown in Table 2.

The results from the experiment, k-dimension = 200 and number of feature = 64
perform the best prediction result is 83% in poem category classification and 61% in
poem sentiment analysis. Although the poem sentiment analysis has 3 classes which
smaller than number of classes of poem categories. But the accuracy of sentiment
analysis is not better than poem category classification. It may be because of Thai poems
often using the metaphors that compose with multi emotional in a sentence (baat). The
example is translated to English is “The turbu-
lence winds make people feel stunning, But It’s amazing to know the wind direction”.

Comparing with SVM and Naïve Bayes, CNNs had shown the accuracy better than
both models because only Word2Vec feature cannot present the concept of sentence
such as name entity and path of speech.

5 Conclusion and Future Work

In this research, we used CNNs model and adjusted parameters for Thai poem category
classification and sentiment analysis. This is first research which classified the poem by
CNNs. We used the Word2Vec embedding to be input for CNNs. The Word2Vec had
built amount of Thai Text corpus 5.9 million words. The large size of the corpus can
build words volume in the bag of word to be enough for the word embedding process.
For training the model, even though we use small training dataset but the propose
model can performed the best over SVM and Naïve Bayes. The results have shown that

Table 1. The results of poem category classification by CNNs

k-dimension Number of
feature-maps

Accuracy of poem category
classification

Accuracy of poem
sentiment analysis

128 32 68.00% 54.00%
128 64 70.00% 52.00%
200 32 80.00% 57.20%
200 64 83.00% 61.00%

Table 2. The results of poem sentiment analysis by SVM and Naive Bayes

Models Accuracy of poem
category classification

Accuracy of poem
sentiment analysis

CNNs
(k = 200, feature maps = 64)

83.00% 61.00%

SVM 16.36% 24.54%
Naïve Bayes 14.54% 41.36%

Convolutional Neural Networks for Thai Poem Classification 455

CNNs method can develop the machine’s ability to classify the categories and analyses
the sentiments the Klon-8.

To continue the developing artificial intelligence to compose Klon-8, in the future
we will compare text feature extraction such as syntactic feature, entity feature, sta-
tistical feature and word embedding for Thai Poem domain. Moreover we will apply
them to the next task of Thai poem.

References

1. Thailand’s Shakespeare? Sunthorn Phu | ThingsAsian. http://thingsasian.com/story/
thailands-shakespeare-sunthorn-phu

2. Kumar, V., Minz, S.: Poem classification using machine learning approach. In: Babu, B.V.,
Nagar, A., Deep, K., Pant, M., Bansal, J.C., Ray, K., Gupta, U. (eds.) Proceedings of the
Second International Conference on Soft Computing for Problem Solving (SocProS 2012),
December 28-30, 2012. AISC, vol. 236, pp. 675–682. Springer, New Delhi (2014). doi:10.
1007/978-81-322-1602-5_72

3. Jamal, N., Mohd, M., Noah, S.A.: Poetry classification using support vector machines.
J. Comput. Sci. 8, 1441–1446 (2012)

4. Multilabel Subject-Based Classification of Poetry - Research Publication, http://researchr.
org/publication/LouIT15

5. Vanzo, A., Croce, D., Basili, R.: A context-based model for Sentiment Analysis in Twitter.
In: COLING (2014)

6. Yessenov, K., Misailovic, S.: Sentiment analysis of movie review comments. Methodology,
1–17 (2009)

7. Liparas, D., HaCohen-Kerner, Y., Moumtzidou, A., Vrochidis, S., Kompatsiaris, I.: News
articles classification using random forests and weighted multimodal features. In: Lamas, D.,
Buitelaar, P. (eds.) IRFC 2014. LNCS, vol. 8849, pp. 63–75. Springer, Cham (2014). doi:10.
1007/978-3-319-12979-2_6

8. Hou, Y., Frank, A.: Analyzing sentiment in classical Chinese poetry. In: LaTeCH 2015,
p. 15 (2015)

9. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Representations
in Vector Space. arXiv:13013781 Cs (2013)

10. Le, Q.V., Brain, G., Inc, G.: A Tutorial on Deep Learning Part 1: Nonlinear Classifiers and
the Backpropagation Algorithm (2015)

11. Le, Q.V., Brain, G., Inc, G.: A Tutorial on Deep Learning Part 2: Autoencoders,
Convolutional Neural Networks and Recurrent Neural Networks (2015)

12. Rios, A., Kavuluru, R.: Convolutional neural networks for biomedical text classification:
application in indexing biomedical articles. In: Proceedings of the 6th ACM Conference on
Bioinformatics, Computational Biology and Health Informatics, pp. 258–267. ACM, New
York (2015)

13. Zhang, Y., Wallace, B.: A Sensitivity Analysis of (and Practitioners’ Guide to)
Convolutional Neural Networks for Sentence Classification. arXiv:151003820 Cs (2015)

14. Weston, J., Chopra, S., Adams, K.: #TAGSPACE: semantic embeddings from hashtags.
Presented at the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), Doha, Qatar (2014)

15. Veer Sattayamas: GitHub - veer66/PhlongTaIam: PHP Thai word breaker (2014)
16. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–

2605 (2008)

456 N. Promrit and S. Waijanya

http://thingsasian.com/story/thailands-shakespeare-sunthorn-phu
http://thingsasian.com/story/thailands-shakespeare-sunthorn-phu
http://dx.doi.org/10.1007/978-81-322-1602-5_72
http://dx.doi.org/10.1007/978-81-322-1602-5_72
http://researchr.org/publication/LouIT15
http://researchr.org/publication/LouIT15
http://dx.doi.org/10.1007/978-3-319-12979-2_6
http://dx.doi.org/10.1007/978-3-319-12979-2_6
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1510.03820

A Quaternionic Rate-Based Synaptic Learning
Rule Derived from Spike-Timing Dependent

Plasticity

Guang Qiao1,2, Hongyue Du1, and Yi Zeng2,3,4(B)

1 Harbin University of Science and Technology, Harbin, China
2 Institute of Automation, Chinese Academy of Sciences, Beijing, China
3 Center for Excellence in Brain Science and Intelligence Technology,

Chinese Academy of Sciences, Shanghai, China
4 University of Chinese Academy of Sciences, Beijing, China

{qiaoguang2014,yi.zeng}@ia.ac.cn

Abstract. Most of the differential Hebbian rules derived from Spike-
Timing Dependent Plasticity (STDP) focus on the rates of change of
post-synaptic activity that carries the information about the future and
enables the neural network to predict. And the current model mainly
consider three factors for the adjustment of synaptic weight, namely, the
rate of pre- and post-synaptic activity and the rate of change of post-
synaptic activity. We argue that the rate of change of pre-synaptic activ-
ity also plays an important role on the adjustment of synaptic weight.
Hence, this paper proposes a quaternionic rate-based synaptic learning
rule that depends on four elements, namely, the instantaneous firing rates
of both pre- and post-synaptic neurons and their time derivatives.

Keywords: Spike-Timing Dependent Plasticity · Quaternionic rate-
based synaptic learning rule · Instantaneous firing rate

1 Introduction

Synaptic connectivity and its dynamics play a key role in the brain and artifi-
cial neural networks that implement various functions. Spike-Timing Dependent
Plasticity (STDP) depends the exact timing difference of pre- and post-synaptic
neuron’s spikes and is believed to be the major form of synaptic changes in
neurons [7,15,20]. Many investigations have been done to explore its biological
mechanisms [5,21] and to infer its biological functions [9,16]. Inspired by the
biological explorations, synaptic dynamics and their interpretations have been
investigated as part of a learning procedure in artificial neural networks [1,11].

Because the spikes occur discretely and couple with time tightly, the most
direct research method based on the original discrete forms of STDP would be
computer simulation which is time consuming and noise sensitive. Rate-based
rules, beyond overcoming those shortcomings, have more favourable mathemat-
ical analysis properties to facilitate the analysis of the dynamics of networks
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 457–465, 2017.
DOI: 10.1007/978-3-319-59072-1 54

458 G. Qiao et al.

and to reveal more substantive characteristics, which make it significant to con-
vert the spike-based STDP to a rated-based rule. There have many work which
aim at connecting the STDP rule and rate-based rules. Both the BCM learning
rule and the standard rate-based Hebbian learning rule have been considered
to be identical or equivalent to the STDP learning rule under certain condi-
tions [12,13]. The differential Hebbian rules which take the changes of the firing
rate into account can catch more temporal information and hence are shown to
be the better approximations to the STDP rule [2,17,18,24]. Problematically,
for most of differential Hebbian rules which were derived from the STDP rule,
they emphasized the effect of the time derivative of the post-synaptic firing rate,
and neglected the importance of the time derivative of the pre-synaptic firing
rate, which takes the imbalance into the final formulas. The original STDP rule
seems to be symmetric for the importance of pre- and post-synaptic spikes and
a shift of spike time of post-synaptic neuron can be compensated by the shift
of pre-synaptic spike, which implies maybe the corresponding rate-base rule is
also symmetric and the time derivative of the post-synaptic firing rate and the
time derivative of the pre-synaptic firing rate should share the same importance.
The lack of rate of change of pre-synaptic activity has been noticed and a sym-
metric learning rule has been proposed [19]. This paper proves the STDP rule
can be converted to a rate-based rule that depends on the instantaneous firing
rate of both pre- and post-synaptic neurons and their time derivatives, reveals
the important functions of the time derivative of the pre-synaptic firing rate in
synaptic weights updating, and hence provides an evidence that the symmetric
learning rule is reasonable.

2 Spike-Timing Dependent Plasticity

Spike-Timing Dependent Plasticity (STDP) refers to the phenomenons observed
in biological experiments that the changes in the synaptic strength depends
on the spike time difference Δt = tpost − tpre between the post-synaptic spike
and the pre-synaptic spike. According to [3], “repetitive post-synaptic spiking
within a time window of 20 msec after pre-synaptic activation resulted in Long-
Term Potentiation (LTP), whereas post-synaptic spiking within a window of
20 msec before the repetitive pre-synaptic activation led to long-term depression
(LTD)” [3]. This is referred as biphasic rule. The triphasic STDP function are
also reported [4,23]. Equations 1 and 2 formulate the biphasic and the triphasic
STDP respectively [4].

ΔW =
{

A+exp(−Δt/τ+) Δt > 0
−A−exp(Δt/τ−) Δt < 0 (1)

ΔW = A+exp

(
− (Δt − 15)2

τ+

)
− A−exp

(
− (Δt − 20)2

τ−

)
(2)

It is a common requirement to determine the weight changes in the time
window (t1, t2) through a given spike train of pre- and post-synaptic neurons. Let

A Quaternionic Rate-Based Synaptic Learning Rule Derived from STDP 459

Wij(t) denote the synaptic weight from pre-synaptic neuron j to post-synaptic
neuron i at time t. xi(t) =

∑
n δ(t−Tn

i), where δ is the Dirac delta function and
Tn

i is the nth spike time of the ith neuron. If all pre- and post-synaptic spike
pairs make contributions to the changes of synaptic strength and all delays are
ignored so that the change happens immediately when a spike occurs, then

Wij(t2) − Wij(t1) =
∫ t2

t1

Aij(t) + Bij(t)dt, (3)

where

Aij(t) =
∫ 0

−∞
f(u)xj(t)xi(t + u)du, Bij(t) =

∫ +∞

0

f(u)xj(t − u)xi(t)du .

The first term Aij(t) counts the effect of all pairs consisting of the pre-synaptic
spike which occurred in time t and the post-synaptic spike which occurred before
the pre-synaptic spike and the spike time difference is negative. The term Bij(t)
counts the effect of all pairs consisting of the post-synaptic spike which occurred
in time t and the pre-synaptic spike which occurred before the post-synaptic
spike. Hence any spike pair which would change the synaptic weight in the time
window (t1, t2) has been counted in the two terms.

3 Relating Spike-Based Learning Rules to Rate-Based
Learning Rules

Since the spikes occurred discretely, it is difficult to analyze the properties of
the spike-based result (described as Eq. 3). It is more favourable to convert it
to a continuous rate-based rule for further analysis. A rate-based updating rule
also has its biological significance more than computational convenience. The
brains are full of noise and uncertainty, including “a few microseconds of jitter
over length of about 10 cm to each spike”, “unreliable release of vesicles in to the
synaptic cleft”, “variant amount of neurotransmitter in each vesicle” [10,14,22].
The brains also have spontaneous spikes and uncertain synaptic delays and need
to face various circumstances, which make themselves eager for a robust rule.
The STDP which depends the exact timing difference of pre- and post-synaptic
neurons’ spikes at the micro level should work through a rate-based way in a
bigger scope so that it could meet the requirement. An intuitive explanation
for how the spike-based STDP can influence the synaptic efficiency through a
rate-based way can be found in [2].

3.1 The Definition of Instantaneous Firing Rate

The average firing rate of neuron is well-defined, while the instantaneous rate is
not. If the pre-synaptic firing rates are known variables, the post-synaptic firing
rate could be defined by relating the firing rate v to the membrane potential u
by a nonlinear monotonically increasing function v = g(u), and the membrane

460 G. Qiao et al.

potential can be calculated from the pre-synaptic firing rate and the synaptic
weights [8]. That definition works well in artificial neural networks for the pre-
synaptic firing rates which represent the features of samples are normally defined
manually. If for the aim to directly set the instantaneous firing rate of certain
neuron based on its spikes train, a possible way is to convolve the spiking train
with a smoothing filter such as a Gaussian profile [6],

φ(t) =
1√
2πτ

exp

(
− t2

2τ2

)
. (4)

Let v(t) represent the instantaneous firing rate at time t, then we can define
an estimate of the instantaneous firing rate via the convolution [6]

v(t) =
∫ +∞

−∞
x(s)φ(t − s)ds. (5)

The parameter τ in Eq. 4 controls the size of the time window over which
spike times are averaged, and

lim
τ→0

v(t) = x(t).

The firing rate of neuron v(t) can also be considered as some probability
measures of neuron to spike. A strong motivation to convert spike-based rule to
rate-based rule is for convenience of further computations and analysis about
the neural network dynamics. In comparison with utilizing Eq. 5 to compute
the instantaneous firing rate of a given spikes train, we prefer to take v(t) as
a primitive quantity in theoretical analysis. An ideal instantaneous firing rate
v(t) should be continuous and smooth enough to apply some mathematical tools
like derivation. The integral of v(t) over any effective interval should be equal
to the amount of spikes occurred in this interval approximately. For the rest of
this paper, we assume v(t) is provided with such properties.

3.2 Rate-Based Aspect of STDP

Spikes that are generated by neurons are with certain degree of randomness, here
we aim to avoid the randomness to some extent. The correlation between the
pre-synaptic neuron’s spikes and the post-synaptic neuron’s spikes is ignored.
It makes sense since there are many pre-synaptic neurons to connect to the
post-synaptic neuron. A spike from one of the pre-synaptic neurons has little
impact on post-synaptic neuron, and for the existence of the spike jitters and
spontaneous spikes, there cannot be a consistent time difference between the
spikes which come from any specified one of the pre-synaptic neurons and the
post-synaptic neuron. If the correlation is ignored, the spike-based learning rule
(as shown in Eq. 3) can be rewritten to the rate-based learning rule through
replacing x(t) by v(t),

Wij(t2) − Wij(t1) =
∫ t2

t1

Aij(t) + Bij(t)dt, (6)

A Quaternionic Rate-Based Synaptic Learning Rule Derived from STDP 461

where

Aij =
∫ 0

−∞
f(u)vj(t)vi(t + u)du, Bij =

∫ +∞

0

f(u)vi(t)vj(t − u)du.

Performing Taylor expansion, v(t+u) = v(t)+uv̇(t)+o(u) is obtained. Since
f(u) has significant value only in a small time window around 0, the value of∫

f(u) · o(u)du can be ignored,

ΔWij = α

∫ t2

t1

vi(t)vj(t)dt + β

∫ t2

t1

vj(t)v̇i(t)dt + γ

∫ t2

t1

vi(t)v̇j(t)dt (7)

where

α =
∫ +∞

−∞
f(u)du, β =

∫ 0

−∞
uf(u)du, γ = −

∫ +∞

0

uf(u)du.

Equation 7 clearly shows there are mainly three items which take effects
on the changes of the synaptic weight, including the product of pre- and post-
synaptic neurons’ firing rate, the product of pre-synaptic neuron’s firing rate and
the time derivative of post-synaptic neuron’s firing rate, and the product of post-
synaptic neuron’s firing rate and the time derivative of pre-synaptic neuron’s
firing rate with their coefficients. The three items take effects together and can
be thought to share the same importance if ignoring their coefficients which
depend on the STDP function they choose. If the STDP function is perfectly
antisymmetric or has the same size between the area which is below x-axis and
the area which is above x-axis, the coefficient α would be zero and the first term
could be omitted. If α �= 0, it may be difficult for the synaptic weight to reach its
stationary point. Since the firing rate is always non-negative and the first item
will always have impact on the synaptic weight to decay or strengthen, depending
on whether the value of α is negative or positive. This indicates perhaps it needs
some other mechanisms to compensate (e.g. to avoid continuous potentiation for
very long time). Inspired by the methods in [24], our model extends the original
conclusion mainly by taking the influence of the rate of change of pre-synaptic
activity into account. Hence it makes a more comprehensive consideration about
the elements which influences the synaptic weight.

3.3 Experimental Validation

Different STDP functions and firing rate functions have been tested to verify
the reliability of the rate-based rule (as shown in Eq. 7). Both biphasic rule (as
shown in Eq. 1) and triphasic rule (as shown in Eq. 2) are tested. In the setting
of biphasic rule, two groups of parameters are used, including A+ = 0.06, A− =
0.06, τ+ = 20, τ− = 20 and A+ = 0.06, A− = 0.03, τ+ = 20, τ− = 20, referred
as balanced biphasic rule and imbalanced biphasic rule respectively [4]. The
parameters of triphasic rule chosen here are the same as in [4], A+ = 0.23, A− =
0.15, τ+ = 200, τ− = 2000. The spike train and the corresponding firing rate

462 G. Qiao et al.

are generated by the following procedures: Set the initial firing rate function
or invoke the generating function p(t) at first, then generate the spiking train
accordingly. The spikes are generated at each discrete time t with probability
proportional to p(t). The firing rate v(t) of the generated spike train is computed
with Eq. 5. Although the spike train was generated according to the initial firing
rate function p(t), the early tests showed it worked well when p(t) was large
if let p(t) be v(t) directly, but failed when p(t) was small. We infer that if
p(t) was small, the spike train would very sparse along the time axis, which
makes the firing rate no longer be p(t), but larger when there is a spike and
smaller when there is not. Smaller p(t) means smaller size of spike samples,
which introduces the contingency and reduces the irrelevance of the pre- and
post-synaptic spikes. Synaptic efficiency is calculated by the spike-based rule and
the rate-based rule respectively. In spike-based rule, all pairs of pre-synaptic and
post-synaptic spikes are taken into account, and numerically only the pairs which
the time difference is less than tens of milliseconds have a significant influence
on the synaptic efficiency.

The experimental results show that the weight changes calculated by the
rate-based rule can match the spike-based rule well, as shown in Fig. 1. The
unbounded amplitude of weight is to show the trends of weight change. All the
four subfigures showed in Fig. 1 are with the balanced biphasic rule. Figure 1(a)
depicts how the weight changes with both spike-based and rate-based rule in the
setting of both pre-synaptic and post-synaptic neuron having constant initial
firing rate. The constant firing rate would not drive the weight away from the
initial point too much with the balance rule. The pre-synaptic neuron’s firing
rate in (b) is sinusoidal function, and hence the line in (b) shows some rhythmical
fluctuations, which clearly emphasizes the importance of the change of the pre-
synaptic neuron’s firing rate in synaptic weight changes. If the changes of firing
rate are synchronized in pre- and post-synaptic neurons, the synaptic weight
would not show significant changes. In (c), both pre- and post-synaptic neurons
have the firing rate of sinusoidal functions with same phases, but the synaptic
weights don’t have significant changes though the firing rates have significant
fluctuations. The unexpected potentiation in the last segment of (c) possibly is
because of noises. Note that if the changes of firing rate have different phase in
pre- and post-synaptic neurons just like (d) in which the pre-synaptic firing rate
is sinusoidal function and the post-synaptic firing rate is cosinoidal function, the
synaptic weight would have significant potentiation or depression. This possibly
indicates if two stimuli happened at the same time, the synaptic weight would not
have significant change. If they happened with fixed delay, the synaptic weight
would be potentiated or depressed. This is a rate-based STDP rule working in
large time scale, which is triggered by stimuli, not the spikes. The imbalanced
biphasic and triphasic rule also show the accordance between the rate-based rule
and the spike-based rule, which is not shown in the figure.

A Quaternionic Rate-Based Synaptic Learning Rule Derived from STDP 463

(a) Balanced biphasic STDP with
constant pre- and post-synaptic firing

rates

(c) Balanced biphasic STDP with
sinusoidal pre- and post-synaptic

firing rates

(b) Balanced biphasic STDP with
sinusoidal pre-synaptic firing rate and

constant post-synaptic firing rate

(d) Balanced biphasic STDP with
cosinoidal pre-synaptic firing rate and

sinusoidal post-synaptic firing rate

Fig. 1. Change of synaptic efficiency with various settings. The blue line represents
the synaptic efficiency calculated by spike-based rule, and red line is calculated by the
rate-based rule. (Color figure online)

4 Discussion

In this paper, we provide a theoretic framework to convert the spike-based synap-
tic efficiency updating rule to the corresponding rate-based rule. Experimental
validations show that the pre- and post-synaptic neurons’ firing rates and their
time derivatives all make contributions to the changes of synaptic efficiency.
This result is obtained under the assumption that the pre-synaptic neurons’
spike train has no relation or weak relation to the post-synaptic neurons’ train.
The experiments testify the spike-based and the rate-based rules are basically
consistent with each other. The rate-based rules have more favourable mathe-
matical analysis properties to facilitate the analysis of the dynamics of networks,
and could be a favourable substitution for spike-based rules.

In comparison to the rate of change of post-synaptic firing rate which has
been shown a great deal of importance to synaptic weight updates, the rate of
change of pre-synaptic firing rate do not possess enough attention in most of
existing rate-based rules derived from STDP. Undoubtedly, the rate of change
of pre-synaptic firing rate is closely related to synaptic weight updating in the
brain, its effect are different from the one of the rate of change of post-synaptic
firing rate. The change of post-synaptic firing rate indicates the change of desired

464 G. Qiao et al.

output. A potentiation on the post-synaptic firing rate indicates a potentiation
on the desired output, and the synaptic weight can enhance itself to produce the
desired output in advance. The weight update with the change of post-synaptic
firing rate enables the neural network to predict. The change of pre-synaptic
firing rate means the change of input, and a potentiation on pre-synaptic firing
rate will make the synaptic weight decay so that the post-synaptic firing rate
remains stable. The weight update with the change of pre-synaptic firing rate
enables the neural network to stabilize. The two factors coordinate and restrain
each other to reach a balanced point to predict and stabilize.

It is very reasonable to believe the rate of change of pre-synaptic firing rate
should also play a big part in the field of artificial neural networks where the
rate of change of pre-synaptic activity is usually ignored. In the basic setting
of feedforward networks, we have features of sample X, label of sample d, and
the network function f which depends on the structure of the network and
the synaptic weights W . Normally, there is a predicted value Y computed by
Y = f(X) and the difference d − Y is utilized to tune the weights by means
of gradient descent and error back-propagation. If taking the predicted value
Y as the firing rate of the previous moment, and the label of sample d as the
firing rate of the next moment, then d − Y could be considered as the rate of
change of post-synaptic activity which is well used in training. For the setting
of some networks, the features X remain unchanged, which makes the rate of
change of pre-synaptic activity be zero. In some other networks, X are changing
while training, but the changes are still dependent on the rate of change of post-
synaptic activity, and the rate of change of pre-synaptic activity has no direct
influence on synaptic weights. If the rate of change of pre-synaptic activity can
be constructed and utilized, it could possibly accelerate the training process
or enhance the capacity of networks. The traditional network structures and
training procedures maybe restrain the utilization of the rate of change of pre-
synaptic activity. How to extend the existing network structures based on the
idea proposed in this paper needs more further explorations.

Acknowledgement. This study was funded by the Strategic Priority Research Pro-
gram of the Chinese Academy of Sciences (XDB02060007), and Beijing Municipal
Commission of Science and Technology (Z151100000915070, Z161100000216124). This
research is conducted at Institute of Automation, Chinese Academy of Science.

References

1. Bengio, Y., Lee, D.H., Bornschein, J., Lin, Z.: Towards biologically plausible deep
learning. arXiv preprint arXiv:1502.04156 (2015)

2. Bengio, Y., Mesnard, T., Fischer, A., Zhang, S., Wu, Y.: STDP as presy-
naptic activity times rate of change of postsynaptic activity. arXiv preprint
arXiv:1509.05936 (2015)

3. Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons:
dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neu-
rosci. 18(24), 10464–10472 (1998)

4. Chrol-Cannon, J., Grüning, A., Jin, Y.: The emergence of polychronous groups
under varying input patterns, plasticity rules and network connectivities. In: The
2012 International Joint Conference on Neural Networks (IJCNN), pp. 1–6 (2012)

http://arxiv.org/abs/1502.04156
http://arxiv.org/abs/1509.05936

A Quaternionic Rate-Based Synaptic Learning Rule Derived from STDP 465

5. Froemke, R.C., Letzkus, J.J., Kampa, B.M., Hang, G.B., Stuart, G.J.: Dendritic
synapse location and neocortical spike-timing-dependent plasticity. Front. Synaptic
Neurosci. 2, 29 (2010)

6. Gabbiani, F., Cox, S.J.: Mathematics for neuroscientists. Academic Press,
Cambridge (2010)

7. Gerstner, W., Kempter, R., van Hemmen, J.L., Wagner, H.: A neuronal learning
rule for sub-millisecond temporal coding. Nature 383(6595), 76–78 (1996)

8. Gerstner, W., Kistler, W.M.: Mathematical formulations of hebbian learning. Biol.
Cybern. 87(5–6), 404–415 (2002)

9. Guyonneau, R., VanRullen, R., Thorpe, S.J.: Neurons tune to the earliest spikes
through STDP. Neural Comput. 17(4), 859–879 (2005)

10. Henneman, E., Mendell, L.M.: Functional organization of motoneuron pool and its
inputs. In: Comprehensive Physiology, pp. 423–507 (2011). http://onlinelibrary.
wiley.com/doi/10.1002/cphy.cp010211/abstract;jsessionid=DC8038A8B928C8490
64AFF986290D55A.f04t01

11. Iakymchuk, T., Rosado-Muñoz, A., Guerrero-Mart́ınez, J.F., Bataller-Mompeán,
M., Francés-Vı́llora, J.V.: Simplified spiking neural network architecture and STDP
learning algorithm applied to image classification. EURASIP J. Image Video
Process. 2015(1), 1–11 (2015)

12. Izhikevich, E.M., Desai, N.S.: Relating STDP to BCM. Neural Comput. 15(7),
1511–1523 (2003)

13. Kempter, R., Gerstner, W., Van Hemmen, J.L.: Spike-based compared to rate-
based hebbian learning. Adv. Neural Inf. Process. Syst. 11, 125–131 (1999)

14. Lass, Y., Abeles, M.: Transmission of information by the axon: I. Noise and memory
in the myelinated nerve fiber of the frog. Biol. Cybern. 19(2), 61–67 (1975)

15. Markram, H., Sakmann, B.: Action potentials propagating back into dendrites trig-
ger changes in efficacy of single-axon synapses between layer V pyramidal neurons.
Soc. Neurosci. Abstr. 21, 2007 (1995)

16. Nessler, B., Pfeiffer, M., Maass, W.: STDP enables spiking neurons to detect hidden
causes of their inputs. In: Advances in Neural Information Processing Systems, pp.
1357–1365 (2009)

17. Rao, R.P., Sejnowski, T.J.: Spike-timing-dependent hebbian plasticity as temporal
difference learning. Neural Comput. 13(10), 2221–2237 (2001)

18. Roberts, P.D.: Computational consequences of temporally asymmetric learning
rules: I. Differential hebbian learning. J. Comput. Neurosci. 7(3), 235–246 (1999)

19. Scellier, B., Bengio, Y.: Equilibrium propagation: bridging the gap between energy-
based models and backpropagation. arXiv preprint arXiv:1602.05179 (2016)

20. Senn, W., Pfister, J.P.: Spike-timing-dependent plasticity, learning rules. In:
Jaeger, D., Jung, R. (eds.) Encyclopedia of Computational Neuroscience, pp. 1–10.
Springer, Heidelberg (2014)

21. Sjöström, P.J., Rancz, E.A., Roth, A., Häusser, M.: Dendritic excitability and
synaptic plasticity. Physiol. Rev. 88(2), 769–840 (2008)

22. Stevens, C.F., Wang, Y., et al.: Changes in reliability of synaptic function as a
mechanism for plasticity. Nature 371(6499), 704–707 (1994)

23. Waddington, A., Appleby, P.A., De Kamps, M., Cohen, N.: Triphasic spike-timing-
dependent plasticity organizes networks to produce robust sequences of neural
activity. Front. Comput. Neurosci. 6, 88 (2012)

24. Xie, X., Seung, H.S.: Spike-based learning rules and stabilization of persistent
neural activity. Adv. Neural Inf. Process. Syst. 12, 199–208 (2000)

http://onlinelibrary.wiley.com/doi/10.1002/cphy.cp010211/abstract;jsessionid=DC8038A8B928C849064AFF986290D55A.f04t01
http://onlinelibrary.wiley.com/doi/10.1002/cphy.cp010211/abstract;jsessionid=DC8038A8B928C849064AFF986290D55A.f04t01
http://onlinelibrary.wiley.com/doi/10.1002/cphy.cp010211/abstract;jsessionid=DC8038A8B928C849064AFF986290D55A.f04t01
http://arxiv.org/abs/1602.05179

Cognitive Load Recognition Using Multi-channel
Complex Network Method

Jian Shang1, Wei Zhang2, Jiang Xiong2, and Qingshan Liu1(B)

1 School of Automation, Huazhong University of Science and Technology,
Wuhan 430074, China

{shangjian,qsliu}@hust.edu.cn
2 College of Computer Science and Engineering,

Chongqing Three Gorges University, Chongqing 404000, China
xjcq123@sohu.com, cqec126@126.com

Abstract. Modeling the cognitive events of human beings is an inter-
esting task, but finding effective representations from electroencephalo-
gram (EEG) data is one of the challenges. Recently, complex network
analysis has gained considerable attention in the time series analysis,
but most of the analysis is devoted to investigating single time series
or just the time domain statistical features. Herein, we propose a novel
approach using the frequency domain features to construct connections
between different EEG channels to generate a multi-channel network.
First, we transform the EEG time series to a frequency domain feature
using the spectrogram of three frequency bands. Next, we generate a
multi-channel network using the space distance and the classification is
based on the network structural features. The results indicate that the
proposed method gets good performance and is more efficient than the
deep learning method to some degrees.

Keywords: Cognitive events · Electroencephalogram (EEG) · Fre-
quency domain features · Multi-channel complex network

1 Introduction

Recognizing individual’s cognitive load is important in Brain-Computer Inter-
faces (BCI) and daily life. Cognitive load beyond individual’s capacity could
lead to overload state that may put too much pressure on the brain causing
confusion and lower the learning ability [1]. EEG is a widely used signal which
meatures changes of electrical voltage on the scalp directly for its high temporal
resolution, non-invasion and relatively low cost. Here, we explore the capabil-
ities of EEG for reflecting the cognitive activities. In fact, there’s numerous
research using continuous EEG time series and applying supervised learning
algorithms such as support vector machines (SVMs) [2–4]. Deep neural networks

This work was supported in part by the National Natural Science Foundation of
China under Grant 61473333.

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 466–474, 2017.
DOI: 10.1007/978-3-319-59072-1 55

Cognitive Load Recognition Using Multi-channel Complex Network Method 467

have achieved great success in many recognition tasks such as computer vision,
speech and text recognition [5–8]. Convolutional and recurrent neural networks
have shown their potential in extracting representations from EEG signals [9–11].
Spampinato et al. [12] propose to read the mind and transfer human visual capa-
bilities to computer vision methods using Recurrent Neural Network (RNN) and
Convolutional Neural Network (CNN). In [4] Bashivan et al. propose a novel app-
roach to learn robust representations from EEG data by transforming the time
series into 2 − D images based on deep learning. They adopt CNN and Long
Short-Term Memory (LSTM) network to deal with the single-frame image app-
roach and the multi-frame approach and reach the state-of-art classification error
on the cognitive load classification task dataset. But it costs a lot making images
from EEG time series and sometimes lack of the necessary spatial coordinates
of eletrodes.

There has been a growing interest in using networks to analyse time series
over the last decade and some impressive results in recognition tasks have been
achieved using EEG data, such as sleep stage classification, motor imagery and
Alzheimer’s disease recognition [13–15]. Several approaches have been proposed
to transform time series into networks. He et al. [15] propose to analysis motor
imagery EEG signals based on probabilistic graphical models [16], using bayesian
network with gaussian distribution. Zhang and Small [17] have constructed com-
plex networks using a single node to represent each cycle from pseudo-periodic
time series. Wang et al. [14] use limited penetrable visibility graph (LPVG) and
phase space method to map single EEG series into networks and study the dif-
ference between different regions. Diykh and Li [13] divide each EEG segment
into several sub-segments and extract different statistical features to construct
networks. The topology of networks can help better understand the relationships
between time series. However, these studies are devoted to investigating single
time series or just using the time domain features rather than the frequency
domain. And the threshold to determine the connection of networks has to be
set manually according to the classification performance, which is not automatic
or smart.

In this paper, we present a novel automatic cognitive load classification
method, which uses the frequency domain features to construct connections
between different EEG channels to generate a multi-channel network. Our app-
roach is different from the previous which attempts to use time domain features
to represent the single channel EEG data. Instead, the frequency domain features
such as power spectrum of each channel will be extracted as representations of all
the 64 channels’ EEG data. Here, the memory operations related three frequency
bands, theta (4–7 Hz), alpha (8–12 Hz) and beta (13–30 Hz), will be used as
separate measurement of each electrode. Then we adopt an adaptive threshold
which is equal to the mean space distance to determine the connections of every
two channels, and construct the multi-channel networks automatically. The net-
work structural features such as degree distribution, clustering coefficient of each
complex network will be extracted and fed to a classifier.

468 J. Shang et al.

2 Main Method

This paper proposes an efficient automatic method to classify different cognitive
load levels. Figure 1 illustrates the whole procedure of the proposed method. To
evaluate the effectiveness of the method, the extracted features of multi-channel
network and the original three bands’ frequency features are forwarded to the
SVM classifiers. We also compare the classification error with the deep learning
method in [4]. The details are explained in the following sections.

Fig. 1. Block diagram of the automatic cognitive load levels classification.

2.1 EEG Dataset

The dataset [4] used in this paper was collected during a working memory exper-
iment which fifteen participants performed. The dataset was recorded from 64
electrodes which were placed over the scalp at the distances of 10% (the stan-
dard 10–10 location). We chose 13 sujects’ datasets which were not damaged
by the excessive noise and artifacts in the recording process. And the sampling
frequency was 500 Hz. There were 2670 samples from all the 13 subjects, and
every sample corresponded to a trial with the length of 3.5 s. Four classes 1, 2,
3, 4 define the different cognitive load levels, and each of the trial conditions
contains 2, 4, 6, 8 characters corresponding to the four load levels respectively.
The participants needed to indicated whether the test character was among the
2, 4, 6 or 8 characters to mark the load levels.

2.2 Signal Preprocessing

Our purposed method is to map the EEG time series to a network. But in the
previous works, the time domain features were usually extracted to generate the
network. Here, we propose a novel approach to extract the frequency domain
of every channel to generate a multi-channel network. First, fast Fourier trans-
form is performed on every channel of the EEG time series to estimate the

Cognitive Load Recognition Using Multi-channel Complex Network Method 469

power spectrum of the data. Then, we extract the three frequency bands, theta
(4–7 Hz), alpha (8–12 Hz) and beta (13–30 Hz), which are related to the memory
operations to represent every channel, and we use the sum of squared absolute
values within each band as the features of every electrode. So every channel has
a representation of three frequency band features.

2.3 Generate a Multi-channel Complex Network from the
Frequency Domain Representations

A network can describe the relationship between the channels, and the nodes
correspond to each channel, while the connection between each pair of nodes
refers to the relationship. In our work, we employ the frequency domain repre-
sentations to generate a network to classify the four different load levels. Each
channel consisting three frequency bands’ features can be considered as a data
point or a basic node in the network. Then we have to determine the connec-
tions between every two nodes. The structural properties of each network can
be calculated and forwarded to a classifier. As for the connection between two
nodes, according to [17], we employ the space distance. Let d (xi , xj) represents
the space distance between two nodes xi , xj . If the distance is less or equals to
a predetermined threshold, there is a connection between the two nodes; i.e.,

if d (xi , xj) ≤ D (1)

where D is the predetermined threshold. Here, we choose an adaptive value of
D as

D =
∑

d (xi , xj)
n ∗ (n − 1)

(2)

where n represents the number of nodes in the network.
The threshold is equal to the mean space distance, so we can have almost half

of the connections existing, and the threshold is adaptive to every trial of the
datasets. We don’t need to choose the threshold manually, and the performance
is good enough in the classification results. After the network is constructed, we
get the adjacent matrix A from the connections of the network using

A (xi , xj) =

{
1, if d (xi , xj) ≤ D

0, otherwise
(3)

Figure 2 shows an example of constructed complex networks consisting of
64 nodes. The lines between every two nodes represent the connections of the
network.

2.4 Network Structural Features

In order to analyze the structural features of networks, we calculate the degree
distribution, clustering coefficient and average clustering coefficient as three dif-
ferent topological characteristics.

470 J. Shang et al.

Fig. 2. The constructed complex network with 64 nodes. The number of each node
refer to the corresponding electrode which implies the spatial position. Different color
means different degree, and the nodes in the same color have the same degree. (Color
figure online)

Degree Distribution. The degree refers to the number of connections of a
node linking other nodes in the network. Here we investigate each node’s degree
and use the degree distribution as a feature for classification. As for the average
degree (AD) which is popularly used in the previous work, because of the adap-
tive threshold we choose, the networks we get from different EEG time series
will almost have the same size and average degrees, so average degree is not
the most significant feature in our work. The average degree is evaluated in the
experiment section by

D̄ =
1
n

∑
Di (4)

where Di is the degree of the ith node, and n is the number of nodes in the
network.

Clustering Coefficient. The clustering coefficient of a node in a network quan-
tifies how close its neighbours are. By analyzing the properties of its neighbor
nodes, clustering coefficient measures the degree of local interconnections of a
node, and it is a significant local feature for the network. In an undirected graph,
if node i has ki neighbours, there’s ki ∗ (ki − 1)/2 connections among the nodes
within the neighbourhood. Thus, the clustering coefficient can be defined as

Ci =
2 ∗ ei

ki ∗ (ki − 1)
(5)

Cognitive Load Recognition Using Multi-channel Complex Network Method 471

where ei is the number of links in the neighborhood of the node i . And the
average clustering coefficient is the clustering coefficient over all the nodes

C̄ =
1
n

∑
Ci (6)

2.5 Classification Methods

In this work, in order to demonstrate the effectiveness of our approach, we employ
the standard Support Vector Machines (SVM) to classify the structural features
of the network. And we compare our approach against the state-of-the-art deep
learning method in experiments. The k-fold cross validation and the test error
are used to evaluate the performance. Let accuracyk represents the k-th fold
classification accuracy, then the performance of cross validation method can be
evaluated using

performance =
1
k

∑
accuracyk (7)

where k is the number of folds which the dataset are divided to, and performance
is the average accuracy of k folds.

3 Experimental Results

In this section, we evaluate the efficiency of our method using 10-fold cross
validation and test error. We divide the dataset into 10 folds of equal size and
every time choose one fold to test the performance of the classifier trained by all
the other subsets, repeating 10 times. For comparisons, the original frequency
features and the structural features of networks are forwarded to a standard
SVM. We also compare the test error of the proposed approach with the popular
deep learning method.

3.1 Multi-channel Network of Different Cognitive Load Levels

The method is based on the concept that the structure of different cognitive load
level’s network topology is different. It has been manifested that different brain
activities or some mental illness may lead to the difference of the constructed
complex network, but recognizing individual’s different cognitive load levels is
to identify heathy individual’s same activity. So we need to figure out whether
the network method is suitable for this task. Figure 3 illustrates the group dif-
ferences of adjacency matrixes of typical networks of different cognitive loads.
The adjacency matrixes have been transformed into grayscale image for visual-
ization. The horizontal axis and vertical axis show the 64 nodes. Every white
point means the connection between the corresponding nodes. On the contrary,
the black means no connection. As you can see, although the number of con-
nections may seem to be almost the same, the connection distribution shows
strong difference apparently. In other words, the degree distribution could be
the significant feature to identify the different cognitive load levels.

472 J. Shang et al.

Fig. 3. Differences of adjacency matrixes of typical networks with different cognitive
load levels.

3.2 Performance Comparison Among Different Features

In the experiment, we first compare the performance of different network struc-
tural features, the degree distribution and the clustering coefficient. Four factors
need to be evaluated, the degree distribution, average degree, clustering coef-
ficient and average clustering coefficient. The average accuracy of 10-fold cross
validation is 33.86%, 32.28%, 85.66%, 78.65% and 86.33% respectively, as is
shown in Fig. 4.

Fig. 4. The average accuracy among different features.

We can find that the average degree and average clustering coefficient could
not recognize the right load levels. The reason is that we choose the adaptive
threshold as the mean space distance, so almost half of the connections retained
lead to the same average degree for different cognitive load levels. The two most
important features, the degree distribution and the clustering coefficient, are
extracted for the final classification.

3.3 Performance Comparison Among Different Models

As mentioned above, for the classification experiment, we extract the degree dis-
tribution and the clustering coefficient as features of the multi-channel networks
using SVM classifier. We compare our results with the popular deep learning
method in [4] using two measures (i.e., test error and number of parameters).

Cognitive Load Recognition Using Multi-channel Complex Network Method 473

Table 1. Comparisons of test error (%) among different models

Models Test error Number of parameters

Multi-channel networks + SVM 10.36 −
ConvNet + 1D−Conv [4] 11.32 441 k

ConvNet + LSTM [4] 10.54 1.34 mil

ConvNet + LSTM/1D−Conv [4] 8.89 1.62 mil

The results are shown in Table 1, we can find that the proposed method is
almost getting the same performance as the deep learning method. The perfor-
mance of multi-channel network is equal or even better than two of the methods
in the literature, but much lower than the CNN + LSTM with 1D−Conv method
which uses multi-frame continuous images containing more information in the
time domain. The number of parameters is tremendous and needs a long time to
train the deep learning model and to generate the images from EEG time series,
but the proposed multi-channel network method without any parameter is more
efficient to some degrees.

4 Conclusions

This paper proposes a novel approach using the frequency domain features to
construct connections between different EEG channels to construct a multi-
channel network. First, we transform the EEG time series to a frequency domain
feature using the spectrogram of three frequency bands. Next, we generate a
multi-channel network using the space distance and the classification is based on
the network structural features. The results indicate that the proposed method
is more efficient than the deep learning method to some degrees. The proposed
approach can be used to identify individual’s cognitive load or even the mental
states. However, in this paper the multi-channel network method only uses the
frequency domain features to construct networks, but the time domain features
are not considered. In the future work, we will explore the probability of using
different parts of the time series to construct several networks and connect them
together to learn more robust representations and make full use of the time
domain information.

References

1. Sweller, J., Van Merrienboer, J.J., Paas, F.G.: Cognitive architecture and instruc-
tional design. Educ. Psychol. Rev. 10, 251–296 (1998)

2. Subasi, A., Gursoy, M.I.: EEG signal classification using PCA, ICA, LDA and
support vector machines. Expert Syst. Appl. 37, 8659–8666 (2010)

3. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of clas-
sification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4,
R1–R13 (2007)

474 J. Shang et al.

4. Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representations from EEG
with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.
06448 (2015)

5. Graves, A., Liwicki, M., Bunke, H., Schmidhuber, J., Fernández, S.: Unconstrained
on-line handwriting recognition with recurrent neural networks. In: Advances in
Neural Information Processing Systems, pp. 577–584 (2008)

6. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.:
Large-scale video classification with convolutional neural networks. In: Advances
in Neural Information Processing Systems, pp. 1725–1732 (2014)

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Proceedings of the Neural Information Processing
Systems Conference and Workshop, pp. 1097–1105 (2012)

8. Zhang, X., LeCun, Y.: Text understanding from scratch. arXiv preprint arXiv:1502.
01710 (2015)

9. Mirowski, P., Madhavan, D., LeCun, Y., Kuzniecky, R.: Classification of patterns
of EEG synchronization for seizure prediction. Clin. Neurophysiol. 120, 1927–1940
(2009)

10. Cecotti, H., Graser, A.: Convolutional neural networks for P300 detection with
application to brain-computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell.
33, 433–445 (2011)

11. Güler, N.F., Übeyli, E.D., Güler, I.: Recurrent neural networks employing Lya-
punov exponents for EEG signals classification. Expert Syst. Appl. 29, 506–514
(2005)

12. Spampinato, C., Palazzo, S., Kavasidis, I., Giordano, D., Shah, M., Souly, N.:
Deep learning human mind for automated visual classification. arXiv preprint
arXiv:1609.00344 (2016)

13. Diykh, M., Li, Y.: Complex networks approach for EEG signal sleep stages classi-
fication. Expert Syst. Appl. 63, 241–248 (2016)

14. Wang, J., Yang, C., Wang, R., Yu, H., Cao, Y., Liu, J.: Functional brain networks
in Alzheimers disease: EEG analysis based on limited penetrable visibility graph
and phase space method. Physica A: Stat. Mech. Appl. 460, 174–187 (2016)

15. He, L., Liu, B., Hu, D., Wen, Y., Wan, M., Long, J.: Motor imagery EEG signals
analysis based on Bayesian network with Gaussian distribution. Neurocomputing
188, 217–224 (2016)

16. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, Cambridge (2009)

17. Zhang, J., Small, M.: Complex network from pseudoperiodic time series: topology
versus dynamics. Phys. Rev. Lett. 96, 238701 (2006)

http://arxiv.org/abs/1511.06448
http://arxiv.org/abs/1511.06448
http://arxiv.org/abs/1502.01710
http://arxiv.org/abs/1502.01710
http://arxiv.org/abs/1609.00344

Event-Triggering Sampling Based
Synchronization of Delayed Complex Dynamical

Networks: An M-matrix Approach

Yang Tang(B)

The Key Laboratory of Advanced Control and Optimization
for Chemical Processes, Ministry of Education,

East China University of Science and Technology, Shanghai 200237, China
tangtany@gmail.com

Abstract. In this technical note, the synchronization problem is inves-
tigated for delayed complex dynamical networks. A novel distributed
event-triggered sampling rule is proposed, i.e., one node can decide its
own event time via its own state value and the state values of its neigh-
bor agents as long as the locally-computed error exceeds the given state-
dependent threshold. The aim here is to design controllers and some
required events such that the considered complex dynamical networks
can achieve synchronization. Then the M-matrix method is applied to
derive some criteria in the form of eigenvalue-based inequality for achiev-
ing the synchronization, and the Zeno behavior can be avoided as well.
Finally, a numerical example is presented for demonstrating the avail-
ability and effectiveness of the main results.

Keywords: Event-triggered control mechanism · Synchronization ·
Delayed complex dynamical network · M-matrix · Directed spanning
tree · Eigenvalue-based inequality

1 Introduction

In recent decades, much more researches are paying close attention to the
research progress of complex dynamic networks, and much more excellent work
has been done to meet the demand and realize the desired goal in real-world
applications. It has been recognized that, complex dynamical networks where
each node can be regarded as a nonlinear dynamical system, can be used to model
many real-world systems, such as self-organizing biological swarms, metabolic
and gene networks [7,16]. Given this, the synchronization problem of complex
dynamical networks has been a research hotspot during the past decades, which
can be typically applied to a variety of realms such as secure communication, for-
mation control of mobile robots and information processing [14,15]. To analyze
the synchronization problem of the complex dynamical networks, the foremost is
designing the appropriate control protocol with different methods, including the
sliding-mode control method, the pinning control method, the continuous-time
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 475–482, 2017.
DOI: 10.1007/978-3-319-59072-1 56

476 Y. Tang

feedback control techniques and the mixed optimization approaches [14,17,18].
And an increasing number of excellent investigations of the synchronization and
their wide applications in various fields have been presented [11].

Considering the actual benefits for reducing the unnecessary resource con-
sumption, designing the distributed control algorithm depending on the state of
each node is more in line with the requirement, then the event-triggered sampling
control mechanism can be used [1,4,9], where the number of control updates can
be reduced can then the resource can be saved to a certain degree. That is, with
appropriately designed triggering events, it is divinable that not only the laxa-
tion of bandwidth occupation but also some desired properties including stability
and convergence of the close-loop system can be all guaranteed. More specifi-
cally, by designing the state-based trigger conditions, the error can grow without
destroying the stability of the error system, and the latest states will be trans-
mitted to the controller at the transmission instant decided by the event-trigger
condition is violated, which can surely reduces the transmission communica-
tion and lengthy computations. In recent years, various event-triggered control
schemes have been widely investigated [2,3,12,13], just to name a few. [12] con-
siders the sampled-data synchronization control problem of dynamical networks,
where the sampling period is time-varying switching between two different val-
ues, which is not flexible enough compared with the event-triggering sampling
where the sampling instants are depending on the states of nodes. Moreover,
the synchronization conditions of [12] derived by Gronwall’s inequality and Jen-
son inequality are complicated to analyze. In addition, [2,3,10,13] respectively
investigate the synchronization of multi-agent systems by means of the different
event-triggering sampling mechanisms. However, all these investigations above
mentioned are not considering time delays. Therefore, to release the conserva-
tiveness of the strong connectivity for the network, and to improve the form of
the synchronization condition and to consider time delays as well, this paper
investigates the synchronization of delayed complex dynamic networks without
confining the strong connectivity of the network but with the directed spanning
tree based on the designed event-triggering sampling control mechanism.

2 Problem Statement

The algebraic graph theory can be checked in [3,10,11]. In this paper, the gen-
eral complex networks with time delay is considered, which can be described as
follows:

ẋi(t) = f(t, xi(t), xi(t − τ)) + c

N∑

j=1

aij(xj(t) − xi(t)), i = 1, 2, · · · , N, (1)

where τ > 0 denotes the time delay of node i. xi(t) = (xi1(t), xi2(t), · · · ,

xin(t))T ∈ R
n. f(t, xi, xi(t−τ)) =

(
f1(t, xi, xi(t−τ)), · · · , fn(t, xi, xi(t−τ))

)T

∈
R

n is a continuous vector-valued function with time delay τ . The initial condi-
tion of network (1) is given as xi(r) = φi(r) ∈ C([−τ, 0],Rn), i = 1, 2, · · · , N ,

Event-Triggering Sampling Based Synchronization 477

in which C([−τ, 0],Rn) denotes a class of continuous functions mapping [−τ, 0]
into R

n.
The virtual leader for complex network (1) can be described as follows:

ṡ(t) = f(t, s(t), s(t − τ)), (2)

where x0(t) = s(t) =
(
s1(t), s2(t), · · · , sn(t)

)T

∈ R
n.

The control goal is to let all nodes follow the virtual leader asymptoti-
cally: xi(t) → s(t) as t → ∞. To introduce the decentralized event-triggered
control strategies for (1), define the triggering time sequence of node i as
t0 = ti0, t

i
1, · · · , tik, · · · , at which node i measures its own state and obtain the

neighbors’ states xj(t), j ∈ Ni at t = tik, k ∈ Z
+
0 . As the target points, the mea-

surements xi(tik) and xj(tik), j ∈ Ni remain unchanged until the next triggering
time instant tik+1 comes at which the individual triggering event for i occurs.
Thus the distributed event-triggered control strategies for network (1) can be
described as follows, for i = 1, 2, · · · , N ,

ẋi(t) =f(t, xi(t), xi(t − τ)) + c

N∑

j=1

aij

(
xj(tik) − xi(tik)

)
+ cbi

(
s(tik) − xi(tik)

)
,

(3)
Before the synchronization is achieved, for any t ∈ [tik, tik+1), i = 1, 2, · · · , N ,

some necessary measurement errors are defined as: exi(t) = xi(tik) − xi(t),
exi(t) ∈ R

Nn, exij(t) = xj(tik) − xj(t), exij(t) ∈ R
Nn, ẽxi(t) =(

eT
xi1(t), e

T
xi2(t), · · · , eT

xiN (t)
)T

∈ R
N2n, where exij(t) ≡ 0 if j /∈ Ni. If i = 0 for

the leader, s(t) = x0(t) is defined for the following analysis. Define x̂i(t) = xi(t)−
s(t), i = 1, 2, · · · , N , Â = diag{A1, · · · ,AN} ∈ R

N×N2
, D = diag{d1, · · · , dN} ∈

R
N with di =

∑
j∈Ni

aij . Let x̂(t) = [x̂T
1 (t), · · · , x̂T

N (t)]T ∈ R
Nn, ẽx(t) =

[ẽT
x1(t), · · · , ẽT

xN (t)]T ∈ R
N2n, ex(t) = [eT

x1(t), · · · , eT
xN (t)]T ∈ R

Nn, ex0(t) =

[eT
x10(t), · · · , eT

xN0(t)]
T ∈ R

Nn F (t, x(t)) =
[
fT (t, x1(t)), · · · , fT (t, xN (t))

]T

∈
R

Nn, thereby error dynamical system (2) and (3) can be rewritten as the following
compact matrix vector form:

˙̂x(t) =F (t, x(t), x(t − τ)) − IN ⊗ f(t, s(t), s(t − τ)) −
[
c(L + B) ⊗ In

]
x̂(t)

+ c(Â ⊗ In)ẽx(t) −
[
c(D + B) ⊗ In

]
ex(t) + c(B ⊗ In)ex0(t).

(4)

For every node i, design the decentralized sampling event in the following:

Ei(t) = c(bi + di)‖exi(t)‖ + c‖Ai‖‖ẽxi(t)‖ + cbi‖exi0(t)‖ − βiHi(t) = 0, βi > 0, (5)

where Ai denotes the ith row of matrix A and Hi(t) =
√

Hi1(t) + Hi2(t), di =∑
j∈Ni

aij , Hi1(t) =
∑

j∈Ni
‖aij(xj(t) − xi(t))‖2, Hi2(t) = bi‖x0(t) − xi(t)‖2.

478 Y. Tang

3 Main Results

In the following, some lemmas and an assumption are presented for deriving the
main results.

Lemma 1 [6]. For a nonsingular matrix A = (aij) ∈ R
n×n with aij ≤ 0 (i 	= j),

the following statements are equivalent: (1) A is an M -matrix; (2) All eigenval-
ues of A have positive real parts, i.e., R(λi(A)) > 0 for all i = 1, 2, · · · , n;
(3) A−1 exists, and A−1 ≥ 0; (4) There exists a positive definite diagonal
matrix Ξ = diag(ξ1, ξ2, · · · , ξn) such that ΞA + AT Ξ > 0, which indicates that
(ΞA)s > 0.

Lemma 2 [11]. The matrix L+B is an M-matrix if and only if G̃ has a directed
spanning tree.

Assumption 1. For the nonlinear vector-valued function f = (f1, f2, · · · , fn) ∈
R

n, there exist two constant matrices W = (wij)n×n and M = (mij)n×n

where wij , mij ≥ 0 such that |fi(t, x(t), x(t − τ)) − fi(t, y(t), y(t − τ))| ≤
∑n

j=1

(
wij |xj(t) − yj(t)| + mij |xj(t − τ) − yj(t − τ)|

)
, i = 1, 2, · · · , n, for all

x = (x1, x2, · · · , xn)T , y = (y1, y2, · · · , yn)T ∈ R
n.

Theorem 1. Consider complex networks (1), (2) and (3) with event-triggered
sampling rule (5). Assume that Assumption 1 holds and G̃ has a directed span-
ning tree. If for any initial condition xi(t0) ∈ R

n, the following inequality
holds: min1≤i≤N R(λmin(L + B)) > ρ, where ρ = max

{(√
2λmax(WT W) +

1
2

√
2λmax(MT M) + kβh

)
/(c − 1), 1

2

√
2λmax(MT M)

}
with c > 1, k =

max
{

‖(B+D)⊗In‖
(bi+di)m

, ‖Â⊗In‖
‖Am‖ , bM‖IN⊗In‖

bm

}
, (bi + di)m = min1≤i≤N

{
bi + di, bi +

di > 0
}
, β = max1≤i≤N{βi}, h =

√
2(a∗)2 · (N + N ∗) + bM , N ∗ = max1≤i≤N

{|Ni|}, bM = max1≤i≤N{bi}, a∗ = max1≤i≤N{aiM}, aiM = maxj∈Ni
{aij},

bm = min1≤i≤N

{
bi, bi > 0

}
and ‖Am‖ = min1≤i≤N

{
‖Ai‖, ‖Ai‖ > 0

}
, then

complex network (1) can be globally asymptotically synchronized to the homoge-
neous trajectory (2). Furthermore, the Zeno-behavior can be avoided.

Proof. Define λi as eigenvalues of (L + B), i = 1, 2, · · · , N . According to
Lemmas 1 and 2, the fact that (L + B) is an M-matrix can be guaranteed by
the presented condition that G̃ has a directed spanning tree, which results in
R(λi(L + B)) > 0. One can easily get that (cλi − α) is an eigenvalue of ((L +
B))−ρIN) and R(λi −ρ) > 0, deriving that

(
c(L+B))−αIN

)
is an M-matrix,

where ρ = max
{(

2λmax(WT W)+λmax(MT M)+kβh
)
/(c− 1), λmax(MT M)

}
,

i = 1, 2, · · · , N . Then, according to Lemma 1, it can be checked that there exists
Ξ = diag(ξ1, ξ1, · · · , ξN) > 0 such that

[
Ξ

(
(L + B) − ρIN

)]

s
> 0.

Event-Triggering Sampling Based Synchronization 479

Construct the following Lyapunov-Krasovskii functional V (t) = 1
2 x̂T (t)(Ξ ⊗

In)x̂(t)+
∫ t

t−τ
x̂T (ζ)

(
Ξ(L+B)⊗In

)
x̂(ζ)dζ. For x̂(t) 	= 0, V (t) > 0 can be easily

guaranteed by the fact that G̃ has a directed spanning tree according to Lemmas
1 and 2.

Calculating the time derivative of V (t) along the trajectory (4), one can get
V̇ (t) = x̂T (t)(Ξ ⊗ In)

(
F (t, x(t), x(t − τ)) − IN ⊗ f(t, s(t), s(t − τ))

)
− x̂T (t −

τ)
(
Ξ(L + B) ⊗ In

)
x̂(t − τ) + x̂T (t)

(
Ξ(L + B) ⊗ In − cΞ(L + B) ⊗ In

)
x̂(t) +

cx̂T (t)(Ξ ⊗ In)Q(t), where Q(t) = (Â ⊗ In)ẽx(t) −
[
(D + B) ⊗ In

]
ex(t) + (B ⊗

In)ex0(t).
For Q(t) = (Â ⊗ In)ẽx(t) −

[
(D + B) ⊗ In

]
ex(t) + (B ⊗ In)ex0(t), we

have the following analysis. Note that decentralized event-triggered rule (5)
implies the following three inequalities hold for all t ≥ t0, c(bi + di)‖exi(t)‖ ≤
αi1(t)βiHi(t), c‖Ai‖‖ẽxi(t)‖ ≤ αi2(t)βiHi(t), and cbi‖exi0(t)‖ ≤ αi3(t)βiHi(t),
where αi1(t) + αi2(t) + αi3(t) = 1 and αi1(t), αi2(t), αi3(t) > 0. It can be easily
checked that the event is triggered if and only if the three equalities hold simul-
taneously, at which the node i samples its own states and the neighbors’ states at
time instant t = tik, k ∈ Z

+
0 . By the fact that ‖x−y‖2 ≤ ‖x‖2+‖y‖2+2‖x‖‖y‖ ≤

2‖x‖2 + 2‖y‖2, ∀ x, y ∈ R
n, it can be obtained that H2

i (t) = Hi1(t) + Hi2(t) ≤
2a2

iM

∑
j∈Ni

(
‖x̂j‖2 + ‖x̂i(t)‖2

)
+ bM‖x̂i(t)‖2, in which aiM = maxj∈Ni

{aij}
and bM = max1≤i≤N{bi}. Then it can be checked that c2(bi + di)2‖exi(t)‖2 ≤
α2

i1(t)β
2
i H2

i (t) ≤ α2
i1(t)β

2
i

(
2a2

iM

∑
j∈Ni

(
‖x̂j‖2 + ‖x̂i(t)‖2

)
+ bM‖x̂i(t)‖2

)
, i.e.,

c2(bi + di)2m
∑N

i=1 ‖exi(t)‖2 ≤ β2 ·
(
2(a∗)2 · (N + N ∗) + bM

)
‖x̂(t)‖2, in which

β = max1≤i≤N{βi}, a∗ = max1≤i≤N{aiM}, N ∗ = max1≤i≤N{|Ni|} and
(bi + di)m = min1≤i≤N{bi + di, bi + di > 0}. Then we have

∑N
i=1 ‖exi(t)‖2 ≤

1
c2(bi+di)2m

β2h2‖x̂(t)‖2, where h =
√

2(a∗)2 · (N + N ∗) + bM , which implies that

‖(B + D) ⊗ In‖ · ‖ex(t)‖ ≤ ‖(B+D)⊗In‖
c(bi+di)m

βh‖x̂(t)‖. By similar procedures above,

one can obtain that ‖Â⊗ In‖‖ẽx(t)‖ ≤ ‖Â⊗In‖
c‖Am‖ βh‖x̂(t)‖ and ‖B ⊗ In‖‖ex0(t)‖ ≤

bM‖IN⊗In‖
cbm

βh‖x̂(t)‖. Let k = max
{

‖(B+D)⊗In‖
(bi+di)m

, ‖Â⊗In‖
‖Am‖ , bM‖IN⊗In‖

bm

}
, which

implies that ‖(B + D) ⊗ In‖ · ‖ex(t)‖ + ‖Â ⊗ In‖‖ẽx(t)‖ + ‖B ⊗ In‖‖ex0(t)‖ ≤
1
ckβh‖x̂(t)‖. Then we can easily get that cx̂T (t)Q(t) ≤ kβh · x̂T (t)x̂(t). By
Assumption 1, one gets that x̂T (t)(F (t, x(t), x(t−τ))−IN ⊗f(t, s(t), s(t−τ))) ≤(√

2λmax(WT W) + 1
2

√
2λmax(MT M)

)
x̂T (t)x̂(t) + 1

2

√
2λmax(MT M)x̂T (t −

τ)x̂(t − τ). Combined with analysis above, one can easily get V̇ (t) ≤ −(c −
1)x̂T (t)

([
Ξ

(
(L + B) − ρIN

)]

s
⊗ In

)
x̂(t) − x̂T (t − τ)

([
Ξ((L + B) − ρIN)

]

s
⊗

In

)
x̂(t − τ). Then V̇ (t) ≤ 0 can be guaranteed, and V̇ (t) = 0 if and only if

x̂(t) = 0. That is, the set S̃ = {x̂(t)|x̂(t) = 0} is the largest invariant set of
the set D̃ = {x̂(t)|V̇ (t) = 0} for network (4). By LaSalle’s invariance principle

480 Y. Tang

[8], for network (4) with any initial condition, every solution of it approaches
S̃ as t → ∞, indicating that x̂T

i (t) → 0. Therefore, the synchronization can be
globally achieved under decentralized event-triggered sampling rule (5).

It remains to show the Zeno-behavior can be avoided, i.e., the set Δi
k+1 =

{tik+1 − tik|i = 1, 2, · · · , N, k ∈ Z
+
0 } has a lower bound which is strictly positive.

Let {tik}∞
0 be a sequence of trigger time of agent i at which one can get exi

(tik) =
0, exij

(tik) = 0. Suppose ‖ẋi(t)‖ ≤ ωẋ, where ωẋ > 0. For any agent i and t ∈
[tik, tik+1), one can obtain that ‖exi

(t)‖ = ‖ ∫ t

tik
ėxi

(s)ds‖ ≤ ωẋ(t−tik), ‖exij
(t)‖ =

‖ ∫ t

tik
ėxij

(s)ds‖ ≤ ωẋ(t − tik), then, one can derive that ‖exi0(t)‖ ≤ ωẋ(t − tik),

‖ẽxi(t)‖ =
√∑

j∈Ni
‖exij

(t)‖2 ≤ √|Ni|ωẋ(t − tik). Then, one can obtain c(bi +

di)‖exi(t)‖ + c‖Ai‖‖ẽxi(t)‖ + cbi‖exi0(t)‖ ≤ c(2bi + di + ‖Ai‖
√|Ni|)ωẋ(t − tik).

Event triggered rule (5) shows that the next event will be triggered once the
trigger function Ei(t) = 0, i.e., agent i is sampled at the time instant tik+1 when
0 = Ei(t) = c(bi + di)‖exi(t)‖ + c‖Ai‖‖ẽxi(t)‖ + cbi‖exi0(t)‖ − βiHi(t). In the
case where events need to be necessarily triggered, that is βiHi(t) > 0, there
exists a constant ω1 > 0 such that βiHi(t) ≥ ω1 > 0 before synchronization is
arrived. Then one can get c(2bi + di + ‖Ai‖

√|Ni|)ωẋ(t − tik) ≥ ω1 > 0, that
is, Δi

k+1 = tik+1 − tik ≥ ω1

c(2bi+di+‖Ai‖
√

|Ni|)ωẋ

> 0, which implies that the Zeno-

behavior can be avoided before the synchronization is reached. Therefore, the
proof of Theorem 1 is completed. �

4 Example

In this example, based on event-triggering sampling rule (5), consider the syn-
chronization of a linearly coupled delayed complex network consisting a host sys-
tem as the leader and four subordinate systems, i.e., ẋi(t) = f(t, xi(t), xi(t −
τ)) + c

∑N
j=1 aij(xj(t) − xi(t)), i = 1, 2, 3, 4, ẋ0(t) = s(t) = f(t, s(t), s(t −

τ)), where xi(t) = (xi1(t), xi2(t))T denotes the state variable of the ith node.
Choose c = 10 and τ = 1.0, and the nonlinear function f is defined by [5]
and [11], i.e., f

(
t, xi(t), xi(t − τ)

)
= −xi(t) + Ag(xi(t)) + Bg(xi(t − τ))

with g(xi) = 0.5
(
|xi1 + 1| − |xi1 − 1|, |xi2 + 1| − |xi2 − 1|

)T

, A =
(

1 + π
4 20

0.1 1 + π
4

)
, B =

(−1.3
√

2π
4 0.1

0.1 −1.3
√

2π
4

)
. Let the weighted adjacency

matrix be A =

⎛

⎜⎜⎝

0 1.35 0 1.1
2.2 0 1 2.1
2.25 0 0 2.25
1.6 1.25 0.8 0

⎞

⎟⎟⎠ and leader adjacency matrix be B =

diag{4.5, 4.5, 4.75, 4.75}. It can be verified that the eigenvalues of (L + B) are
2.2020, 5.4686, 7.4829, 9.4465, i.e. min1≤i≤N R(λi(L + B)) = 2.2020. By di =∑

j∈Ni
aij , one can get d1 = 2.45, d2 = 5.3, d3 = 4.5, d3 = 3.65. Similarly,

a1M = 1.35, a2M = 2.2, a3M = 2.25, a4M = 1.6, bm = 4.5, bM = 4.75,

Event-Triggering Sampling Based Synchronization 481

‖A1‖ = 1.7414, ‖A2‖ = 3.2016, ‖A3‖ = 3.1820, ‖A4‖ = 2.1823. Then, one can get
N ∗ = max1≤i≤N{|Ni|} = 3, (bi + di)m = min1≤i≤N{bi + di, bi + di > 0} = 6.95,
a∗ = max1≤i≤N{aiM} = 2.25, ‖Am‖ = min1≤i≤N{‖Ai‖,Ai > 0} = 1.7414,
h = 8.6963, k = 1.8961. Choose βi = 0.42, i.e., β = max1≤i≤N{βi} = 0.42.

In addition, it is easy to check that the function f given above satisfies

Assumption 1 with the following two matrices: W =
(

3.5998 1.0472
1.4571 2.3099

)
, M =

(
1.6998 1.0472
1.4571 1.9999

)
, where λmax(WT W) = 18.9077 and λmax(MT M) = 9.5740.

By simple calculations, one can obtain
(√

2λmax(WT W) + 1
2

√
2λmax(MT M) +

kβh
)
/(c − 1) = 1.6959 < 2.1879 = 1

2

√
2λmax(MT M), which shows

that ρ = 2.1879 < 2.2020 = min1≤i≤N R(λi(L + B)). Hence, the con-
ditions in Theorem 1 are satisfied as well. Choose the initial states as:(
x0(0) x1(0) x2(0) x3(0) x4(0)

)
=

(
1.00 1.16 1.22 1.26 1.12
1.32 0.87 0.34 1.25 0.79

)
. Therefore, the

synchronization of the considered complex network can be reached under event-
triggering sampling rule (5).

5 Conclusion

Based on the graph theory and M-matrix approach, this paper investigates
the synchronization for delayed complex dynamical networks. The decentralized
event-triggering sampling rule is designed where the communication of informa-
tion among agents is reduced by decreasing the frequency of controller updates.
Based on the designed event-triggering sampling rule, each node measures its
own state and obtain the neighbors’ states once the event-trigger error exceeds
the given state-based and error-based threshold. By combining with the Lya-
punov function and M-matrix approach, some event-triggering based conditions
are established to ensure the synchronization of the delayed complex dynamical
networks with the assumption of the directed spanning tree, including the exclu-
sion of the Zeno behavior. In addition, a numerical example is given to verify
the feasibility and availability of the main results.

Acknowledgments. This paper was supported by the National Natural Science Foun-
dation of China (Grant No. 61673176).

References

1. Abdelrahim, M., Postoyan, R., Daafouz, J., Nešić, D.: Robust event-triggered out-
put feedback controllers for nonlinear systems. Automatica 75, 96–108 (2017)

2. Dimarogonas, D.V., Frazzoli, E., Johansson, K.H.: Distributed event-triggered con-
trol for multi-agent systems. IEEE Trans. Autom. Control 57(5), 1291–1297 (2012)

3. Fan, Y., Feng, G., Wang, Y., Song, C.: Distributed event-triggered control of
multi-agent systems with combinational measurements. Automatica 49(2), 671–
675 (2013)

482 Y. Tang

4. Forni, F., Galeani, S., Nešić, D., Zaccarian, L.: Event-triggered transmission for
linear control over communication channels. Automatica 50(2), 490–498 (2014)

5. Gilli, M.: Strange attractors in delayed cellular neural networks. IEEE Trans. Cir-
cuits Syst. I Fundam. Theory Appl. 40(11), 849–853 (1993)

6. Hom, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge UP, New York
(1991)

7. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic
nets. J. Theor. Biol. 22(3), 437–467 (1969)

8. Khalil, H.K., Grizzle, J.: Nonlinear Systems, vol. 3. Prentice Hall, New Jersey
(1996)

9. Postoyan, R., Bragagnolo, M.C., Galbrun, E., Daafouz, J., Nešić, D., Castelan, E.B.:
Event-triggered tracking control of unicycle mobile robots. Automatica 52, 302–308
(2015)

10. Qin, J., Yu, C., Gao, H.: Coordination for linear multiagent systems with dynamic
interaction topology in the leader-following framework. IEEE Trans. Ind. Electron.
61(5), 2412–2422 (2014)

11. Song, Q., Liu, F., Cao, J., Yu, W.: Pinning-controllability analysis of complex
networks: an M-matrix approach. IEEE Trans. Circuits Syst. I Regul. Pap. 59(11),
2692–2701 (2012)

12. Shen, B., Wang, Z., Liu, X.: Sampled-data synchronization control of dynamical
networks with stochastic sampling. IEEE Trans. Automat. Control 57(10), 2644–
2650 (2012)

13. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE
Trans. Automat. Control 52(9), 1680–1685 (2007)

14. Tang, Y., Gao, H., Zhang, W., Kurths, J.: Leader-following consensus of a class of
stochastic delayed multi-agent systems with partial mixed impulses. Automatica
53, 346–354 (2015)

15. Tang, Y., Xing, X., Karimi, H.R., Kocarev, L., Kurths, J.: Tracking control of net-
worked multi-agent systems under new characterizations of impulses and its appli-
cations in robotic systems. IEEE Trans. Ind. Electron. 63(2), 1299–1307 (2016)

16. Topaz, C.M., Bertozzi, A.L.: Swarming patterns in a two-dimensional kinematic
model for biological groups. SIAM J. Appl. Math. 65(1), 152–174 (2004)

17. Wong, W.K., Zhang, W., Tang, Y., Wu, X.: Stochastic synchronization of complex
networks with mixed impulses. IEEE Trans. Circuits Syst. I Regul. Pap. 60(10),
2657–2667 (2013)

18. Zhang, W., Tang, Y., Wu, X., Fang, J.A.: Synchronization of nonlinear dynamical
networks with heterogeneous impulses. IEEE Trans. Circuits Syst. I Regul. Pap.
61(4), 1220–1228 (2014)

Learning Human-Understandable Description
of Dynamical Systems from Feed-Forward

Neural Networks

Sophie Tourret1(B), Enguerrand Gentet1,2, and Katsumi Inoue1,3

1 National Institute of Informatics, Tokyo, Japan
{tourret,inoue}@nii.ac.jp

2 Paris-Sud University, Orsay, France
3 Tokyo Institute of Technology, Tokyo, Japan

Abstract. Learning the dynamics of systems, the task of interest in this
paper, is a problem to which artificial neural networks (NN) are naturally
suited. However, for a non-expert, a NN is not a convenient tool. There
are two reasons for this. First, the creation of an accurate NN requires
fine-tuning its architecture and training parameters. Second, even the
most accurate NN prediction gives no insight on the rules governing the
system. These two issues are addressed in this paper, that presents a
method to automatically fine-tune a NN to accurately predict the evolu-
tion of a dynamical system and to extract human-understandable rules
from it. Experimental results on Boolean systems are presented. They
show the relevance of this approach and open the way to many exten-
sions naturally supported by NNs, such as the handling of noisy data,
continuous variables or time delayed systems.

1 Introduction

Artificial neural networks (NNs) have been successfully applied to solve a large
variety of predictive learning and function approximation problems [1]. Often,
the motivation behind their use is their inherent ability to generalize observations
and to handle noisy data [2]. As such, it is no wonder that the NN community
has been actively researching means of understanding what happens inside NNs
since nearly as long as NNs have existed [3]. To do so, the usual method is to
extract a symbolic reasoning system from the NN, which can be made of, e.g.,
logic rules [4–8] or decision trees [9]. To render this extraction possible a method
to build a NN with a specific architecture is usually devised first [4,5,8] but
standalone extraction methods from trained NN have also been studied [7,10].
Such techniques are not only profitable to NN researchers seeking to understand
what is captured by their NNs, but also for people in the field of Inductive Logic
Programming (ILP) [11], aiming at constructing logic programs generalizing the
observed behavior of systems given in a background theory.

This paper presents a method named NN-LFIT that uses NNs in an ILP
learning context. It differs from the neural-symbolic approaches previously men-
tioned in that it is applied not to a standard classification problem but to the
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 483–492, 2017.
DOI: 10.1007/978-3-319-59072-1 57

484 S. Tourret et al.

modeling of the relational dynamics of a system, i.e., of logic rules that describe
the evolution of the system through time, and in that it builds NNs and rules
using only the measures of the system. Examples of application include cellular
automata studied by physicians and several AI sub-domains such as planning
(e.g., discovering action rules), multi-agent systems (e.g., studying social net-
works evolutions) and systems biology [12,13] (e.g., understanding gene-protein
interactions, a key component in the design of better drugs). This work is of
interest to the NN community because on the one hand it enhances the meth-
ods of automatic generation and tuning of feed-forward NNs for classification
tasks from [6,14] in order to deal with dynamical systems in the case of Boolean
inputs and on the other hand it gives an explicit method relying on a state-of-
the-art symbolic reasoning tool for the extraction of easy-to-understand rules
from NNs. Moreover, the experimental results show the relevance of the neural
approach which, thanks to the generalization power of NNs, is more accurate
than its purely symbolic counterpart LFIT [15]. This suggests extensions such
as the handling of continuous data and delayed effects that are very costly for
symbolic systems like LFIT but naturally suited to NNs.

In Sect. 2, we present a formal description of the problem. In Sect. 3, the
NN-LFIT algorithm is detailed. Section 4 contains the experimental results and
their analysis and Sect. 5 concludes this paper. A short version of this article
was presented at ILP 2016 [16] but not included in the formal proceedings.

2 Problem Description

We adopt the representation of dynamical systems used in [15]. The standard
terminology and notations of propositional logic (PL) are used1, e.g., when refer-
ring to literals (variables or negation of variables), terms (conjunctions of literals)
and formulæ. We are especially concerned with formulæ in disjunctive normal
form (DNF), i.e., disjunctions of terms. In this framework a dynamical system
is a finite state vector evolving through time x(t) = (x1(t), x2(t), ..., xnvar

(t))
where each xi(t) is a Boolean variable. In systems biology these variables can
represent, e.g., the presence or absence of some genes or proteins inside a cell.
The aim of NN-LFIT is to output a normal logic program P that satisfies the
condition x(t+ 1) = TP (x(t)) for any t, where TP is the immediate consequence
operator for P [15]. The rules of P are of the form ∀t, xi(t+1) ← F (x(t)) for all
i in {1 . . . , nvar} where F is a Boolean formula in DNF. Note that this formal-
ism allows us to describe only the simplest of dynamical systems, meaning those
purely Boolean and without delays i.e. where x(t + 1) depends only of x(t).

Example 1. Figure 1 is an example of application of NN-LFIT. On the left-hand
side is the input problem, made of a set of observed transitions of the system.
For example, the transition (1, 0, 1) → (0, 0, 1) indicates that if at time t, p = 1,
q = 0 and r = 1, then at time t + 1, p = 0, q = 0 and r = 1. On the right-hand
side is the logic program outputed by NN-LFIT. For instance, the first rule of
1 An introduction to logic is available in, e.g., [17].

Learning Human-Understandable Description of Dynamical Systems 485

Fig. 1. An application of NN-LFIT

...

... ...

x1(t)

x2(t)

xnvar (t)

i1

i2

invar

h1

hnhid

o1

o2

onvar

x1(t + 1)

x2(t + 1)

xn(t + 1)

w1,1,1

w1,2,1

w1,nvar,nhid

w2,1,1

w2,1,2

w2,nhid,nvar

Input layer Hidden layer Output layer

Fig. 2. NN architecture and notations used in NN-LFIT

this program mean that p is true at time t + 1 iff q is true at time t and the
second rule means that q is true at time t+ 1 iff either p is true and r is false at
time t or p and q are true at time t.

The type of NN used in NN-LFIT reflects the simplicity of the systems con-
sidered. We use feed-forward NNs [2] and we furthermore restrict ourselves to
using only one hidden layer, i.e. a total of three layers, because it simplifies a lot
the architecture of the NN and its treatment. This does not limit the accuracy
of the NN as long as there are enough neurons in the hidden layer [18]. The user
is assumed to be familiar with the notion of feed-forward NN, and the notations
used in this paper are introduced in Fig. 2. The state vector x(t) describing the
dynamical system is directly fed to the input layer and the output layer pre-
dicts the values of the next state x(t + 1). This fixes the number of neurons
on the input and output layer to the number of variables in the system. The
activation function of the neurons is a sigmoid and the training method used is
standard: backward propagation with an adaptive rule on the gradient step and
L2 regularization to avoid over-fitting the training data. The errors made by the
trained NN on the training, validation2 and test sets are written respectively
by Etrain, Eval, and Etest and denote as usual the ratio of incorrect predictions
made by each output neuron averaged on all output neurons. The only para-
meter remaining to choose is the number of neurons on the hidden layer nhid,

2 Note that, as is usual, the validation set is made of 20% of the training set.

486 S. Tourret et al.

which is automatically tuned by NN-LFIT to suit each problem as described in
the following section.

3 The NN-LFIT Algorithm

This section introduces the details of the NN-LFIT algorithm. This algorithm
automatically constructs a model of a system from the observation of its state
transitions and generate transition rules which describe the dynamic of the sys-
tem. The main steps of NN-LFIT are listed bellow:

Step 1: Create the model of the system.
1. Choose the number of hidden neurons nhid and train the NN.

(a) Initialize nhid with a trial and error algorithm.
(b) Refine nhid with a basic constructive algorithm.

2. Simplify the NN by pruning useless links.
Step 2: Extract the rules

1. Extract logical rules in DNF by querying the NN.
2. Simplify the logical rules into DNF with an external tool.

Step 1 is based on a dynamic node creation algorithm, which was originally
proposed in [14] and has been used in the REANN algorithm [6] for classification
tasks with a small number of output classes. Major differences between this work
and REANN are explicitly indicated in the following description. Step 2 is an
original contribution.

Step 1 - Creation of the Model. The first building step is to generate a
fully connected NN with a well fitted architecture to learn the dynamics of the
observed system. We first use an initialization algorithm and then we refine the
architecture with a constructive algorithm.

Initialization algorithm. The initial number of neurons on the hidden layer nhid

is chosen using a simple trial and error algorithm. It consists in training the
NN using several architectures with an incremental initial number of hidden
neurons starting from one and stopping when Eval no longer decreases after
a few tries. Every time we try a new architecture, we randomly initialize
all the weights. In REANN, this step is skipped. The constructive algorithm
is directly used on a randomly initialized NN with only one neuron in the
hidden layer. For real problems, one or two hidden neurons are unlikely to
be enough. Thus the initialization algorithm speeds up the training process
by identifying roughly the number of neurons needed before the constructive
algorithm, of which the training converges more slowly, fixes this number.

Constructive algorithm. The architecture is improved by using a basic construc-
tive algorithm. It uses the same principle as the initialization algorithm except
that every time a hidden neuron is added, the trained weights attached to
the other neurons are left unchanged.

Pruning algorithm. The purpose of this step is to remove useless links. To do
so we introduce the notion of link efficiency. To compute the efficiency of

Learning Human-Understandable Description of Dynamical Systems 487

a specific link, we multiply its weight by the weights of every other link
starting from (or ending to) the same hidden neuron it ends to (or starts
from). In other words, the efficiency of a link quantifies the best contribution
among all the paths going through this link. It is therefore logical to remove
links with low efficiency because they have less effects on the predictions
compared to others. We use a simple dichotomous search to remove as many
links as possible without increasing Etrain. After the pruning algorithm has
been run, if some hidden neurons have lost all their links to the output layer
or all their links from the input layer, they can be removed. Due to the
presence of biases in the neurons activation functions, it is not possible to
simply delete unreachable hidden neurons, because even without inputs they
can still influence the output neurons they are connected to. To remove an
unreachable hidden neuron h with a bias bh, it is thus necessary to update
the bias of each of the output neurons under its influence by adding to it the
product of its output value (computed from bh alone) with the weight linking
the two neurons before deleting the hidden neuron. On the contrary, hidden
neurons with no connection to the output layer can be removed without care
since they do not influence the output of the NN.

The REANN algorithm, that handles non-Boolean inputs, includes a dis-
cretization step which is unneeded here.

Example 2. Figure 3 shows the NNs obtained after applying each sub-step of
Step 1 on the system described in Example 1. The weights are omitted to improve
the readability. The error rate on the validation set is given at each step.

Step 2 - Extraction of the Rules. To extract the rules underlying the tran-
sition system from the NN, each output neuron oi is considered independently.
First the sub-NN Ni, made of oi plus all the input and hidden neurons that
can reach oi and their connections to each other, is extracted from the main
NN. Then, Ni is used as a black box to construct the rules. All possible input
vectors are fed to Ni and only those that activate oi are kept. The union of these
vectors is converted into a DNF formula F that is then simplified by computing
a prime implicant cover of it using a tool called primer [19]. Formally, a prime
implicant of F is a term D such that D |= F and for any D′ such that D′ |= F ,
if D |= D′ then D′ |= D. This means that if a term D′′ is such that D′′ ⊆ D
and D′′ = D then D′′ �|= F . The notion of a prime implicate is dual to that of
a prime implicant. It is a clause C such that F |= C and if there exists another
clause C ′ such that F |= C ′ and C |= C ′ then C ′ |= C.

Intuitively, prime implicants and prime implicates can be seen respectively
as the most specific conditions and the most general consequences of a formula.
When handling a formula in DNF, a formula syntactically simpler than but
semantically equivalent is obtained by replacing each term of the formula by a
prime implicant that subsumes it. To simplify F , we rely on primer to compute
a prime implicate cover of the CNF formula F̃ that is called the dual of F . It
is obtained by swapping conjunctions and disjunctions in formulæ, hence trans-
forming DNFs in CNFs and vice versa. This is done because primer only accepts

488 S. Tourret et al.

p(t)

q(t)

r(t)

i1

i2

i3

h1

o1

o2

o3

p(t+1)

q(t+1)

r(t+1)

errvalidation = 0.7

(a) Initial NN (before Step 1)

p(t)

q(t)

r(t)

i1

i2

i3

h1

h2

o1

o2

o3

p(t+1)

q(t+1)

r(t+1)

errvalidation = 0.6

(b) Initialized NN (after Step 1:1.(a))

p(t)

q(t)

r(t)

i1

i2

i3

h1

h2

h3

h4

o1

o2

o3

p(t+1)

q(t+1)

r(t+1)

errvalidation = 0.2

(c) Constructed NN (after Step 1:1.(b))

p(t)

q(t)

r(t)

i1

i2

i3

h1

h2

h3

o1

o2

o3

p(t+1)

q(t+1)

r(t+1)

errvalidation = 0.2

(d) Pruned NN (after Step 1:2)

Fig. 3. Step 1 of NN-LFIT

CNF inputs. A prime implicant cover of F is then generated by duality from the
prime implicate cover of F̃ generated by primer.

Example 3. Let us consider the neuron o1 of the NN drawn in Fig. 3d that repre-
sents the system of Example 1. Due to the simplification of the network, o1 only
depends on i1 and i2. Then using N1 as a black box, we query all the different
combinations of (i1, i2) inputs, keeping only the ones that activate o2. In this
example, o1 is activated only in the following cases:

– i1 is off and i2 is on;
– i1 is on and i2 is on.

Then o1 can be represented by the formula: F1 = (¬i1∧i2)∨(i1∧i2). Finally, the
simplification of the formula F1 is done by computing a prime implicant cover of
F1 as explained previously, resulting in the creation of the formula F ′

1 = i2. Note
how the term of F ′

1 subsumes the two terms of F1 making F ′
1 equivalent to F1.

Going back to the original transition system, the rule describing the evolution
of p extracted from the NN is thus: p(t + 1) ← q(t).

Now let us consider the neuron o2 which, this time, depends on all the inputs
i1, i2 and i3. Then using N2 as a black box, we query all the different combina-
tions of (i1, i2, i3) inputs, keeping only the ones that activate o2. In this example,
o2 is activated only in the following cases:

Learning Human-Understandable Description of Dynamical Systems 489

– i1 is on, i2 and i3 are off;
– i1 and i2 are on and i3 is off;
– i1, i2 and i3 are on.

Then o2 can be represented by the formula: F2 = (i1 ∧ ¬i2 ∧ ¬i3) ∨ (i1 ∧ i2 ∧
¬i3) ∨ (i1 ∧ i2 ∧ i3). Finally, the simplification of the formula F2 is done by
computing a prime implicant cover of F2 as explained previously, resulting in
the creation of the formula F ′

2 = (i1 ∧ ¬i4) ∨ (i1 ∧ i2). Note how the first term of
F ′
2 subsumes the two first terms of F2 and the second one subsumes the two last

ones of F2, making F ′
2 equivalent to F2. Going back to the original transition

system, the rule describing the evolution of q extracted from the NN is thus:
q(t + 1) ← (p(t) ∧ ¬r(t)) ∨ (p(t) ∧ q(t)).

Finally, the neuron o3 only depends on i1. Then using N3 as a black box, we
query the two different combinations of i1. o3 is activated only when i1 is on.
Then o3 can be represented by the formula: F3 = i1. The only term is already a
prime implicant of F3, the rule describing the evolution of q extracted from the
NN is thus: r(t + 1) ← p(t).

Note that extracting rules from the fully connected NN right after the steps
1(a) and (b) using the exact same method is possible. However, as shown in
the experimental results, the performances of the NN are better after all the
steps. In addition, thanks to the pruning (step 1.2), the rule extraction process
is less time consuming because the number of input variables to consider for
each output can be significantly smaller than before the pruning.

4 Experimental Results

The benchmarks used in the experiments are three Boolean networks from [20]
also used for evaluating LFIT in [15]. They respectively describe the cell cycle
regulation of budding yeast, fission yeast and mammalians. We randomly assign
the 2nvar transitions describing these networks into the test set and training set
(that includes the validation set). Although it is standard to put around 80% of
the available data in the training set, we want to simulate the fact that real world
data are often incomplete especially in biology, hence we start by analyzing the
influence of the size of the training set on the accuracy of the NN (see Fig. 4)3. It
is measured by Etest and averaged over 30 random allocations of the data in the
different sets. We observe that each successive sub-step of NN-LFIT improves
the accuracy of the model and that, as expected, Etest decreases when the size
of the training set increases. It reaches an error rate of only 1% while training
only on 15% of the data and becomes negligible when the training covers 50% of
the data. In comparison, LFIT [15] has a nearly constant error rate on the test
set (resp. 36% and 33% on the mammalian and fission benchmarks) for all sizes
of the training set. Obviously the accuracy of the NN varies depending on the
system it models but still these results show that the generalization power of NNs

3 The results for the budding benchmark are omitted due to space limitations.

490 S. Tourret et al.

(a) mammalian benchmark (b) fission benchmark

Fig. 4. Influence of the train size on Etest for every step of NN-LFIT.

is a real advantage over a purely symbolic approach. The following experiments
are conducted allocating 15% of the data to the training set and the results are
also averaged over 30 random allocations.

Table 1 shows the parameters of the NN architectures produced by NN-LFIT
and their corresponding Etest as well as the error rate of LFIT on the test
set, already mentioned in the previous experiment. The numbers of neurons and
links decrease significantly during the pruning step (16% less hidden neurons and
65% less links) along with Etest (29% reduction) showing that the simplification
step not only reduces the complexity of the NN but also improves the model
performances through an efficient generalization. In addition, the accuracy of
NN-LFIT clearly outperforms that of LFIT.

Table 1. Architecture and test error evolution during NN-LFIT steps.

Architecture Mammalian, nvar = 10 Fission, nvar = 10 Budding, nvar = 12

Neurons Links Etest (%) Neurons Links Etest (%) Neurons Links Etest (%)

Initial 7.10 142 3.19 9.07 181 2.23 11.4 273 0.313

Constructed 13.5 270 1.92 13.73 275 1.61 14.4 346 0.237

Pruned 11.2 98.6 1.37 11.7 97.8 1.21 12.2 91 0.156

LFIT - - 36 - - 33 - - -

Finally we evaluate the correctness and simplicity of the rules learned by
NN-LFIT. For each variable xi, we identify three categories: true positives, i.e.
valid rules that output the same result as the original ones; false positives, i.e.
wrong rules that contradict the original ones; and false negatives, i.e. missing
rules that appear in the original model but are not present in the reconstructed
one. Figure 5 shows the distribution of these categories after the construction
and pruning steps of NN-LFIT for each variable4. The pruning step reduces
4 Note that a rule of a logic program as defined in [15] is a term here, except for

constant rules, e.g., x1 in Fig. 5b which is always false and thus contains no term.

Learning Human-Understandable Description of Dynamical Systems 491

the number of terms (true and false positives) in almost all the rules which
means they are simpler. Moreover the proportion of false positives and negatives
diminishes after the pruning, reflecting the increase of the accuracy of the rules
observed on Table 1.

(a) mammalian benchmark (b) fission benchmark

Fig. 5. Distributions of the categories of term on each variables.

5 Conclusion

In this paper, we present NN-LFIT, a method using feed-forward NNs to extract
a logic program describing a dynamical system from the observation of its evo-
lution. It includes a method to automatically tune a feed-forward NN to predict
the evolution of the considered Boolean system and an original mechanism for
the extraction of human-understandable rules from the NN. Experimental results
indicate good overall performances in term of correctness and simplicity of the
obtained rules, even when handling only as little as 15% of the data. Extensions
of NN-LFIT exploiting more capacities of NNs are planned. One possibility is to
extract the rules using a decompositional approach as in, e.g., [10] which details
a sound but incomplete extraction algorithm improving the complexity×quality
trade-off. Other extensions include the handling of noisy data and systems with
continuous variables which can be naturally handled by feed-forward NNs. We
are also considering how to use deep NNs to model systems with delays where
x(t) depends not only on x(t − 1) but also on some x(t − k) for k greater than
one.

References

1. Cherkassky, V., Friedman, J.H., Wechsler, H.: From Statistics to Neural Networks:
Theory and Pattern Recognition Applications, vol. 136. Springer Science & Busi-
ness Media, Heidelberg (2012)

492 S. Tourret et al.

2. Svozil, D., Kvasnicka, V., Pospichal, J.: Introduction to multi-layer feed-forward
neural networks. Chemom. Intell. Lab. Syst. 39(1), 43–62 (1997)

3. Augasta, M.G., Kathirvalavakumar, T.: Rule extraction from neural networks -
a comparative study. In: 2012 International Conference on Pattern Recognition,
Informatics and Medical Engineering (PRIME), pp. 404–408. IEEE (2012)

4. Carpenter, G.A., Tan, A.H.: Rule extraction: from neural architecture to symbolic
representation. Connect. Sci. 7(1), 3–27 (1995)

5. Garcez, A.S.A., Zaverucha, G.: The connectionist inductive learning and logic pro-
gramming system. Appl. Intell. 11(1), 59–77 (1999)

6. Kamruzzaman, S., Islam, M.M.: An algorithm to extract rules from artificial neural
networks for medical diagnosis problems. Int. J. Inf. Technol. 12(8), 41–59 (2006)

7. Lehmann, J., Bader, S., Hitzler, P.: Extracting reduced logic programs from arti-
ficial neural networks. Appl. Intell. 32(3), 249–266 (2010)

8. Towell, G.G., Shavlik, J.W.: Extracting refined rules from knowledge-based neural
networks. Mach. Learn. 13(1), 71–101 (1993)

9. França, M.V.M., Garcez, A.S.D., Zaverucha, G.: Relational knowledge extraction
from neural networks (2015)

10. Garcez, A.D., Broda, K., Gabbay, D.M.: Symbolic knowledge extraction from
trained neural networks: a sound approach. Artif. Intell. 125(1), 155–207 (2001)

11. Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K., Srinivasan,
A.: ILP turns 20 – biography and future challenges. Mach. Learn. 86(1), 3–23
(2012)

12. Comet, J.-P., Fromentin, J., Bernot, G., Roux, O.: A formal model for gene reg-
ulatory networks with time delays. In: Chan, J.H., Ong, Y.-S., Cho, S.-B. (eds.)
CSBio 2010. CCIS, vol. 115, pp. 1–13. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16750-8 1

13. Ribeiro, T., Magnin, M., Inoue, K., Sakama, C.: Learning delayed influences of
biological systems. Front. Bioeng. Biotechnol. (2014). doi:10.3389/fbioe.2014.00081

14. Ash, T.: Dynamic node creation in backpropagation networks. Connect. Sci. 1(4),
365–375 (1989)

15. Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Mach.
Learn. 94(1), 51–79 (2014)

16. Gentet, E., Tourret, S., Inoue, K.: Learning from interpretation transition using
feed-forward neural networks. In: CEUR Workshop Proceedings of the 26th Inter-
national Conference on Inductive Logic Programming (ILP 16 Short Papers) (2016)

17. Caferra, R.: Logic for Computer Science and Artificial Intelligence. Wiley, New
York (2013)

18. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Netw. 2(5), 359–366 (1989)

19. Previti, A., Ignatiev, A., Morgado, A., Marques-Silva, J.: Prime compilation of non-
clausal formulae. In: Proceedings of the 24th International Conference on Artificial
Intelligence, pp. 1980–1987. AAAI Press (2015)

20. Dubrova, E., Teslenko, M.: A SAT-based algorithm for finding attractors in syn-
chronous Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB)
8(5), 1393–1399 (2011)

http://dx.doi.org/10.1007/978-3-642-16750-8_1
http://dx.doi.org/10.1007/978-3-642-16750-8_1
http://dx.doi.org/10.3389/fbioe.2014.00081

Stability and Stabilization of Time-Delayed
Fractional Order Neural Networks via Matrix

Measure

Fei Wang1, Yongqing Yang1(B), Jianquan Lu2, and Jinde Cao2

1 School of Science, Jiangnan University, Wuxi 214122, China
fei 9206@163.com, yongqingyang@163.com

2 School of Mathematics, Southeast University, Nanjing 210096, China
{jqluma,jdcao}@seu.edu.cn

Abstract. The stability problem of delayed neural networks with frac-
tional order dynamics has been studied in this paper. Several criteria
for the stability of the equilibrium point are derived via matrix mea-
sure method and fractional order differential inequality. All criteria are
formed as matrix measure, which can be easy to verify in practice. Based
on which, feedback controllers are designed to stabilize a kind of chaotic
fractional order neural network. Finally, two simulations are given to
check the theoretical results and compare with some exist results.

Keywords: Fractional-order · Matrix measure · Neural networks ·
Stability · Delay

1 Introduction

Neural networks have been widely investigated in the last decades, due to their
successful applications in lots of areas, such as signal processing [1], automatic
control [2], pattern recognition [3] and so on. Fractional-order derivatives has
been receiving much attention recently by its advantages for the description of
memory. The Hopfield neural network with fractional order dynamics was first
studied in [4]. In the same year, authors of [5] found that fractional differen-
tiation is more fit for describe neurons firing rate. There were some important
results of stability analysis of systems with fractional order dynamics have been
published, such as root locus method based on Laplace transform, theory of
fractional order linear system, the second method of Lyapunov method [6,7].

Recently, a novel approach, named matrix measure strategies and Halanay
inequality has been used to deal with stability of delayed neural networks [8].
Different from some exist methods, Lyapunov function need not to be con-
structed under this method, and the conditions of stability could be formed
as matrix measure. Which means that the effects of both positive values and

Y. Yang—This work was jointly supported by the Natural Science Foundation of
Jiangsu Province of China under Grant No. BK20161126, the Graduate Innovation
Project of Jiangsu Province under Grant No. KYLX16−0778.

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 493–501, 2017.
DOI: 10.1007/978-3-319-59072-1 58

494 F. Wang et al.

negative values of the matrix could be considered, while the most of the exists
conditions of stability are formed as algebra or norm. Thus, many significant
results about matrix measure are obtained in the past two years.

Noting that the above results about matrix measure are concerned with
integer-order neural networks. Can the matrix measure method be extended to
fractional order case? With the inspiration from this question and above discus-
sions, this paper studied the matrix measure strategies for the neural networks
with fractional order dynamics. Based on fractional order Dini-like derivative
which has been introduced in [9,10], this paper investigated stability and sta-
bilization of delayed neural networks with fractional order dynamics. All the
stability conditions are formed as matrix measure, which can utilize the infor-
mation of diagonal elements of parameter matrices more sufficiently.

This paper’s frame would be as follows: In Sect. 2, Caputo fractional opera-
tor, fractional order Dini-like derivative, matrix measures and some lemmas will
be introduced. The results about the stability of fractional order time-delayed
neural networks will be presented in Sect. 3. Then, some examples are given to
verify the main results in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Preliminaries and Model Description

In this part, some preliminaries of Caputo fractional operator are presented
at first. Then, fractional order Dini-like derivative would been introduced. The
matrix measures and their properties will be shown later. Finally, the delayed
fractional order neural networks model will be given.

2.1 Caputo Fractional Operator

The initial conditions of Caputo’s type fractional differential operator are same
as it of integer-order, which can describe physical meanings for the system of
real world [11]. Therefore, the Caputo derivatives will be used in following. The
definition of the Caputo derivative operator can be found in [11]. For simply,
Dαx(t) will be denoted as the CDα

0,tx(t).

2.2 Fractional Order Dini-Like Derivative

In this subsection, fractional order Dini-like derivative would be introduced.
Consider the fractional order functional system:

CDαx(t) = F(t, xt) (1)

where F : [t0,∞]×PC, PC = {φ : [−τ, 0] → R
n, φ(t) is a continuous function},

we denote by xt an element of PC defined by xt(s) = x(t + s), −τ � s � 0.
For a function V ∈ C0, where C0 = {V |V : [t0,∞) × R

n → R+, V (t, 0) ≡
0, V is Lipschitz continuous in x ∈ R

n}, the fractional-order Dini-like deriva-
tive is defined as following:

Stability and Stabilization of Time-Delayed Fractional Order 495

Definition 1 [9,10]. Given a function V ∈ C0. For φ ∈ PC, the upper right-
hand derivative of V in Caputo’s sense of order α(α ∈ (0, 1)) with respect to the
system (1) is defined by

CDα
+V (t, φ(0)) = lim

h→0+

V (t, φ(0)) − V (t − h, φ(0) − hαF(t, φ))
hα

.

Based on the above Dini-like derivative, there are some stability theories of
fractional order systems have been published [12–14]. The following Lemma has
been obtained recently, which could deal with stability of delayed fractional order
systems.

Lemma 1 [15]. Assume that F(t, 0) ≡ 0, t ∈ [t0,∞), there exists a function
V ∈ C0 such that

ϕ1(‖ x ‖) � V (t, x) � ϕ2(‖ x ‖), ϕ1, ϕ2 ∈ K,

and the inequality
Dα

+V (t, φ0) � −cV (t, φ0)

whenever V (t + θ, φ(θ)) � p(V (t, φ(0))) for −τ � θ � 0, t ∈ [t0,∞), φ ∈ PC,
where c > 0 is a const, p(·) is continuous and non-decreasing on R+, and p(u) >
0 as u > 0, then asymptotical stability of the zero solution of system (1) can be
dirived.

The definition of matrix measure for A can be found in [8], the following
lemma about matrix measure will be used later.

Lemma 2. If the matrix measure of A is satisfied μp(A) < 0, then A is non-
singular, i.e. | A |�= 0, where p = 1, 2,∞.
Proof.
Case 1: p= 1

Noting that μ1(A) < 0 implies that ajj +
n∑

i=1,i �=j

| aij | < 0, j = 1, 2, ..., n. Then,

| ajj |>
n∑

i=1,i �=j

| aij |, which means that AT is a strictly diagonally dominant

matrix, then, | A |=| AT |=�= 0, t hus, A is a non-singular matrix.
Case 2: p= 2

When μ2(A) < 0, i.e. λmax(A+AT

2) < 0, which implies that λA < 0, thus, A is
non-singular.
Case 3: p=∞
μ∞(A) < 0 implies that aii +

n∑

j=1,i �=j

| aij | < 0, i = 1, 2, ..., n. Then, | aii |>
n∑

j=1,i �=j

| aij |, which means that A is a strictly diagonally dominant matrix, thus,

A is a non-singular matrix.

496 F. Wang et al.

2.3 Model Description

The following delayed neural network with fractional-order will be considered:

Dαxi(t) = −cixi(t) +
n∑

j=1

aijfj(xj(t)) +
n∑

j=1

bijgj(xj(t − τj(t))) + Ii(t), (2)

or equivalently

Dαx(t) = −Cx(t) + Af(x(t)) + Bg(x(t − τ(t))) + I, (3)

in which, 0 < α < 1, ci > 0; xi(t) denotes the ith neuron’s state at time
t, fj(∗), gj(∗) denote the activation functions, τj(t) are time-varying delays
of the jth neuron, which is bounded in this paper, 0 � τj(t) � τ ; aij

denotes the connection weight between the jth neuron and the ith neuron,
Ii denotes an external input of ith neuron. It’s easy to see that x(t) =
(x1(t), x2(t), x3(t), ..., xn(t))T ∈ Rn, C = diag(c1, c2, c3, ..., cn), A = (aij)n×n,
B = (bij)n×n, f(x(t)) = (f1(x1(t)), f2(x2(t)), f3(x3(t)), ..., fn(xn(t)))T ,
g(x(t)) = (g1(x1(t)), g2(x2(t)), ..., gn(xn(t)))T , I = (I1, I2, ..., In)T , τ(t) =
(τ1(t), τ2(t), ..., τn(t))T . Let xi(t) = φi(t) ∈ PC are the initial conditions of sys-
tem (6).

3 Main Results

The stability and stabilization of neural networks (3) will be studied in this
section by applying the theoretical results which have been given in previous
section.

3.1 Stability Analysis of Neural Network (3) via Matrix Measure
Method

In this subsection, some sufficient conditions will be given, which is formed as
matrix measure, to ensure the exist and stability of the equilibrium point of
system (3).
Assumption 1.
The functions f(·), g(·) are bounded and satisfied the following conditions: there
exist positive constants lfp , lgp such that

‖ f(x)− f(y) ‖p� lfp ‖ x− y ‖p, ‖ g(x)− g(y) ‖p� lgp ‖ x− y ‖p,∀x, y ∈ R
n. (4)

Theorem 1. Assuming that assumption 1 holds, if the parameters of the neural
network (6) satisfied

μp(C) − lpf ‖ A ‖p> lpg ‖ B ‖p> 0.

The fractional order neural networks (3) has a unique equilibrium point, and the
equilibrium point is asymptotically stable.

Stability and Stabilization of Time-Delayed Fractional Order 497

Proof.
Due to the active functions fi and gi are bounded, the existence of the equilibrium
can be obtained easily by Brouwer’s fixed point theorem, the proof is omitted here.
Assume (6) has two equilibria u∗ and v∗, one has:

−Cu∗ + Af(u∗) + Bg(u∗) + I = 0,

and
−Cv∗ + Af(v∗) + Bg(v∗) + I = 0.

By some simple calculations, there must be some constant mf
i and mg

i ,
i = 1, 2, ..., n such that

(−C + AMf + BMg)(u∗ − v∗) = 0n, (5)

where Mf = diag(mf
1 ,mf

2 , ...,mf
n), Mg = diag(mg

1,m
g
2, ...,m

g
n). According to

assumption 1, we have ‖ Mp ‖p� lfp and ‖ Mg ‖p� lgp. Then,

μp(−C + AMf + BMg) � −μp(C) + μp(AMf) + μp(BMg)

� −μp(C)+ ‖ AMf ‖p + ‖ BMg ‖p

� −μp(C) + lpf ‖ A ‖p +lpg ‖ B ‖p

< 0.

Based on the Lemma 2, (−C + AMf + BMg) is non-singular, then, (5) has
a unique solution, thus, u∗ = v∗. Therefore, Equilibrium points of the neural
network (3) is unique. In the following, we will proof asymptotical stability of the
equilibrium point. Let’s assume that x∗ is the equilibrium point of the system.
Define that ei(t) = xi(t) − x∗

i , then equations (3) convert into

Dαei(t) = −ciei(t) +

n∑

j=1

aij [fj(ej(t) + x∗
j)− fj(x

∗
j)] +

n∑

j=1

bij [gj(ej(t − τj(t)) + x∗
j)− gj(x

∗
j)],

(6)
or equivalently

Dαe(t) = −Ce(t) + AF (e(t)) + BG(e(t − τ(t))), (7)

where F (e(t)) = f(x(t)) − f(x∗), G(e(t − τ(t))) = g(x(t − τ(t))) − g(x∗).
First, calculating the fractional order Dini-like derivative of ‖ e(t) ‖p along

the system (6) and using Assumption 1, one has:

¯lim
h→0+

‖ e(t) ‖p − ‖ e(t) − hαDαe(t) ‖p

hα

= lim
h→0+

‖ e(t) ‖p − ‖ e(t) − hα(−Ce(t) + AF (e(t)) + BG(e(t − τ(t)))) ‖p

hα

� lim
h→0+

‖ e(t) ‖p − ‖ e(t) + hαCe(t) ‖p +hα ‖ AF (e(t)) + BG(e(t − τ(t)))) ‖p

hα

� lim
h→0+

‖ e(t) ‖p − ‖ e(t) + hαCe(t) ‖p

hα
+ lfp ‖ A ‖p‖ e(t) ‖p +lgp ‖ B ‖p‖ e(t − τ(t)) ‖p

= lim
h→0+

1− ‖ I + hαC ‖p

hα
‖ e(t) ‖p +lfp ‖ A ‖p‖ e(t) ‖p +lgp ‖ B ‖p‖ e(t − τ(t)) ‖p

= − (μp(C) − lfp ‖ A ‖p) ‖ e(t) ‖p +lgp ‖ B ‖p‖ e(t − τ(t)) ‖p

498 F. Wang et al.

when ‖ e(s) ‖p�‖ e(t) ‖p, t − τ � s � t, we have

C
D

α
+ ‖ e(t) ‖p= ¯lim

h→0+

‖ e(t) ‖p − ‖ e(t) − hαDαe(t) ‖p

hα
� −(μp(C) − l

f
p ‖ A ‖p −l

g
p ‖ B ‖p) ‖ e(t) ‖p .

Under Lemma 1, the system (6) can be asymptotical stability, which completes
our proof.

Remark 1. Recently, there were lots results about stability of neural networks
with fractional order dynamics, most of which are based on Lyapunov function.
The conditions of stability are formed as the absolute value of elements coefficient
matrices, or the eigenvalues of the coefficient matrices. However, a new criterion
in the Theorem 1 are obtained without constructing Lyapunov function, and the
conditions have include some exist results, which will be shown in the simulation
part.

3.2 Stabilization of Neural Networks via Matrix Measure Method

In this subsection, we will give several criteria to stabilize a kind of chaotic
fractional order systems. Noting that if A, B, C and τ(t) for neural networks
are appropriately chosen, the dynamical of (2) may lead to chaos. Those neural
networks are unstable, to stabilize them to their equilibrium points. The control
model of (2) can be described as following:

Dαxi(t) = −cixi(t)+
n∑

j=1

aijfj(xj(t))+
n∑

j=1

bijgj(xj(t−τj(t)))+Ii(t)+ui(t), (8)

where ci, aij , bij , Ii are the same as defined in (2), and ui(t) is linear state feed-
back controller defined by ui(t) = dixi(t). Let U(t) = (u1(t), u2(t), ..., un(t))T ,
and U(t) = Dx(t), where D is the feedback control gain to be determined.
Consequently, the controlled network can be rewritten as:

Dαx(t) = −(C − D)x(t) + Af(x(t)) + Bg(x(t − τ(t))) + I, (9)

where matrix C, A, B, I are the same as defined in (3).

Theorem 2. Assuming that Assumption 1 holds, if the parameters of (9) sat-
isfied

μp(C − D) − lpf ‖ A ‖p> lpg ‖ B ‖p> 0.

The (9) has an asymptotically stable unique equilibrium point under the feedback
control.
Proof.
Let C∗ = C − D, under the condition in this theorem, then Theorem2 can be
immediately derived from Theorem1.

Stability and Stabilization of Time-Delayed Fractional Order 499

4 Numerical Simulations

Two simulations to illustrate the our results will be shown in this part.

Example 1. Considering the parameters of (2) as following: fi(·) = tanh(·),
gi(·) = sin(·), τi(t) = 0.5et

1+et Ii = 0, i = 1, 2, ..., 5, and

C =

⎛

⎜
⎜
⎜
⎜
⎝

2 0 0 0 0
0 4 0 0 0
0 0 4 0 0
0 0 0 5.5 0
0 0 0 0 3

⎞

⎟
⎟
⎟
⎟
⎠

, A = B =

⎛

⎜
⎜
⎜
⎜
⎝

0.6 −0.6 0.3 0.6 0.3
1.5 −1.5 −0.6 0.6 0.3
0 −0.3 0.6 0.3 0
0 0.3 0.3 −0.9 0.3

1.5 0 0 −0.3 −0.9

⎞

⎟
⎟
⎟
⎟
⎠

.

Remark 2. In this simulation, let p = 2, then we have l2f = l2g = 1, and μ2(C) =
5.5, ‖ A ‖2=‖ B ‖2= 2.695. It is obviously the condition in the Theorem1 can be
satisfied when p = 2. But, these coefficient matrices can not meet the conditions
in [9]. Thus, there is more conservative in this paper. The state trajectories of
this neural network is depicted in Fig. 1.

−1 0 1 2 3 4 5
−4

−2

0

2

4

6

8

t

x i
(t
),
i=
1,
2,
3,
4,
5

x
1
(t)

x
2
(t)

x
3
(t)

x
4
(t)

x
5
(t)

Fig. 1. Numerical solution of equation (1)

Example 2. Consider the parameters of the neural network (2) as following:
fi(·) = gi(·) = tanh(·), τi = 0.5 Ii = 0, i = 1, 2, 3, and

C =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , A = B =

⎛

⎝
0.62 −1.605 −1.605

−1.605 0.55 −2.2
−1.605 2.2 0.5

⎞

⎠ .

The system with these parameters has a double-scrolling chaotic attractor with
the initial φ(t) = (0.1,−0.5,−0.5)T , ∀t ∈ [−0.5, 0]. Without controller, the state
trajectories of neural network (2) is depicted in Fig. 2. Let the feedback control

gain D =

⎛

⎝
−2.5 −7.5 −7.5
−5 −2.5 −10

−7.5 10 −2.5

⎞

⎠, from Fig. 3, we can see the state variables xi(t)

is converge to the x∗ = [0, 0, 0]T .

500 F. Wang et al.

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

4

t

x i
(t
),
i=
1,
2,
3

x
1
(t)

x
2
(t)

x
3
(t)

Fig. 2. State trajectories of variable in (1) without controller

0 5 10 15
−5

−4

−3

−2

−1

0

1

2

3

4

5

t

x i
(t
),
i=
1,
2,
3

x
1
(t)

x
2
(t)

x
3
(t)

Fig. 3. State trajectories of variable in (1) with controller

Remark 3. Noting the feedback control gain matrix D is not symmetric. Fur-
thermore, it is not positive definite. Thus, our results will have wider applications
in practice.

5 Conclusion

The matrix measure method has been applied for dealing with the stability prob-
lem of neural networks with fractional order dynamics in this paper. Combined
with fractional order differential inequality, some conditions related to matrix
measure have been obtained to ensure the stability of the delayed fractional
order models. According to the above results, feedback controllers have been
designed for stabilizing the studied neural networks. In the simulation section,
the efficiency and less conservatism for the derived criteria were shown by two
examples.

References

1. Herault, J., Jutten, C.: Space or time adaptive signal processing by neural network
models. In: Neural Networks for Computing, vol. 151, no. 1, pp. 206–211 (1986)

2. Hunt, K.J., Sbarbaro, D., Zbikowski, R., Gawthrop, P.J.: Neural networks for con-
trol systems survey. Automatica 28(6), 1083–1112 (1992)

3. Carpenter, G.A.: Neural network models for pattern recognition and associative
memory. Neural Netw. 2(4), 243–257 (1989)

Stability and Stabilization of Time-Delayed Fractional Order 501

4. Boroomand, A., Menhaj, M.B.: Fractional-order hopfield neural networks.
In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5506,
pp. 883–890. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02490-0 108

5. Lundstrom, B.N., Higgs, M.H., Spain, W.J., Fairhall, A.L.: Fractional differentia-
tion by neocortical pyramidal neurons. Nat. Neurosci. 11(11), 1335–1342 (2008)

6. Kaslik, E., Sivasundaram, S.: Nonlinear dynamics and chaos in fractional-order
neural networks. Neural Netw. 32, 245–256 (2012)

7. Yu, J., Hu, C., Jiang, H.: α-stability and α-synchronization for fractional-order
neural networks. Neural Netw. 35, 82–87 (2012)

8. Cao, J., Wan, Y.: Matrix measure strategies for stability and synchronization of
inertial BAM neural network with time delays. Neural Netw. 53, 165–172 (2014)

9. Stamova, I.: Global Mittag-Leffler stability and synchronization of impulsive
fractional-order neural networks with time-varying delays. Nonlinear Dyn. 77(4),
1251–1260 (2014)

10. Stamova, I., Stamov, G.: Stability analysis of impulsive functional systems of frac-
tional order. Commun. Nonlinear Sci. Numer. Simul. 19(3), 702–709 (2014)

11. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional
Derivatives, Fractional Differential Equations, to Methods of Their Solution and
Some of Their Applications, vol. 198. Academic press, Cambridge (1998)

12. Yakar, C., Gücen, M.B., Cicek, M.: Strict stability of fractional perturbed systems
in terms of two measures. In: Baleanu, D., Machado, J.A.T., Luo, A.C. (eds.)
Fractional Dynamics and Control, pp. 119–132. Springer, New York (2012)

13. Cicek, M., Yakar, C., Gücen, M.B.: Practical stability in terms of two measures
for fractional order dynamic systems in Caputo’s sense with initial time difference.
J. Frankl. Inst. 351(2), 732–742 (2014)

14. Stamov, G., Stamova, I.: Second method of Lyapunov and almost periodic solutions
for impulsive differential systems of fractional order. IMA J. Appl. Math. (2015).
doi:10.1093/imamat/hxv008

15. Stamova, I.: On the Lyapunov theory for functional differential equations of
fractional order. Proc. Am. Math. Soc. 144(4), 1581–1593 (2016)

http://dx.doi.org/10.1007/978-3-642-02490-0_108
http://dx.doi.org/10.1093/imamat/hxv008

Metrics and the Cooperative Process of the
Self-organizing Map Algorithm

William H. Wilson(B)

UNSW, Sydney, Australia
billw@cse.unsw.edu.au

Abstract. This paper explores effects of using different the distance
measures in the cooperative process of the Self-Organizing Map algo-
rithm on the resulting map. In standard implementations of the algo-
rithm, Euclidean distance is normally used. However, experimentation
with non-Euclidean metrics shows that this is not the only metric that
works. For example, versions of the SOM algorithm using the Manhattan
metric, and metrics in the same family as the Euclidean metric, can con-
verge, producing sets of weight vectors indistinguishable from the regular
SOM algorithm. However, just being a metric is not enough: two exam-
ples of such are described. Being analogous to the Euclidean metric is
not enough either, and we exhibit members of a family of such distance
measures that do not produce satisfactory maps.

Keywords: Self-organizing map · Metric · Cooperative process

1 Introduction

The self-organizing map (SOM) algorithm, developed by Kohonen [3,4], is well
known, and in practice standard versions normally converge reliably to a sensible
map. Many studies of convergence and of convergence speed properties of SOMs
exist; earlier ones are can be found in the extensive reference list in [4]. Messages
from these studies include that the map converges to the probability distribution
of the training data as the epoch number n → ∞ (e.g. [6]).

What features of the algorithm lead to its convergence? Let’s review the algo-
rithm, for ease of reference. First, the weight vectors are given initial values: this
can affect convergence speed ([4], p. 142) but does not seem to affect convergence
as n → ∞. In the first part of the algorithm loop, the competitive process, finds
the weight vector x that is closest (in a certain sense) to the current training
pattern. The sense of closeness used is a Euclidean geometric sense, using the
metric derived from the l2m-norm (where m is in this case the dimension of the
weight space); other metrics have been used (see e.g. [5]). The second process,
the cooperative process, takes the “winning node”, that is, the map node asso-
ciated with the weight vector that was found in the competitive process, and in
the variant we consider, computes the distance d, usually using the Euclidean
(l2m) metric, of each map node from the winning map node c (but here m is
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 502–510, 2017.
DOI: 10.1007/978-3-319-59072-1 59

Metrics and the Cooperative Process of the Self-organizing Map Algorithm 503

the map dimension). This distance d is then used (see [4], p. 111) to compute a
neighborhood function h used in the next process, (notation as in [1]):

h = exp
(

− d2

2σ2(n)

)
(1)

where σ(n) is the “neighborhood width” term for epoch n. Another variant
bases h on a neighborhood set Nc ([4], p. 111); we do not consider this here. The
adaptive process changes each map node’s weight vector w using

Δw = η(n)h(x − w) (2)

where η(n) is the learning rate for epoch n, and x is as defined above.
Thus distance measures are used in the SOM algorithm in two places - in the

competitive process, and in the cooperative process. These need not be the same.
In this paper we are interested in the distance measure d used in the cooperative
process. As noted above, in this version of the SOM algorithm, d is based on the
l2m-norm (though [4], p. 111 mentions an alternative). We’ll recall the definition
of a metric (also found in [4] p. 4), in order to be able to refer to its parts later.
A metric on a set X is a function d : X × X → R

+
0 (non-negative real numbers)

with the following 3 properties:

(a) ∀x, y ∈ X, d(x, y) = 0 ⇔ x = y
(b) (symmetry) ∀x, y ∈ X, d(x, y) = d(y, x)
(c) (triangle inequality): ∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

There are other metrics besides that derived from the l2m-norm, and we shall
explore SOM algorithm performance when that metric is replaced by others, as
described in the next section. Kohonen (e.g. [4]) and others consider metrics,
perhaps mainly in relation to the competitive process of the SOM algorithm.
Kohonen describes the Euclidean metric in discussing the neighborhood function
(e.g. [4] p. 111), though he mentions an alternative (not based on an explicit
metric). Section 2 describes some metric and non-metric distance measures, and
Sect. 3 reports on experiments with their use in the cooperative process.

2 Distance Measures in the SOM Algorithm

There are many metrics available that might be applied in the cooperative
process of the SOM algorithm; the ones described below by no means exhaust
the possibilities, but they do allow us to find a range of different behaviours in
the experimental results in the following section.

2.1 Standard Euclidean Metric

As is well known, when the standard SOM algorithm is used on clustered data,
the algorithm places map node weight vectors in the middles of clusters (see
Fig. 1), in a way that respects the map adjacency relationships. With uniformly
distributed data, the algorithm distributes map node weight vectors across the
data space, again in a way that respects the map adjacency relationships.

504 W.H. Wilson

2.2 Metrics Based on the lpm-Norm (p ≥ 1)

The lpm-norm is defined for a vector x ∈ R
m by

||x|| =

(
m∑
i=1

|xi|p
) 1

p

(3)

and then the associated metric, sometimes called the Minkowski metric, is
defined by d(x,y) = ||x − y||. When p = 2 we have Euclidean distance, and
when p = 1 we get the Manhattan, or city-block metric. p can be fractional.

2.3 Metric Based on the Max-Norm

Another metric (related to the lpm-family) is based on the max-norm, defined by

||x|| = maxixi (4)

so that in this case d(x,y) = ||x − y|| = maxi(xi − yi).

2.4 Discrete Metric

The discrete metric is defined for x, y ∈ X by d(x, y) = 1 unless x = y, when
d(x, y) = 0. This is a priori the metric least likely to work in a SOM algorithm
variant, as it gives no information to enable the algorithm to distinguish between
map neurons that are near or far in terms of the map grid adjacency relations.

2.5 Distance Measures Based on the lpm-Formula (p < 1)

When 0 < p < 1, the lpm-norm formula still makes sense, but the distance
measure defined by d(x,y) = ||x − y|| is not a metric, because the triangle
inequality (c) in the definition of metric will not (always) hold. Metric axioms
(a) d(x, y) = 0 ⇔ x = y and (b) (symmetry) do hold for these measures.

2.6 Post Office Metric

The “Post Office” metric is defined by analogy with physical mail systems, which
frequently send all (non-local) items to a central location, such as a capital city,
from which they are then distributed to their regional destinations. So in this
distance measure, the distance between two distinct points is the sum of their
distances from the central location. “Distance from the central location” needs a
precise definition: possibilities include Euclidean distance and (rather reasonably
for the post office analogy) Manhattan distance. The central location needs to
be specified, too, and the results are likely to vary depending on which location
is chosen. A possibility for a 2D map is for the central location to have the
coordinates of the average x-value and average y-value (perhaps rounded).

Metrics and the Cooperative Process of the Self-organizing Map Algorithm 505

3 Simulations with Non-standard Distance Measures

3.1 Data Sets

Data to which the SOM algorithm is applied are often of one of two types:
(1) the points are spread out across the data space, uniformly or according to
some gradation of density, or (2) the points belong to defined clusters. There are
intermediate cases, e.g. with overlapping clusters. For the purpose of testing the
performance of SOM variants, the experiments reported in this paper used two
data sets, one clustered and one unclustered. The data sets were 2-dimensional
(m = 2) so as to be easily visualised. The experiments used a regular square
grid, rather than triangular or hexagonal grids, or grids with extra connectivity
like those described in [2]. In one case the data (180 points) were distributed
(pseudo-)uniformly in the square from (1, 1) → (8, 8), while in the other case,
the data occupied 9 clusters each of 20 points inside the rectangle (1, 0) → (8, 8).
These data distributions can be seen in the background of the figures.

3.2 Standard Euclidean Metric

Obviously, the SOM algorithm converges as described above when the original
Euclidean metric is used as the distance measure. This is illustrated for clustered
data in Fig. 1, and the weight vectors from the original SOM provide a standard
for comparison for use with the other distance measures tried. This figure also
represents the outcome for clustered data of all the other successful variants.

Fig. 1. Standard SOM clustering. Map nodes are at coordinate-labelled junctions of
grid lines. This illustrates the map produced by all successful SOM variants (see text).

3.3 Distance Measures Based on the lpm-Norm (p ≥ 1)

Variants of the SOM algorithm that use metrics based on the lpm-norm worked
fine in practice. As noted in the introduction, m = 2, the dimension of the map
for our 2D-map SOM simulations. For example, with p = 3, weight vectors found

506 W.H. Wilson

were identical to those for the standard SOM algorithm (to 3 decimal places,
with the same random number generator seed). The same is true with p = 1
(Manhattan metric), and p = 8. Thus the weight diagrams in all three cases are
identical to that in Fig. 1, except that coordinates may be rotated or reflected.

3.4 Metric Based on the Max-Norm

This SOM variant also performed perfectly well, with the same weight vectors
(to 3 decimal places) as the standard SOM algorithm with the Euclidean metric.

3.5 Discrete Metric

Simulations using the discrete metric rshow that this variant of the SOM algo-
rithm does not converge in such a way that the map nodes lie in the centers of
clusters. Figure 2 visualizes what goes wrong for our clustered data: map points
fall inside clusters, but grid topology is not reflected in the map.

Fig. 2. Map from SOM variant using discrete metric for clustered data.

3.6 Distance Measures Based on the lpm-Formula (p < 1)

To probe how far SOM algorithm variants could be pushed, we tried distance
measures defined by this formula, with p < 1 (and m = 2 again). In our exper-
imental results, the performance of these SOM algorithm variants depends on
how far below p = 1 they are. Thus, for the particular clustered data used,
the weight diagram for p = 0.9 looks fine, p = 0.5 produces a clearly different
weight diagram, and the diagram for p = 0.25 is very problematic. With the
uniformly distributed data, p = 0.9 and p = 0.5 worked well, p = 0.25 looked a
little strange, and for p = 0.125 the weights were very disturbed. Figures 3 and 4
illustrate this.

Metrics and the Cooperative Process of the Self-organizing Map Algorithm 507

Fig. 3. Map from clustered data and SOM variant using lpm-style measure, p = 0.5.

Fig. 4. Map from uniform data and discrete-metric-based SOM variant.

3.7 Post Office Distance Metric

The Post Office metric again fails to provide weight vectors that meet the intent
of the SOM algorithm as we know it. Figure 5 illustrates what goes wrong.

Fig. 5. Map from uniform data and SOM variant using Post Office metric.

508 W.H. Wilson

4 Conclusion

The SOM algorithm works correctly with a range of non-standard distance mea-
sures in the cooperative process, not just Euclidean distance, for the data sets
reported here. However, being a metric is not sufficient: the discrete and PO met-
rics do not work. Also in some cases (e,g, lpm-distance measure with p slightly
less than 1) being a metric was not necessary. With the discrete metric, the
problem is obvious: the SOM cooperative and adaptive processes must distin-
guish between map nodes close to the winning node and those further away,
to change their weights differentially, but with the discrete metric, all pairs of
distinct points are equi-distant. Other metrics for which SOM-like algorithms
fail do distinguish between near and far map nodes, but distort the nearness if
the two nodes do not share an x-coordinate or y-coordinate (in a 2-D map).

Table 1. Summary of Results: the “Distortion” column shows the distance from (2,
2) to (4, 4) for each measure.

Distance measure Works? Distortion Remarks

Standard euclidean Yes 2.83 Standard SOM algorithm

Manhattan metric Yes 4 Some distance distortion

lpm-norm based (p = 3) Yes 2.52 Some distance distortion

lpm-norm based (p = 8) Yes 2.18 Some distance distortion

Based on max-norm Yes 2 Limit of lpm-metric as p → ∞
Discrete metric No 1 No distance distinction

Post-office metric No 8.49 Massive distance distortion

lpm-formula measure (p = 0.91) Yes 5.08 Normal map

lpm-formula measure (p = 0.25) No 32 Badly distorted

Most of the distance measures considered (e.g. the lpm-based ones) produce the
same measure for pairs of nodes that do share an x-coordinate or a y-coordinate.
The PO metric dPO exaggerates the distance (compared with Euclidean dis-
tance dEuc) for pairs of nodes neither of which is the origin. For example, using
Euclidean distance to measure distance from a central location (namely (0,0)),
dPO((2, 2), (4, 4)) ≈ 8.4853. More examples of this distortion can be seen in the
“Distortion” column of Table 1. Unsurprisingly, the metrics with the greatest dis-
tortions don’t work well, but in these experiments, non-Euclidean metrics with
“reasonable” distance measures work well, and indeed perform indistinguishably
from each other and from the Euclidean metric.

To put this another way, more significant forms of distortion arise from non-
uniform changes to the distance measure. Simply doubling all distances - i.e.
using 2d instead of the metric d - is certainly a form of distortion. However, in
the context of the SOM algorithm, this is equivalent to halving neighborhood
widths. If this interfered with map formation, it could be dealt with by increasing

Metrics and the Cooperative Process of the Self-organizing Map Algorithm 509

the initial neighborhood width and adjusting the neighborhood decay rate. The
problems with the lpm based measures with p < 1 seem to arise because of
mismatches between the degree of distortion along the constant-x and constant-
y directions on the one hand, and the diagonal directions on the other hand (as
indicated in the “Distortion” column of Table 1).

The notion of neighborhood distance in SOM algorithm is robust, since sev-
eral variants function correctly. There is little to choose between the different
metrics that do work, from a computational perspective, for the datasets used in
the these experiments. Specific types of datasets may benefit from the use of a
distance measure that somehow reflects the structure of the particular dataset.

In models of biological neural systems, one might prefer an intermediate
between the Euclidean metric and the Manhattan metric, since in such systems,
neurons that function as “neighbours” in the SOM algorithm sense will not be
connected by straight-line axons but rather by one (or more) axons that need to
divert from a straight line path because of obstacles, efficiency constraints, etc.

Many algorithms use Euclidean distance measures, and while in some cases
there are good reasons to do so, in others they might also work fine with differ-
ent metric-based distance measures. One could also try non-Euclidean distance
measures in the competitive phase (this paper considers the cooperative phase).

We noted in the Introduction section that the metric axioms may not apply
in certain real-life measures of distance-like phenomena like travel time and
charging measures. While the non-metric measures explored in this paper did
not perform impressively, in solving such problems, non-metric measures that
model the particular problem, it may be profitable to explore the use of distance
measures that violate metric axiom (a) d(x, y) = 0 ⇔ x = y and/or axiom (b)
d(x, y) = d(y, x) (symmetry) for datasets where this matches reality.

Since the SOM algorithm works with a range of metrics, it may be appro-
priate, when creating SOMs, to consider which metric is most appropriate to
the situation. Cases where a lpm-norm-based metric with p = 8, say, would be
natural may be uncommon, but the Manhattan and max-norm metrics may well
correspond better in some situations than the Euclidean norm.

Simulation Parameters: Initial learning rate was 0.1, and was multiplied by
0.999 after each epoch. The initial value of σ was the map radius of the map (i.e.
(mapHeight + mapWidth)/2), and was multiplied by 0.999 after each epoch.
Simulations ran for 5000 epochs.

References

1. Haykin, S.: Neural Networks and Learning Machines. Prentice-Hall, New York
(2009)

2. Jiang, F., Berry, H., Schoenauer, M.: The impact of network topology on self-
organizing maps. In: Proceedings of First ACM/SIGEVO Summit on Genetic and
Evolutionary Computation, GEC-2009, pp. 247–254. ACM, New York (2009)

3. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol.
Cybern. 43, 59–69 (1982)

510 W.H. Wilson

4. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Berlin (2001)
5. P�loński, P., Zaremba, K.: Improving performance of self-organising maps with dis-

tance metric learning method. In: Rutkowski, L., Korytkowski, M., Scherer, R.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012. LNCS, vol. 7267,
pp. 169–177. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29347-4 20

6. Yin, H., Allison, N.M.: On the distribution and convergence of feature space in
self-organizing maps. Neural Comput. 7, 1178–1187 (1995)

http://dx.doi.org/10.1007/978-3-642-29347-4_20

A Cooperative Projection Neural Network for
Fast Solving Linear Reconstruction Problems

Youshen Xia(B)

College of Mathematics and Computer Science, Fuzhou University, Fuzhou, China
ysxia@fzu.edu.cn

Abstract. This paper presents a new cooperative projection neural net-
work for fast solving quadratic convex programming problems, includ-
ing linear reconstruction problems. The proposed cooperative projec-
tion neural network consists of a weighted combination of two projec-
tion terms. Compared with conventional projection neural networks and
numerical optimization methods, the proposed cooperative projection
neural network has a small model size and no limit condition of ini-
tial points. Numerical results demonstrate that the proposed cooperative
projection neural network has a faster speed than the existing projection
neural networks. Therefore, the proposed cooperative projection neural
network can fast solve linear reconstruction problems.

Keywords: Linear reconstruction problems · Continuous-time neural
network · Low-dimensional model · Fast computation

1 Introduction

The linear reconstruction model is a basic model of many engineering applica-
tions, such as signal and image processing, medical imaging regression estima-
tion, etc. [1–4,8,11]. The fundamental issue is to estimate the parameter vector
of the linear reconstruction model in the presence of observation noise. The
traditional least squares (LS) estimator is asymptotically unbiased when the
noise distribution is white-Gaussian, but it could be very poor in non-Gaussian
situations [5]. Since the assumption that the noise distribution is Gaussian is
unrealistic, robust estimation methods were developed in [6–16]. Among these,
the least absolute deviation (LAD) approach is a good choice since it is equiva-
lent to the maximum likelihood method under a double exponential distribution,
and thus the least absolute value norm estimation based on the LAD approach is
efficient when the noise distribution is Laplace or Cauchy. Unfortunately, finding
the LAD estimator is much more complex than finding the least square estima-
tor. This is because the LAD estimation problem has a nonsmooth cost function
and non-uniqueness solutions. In order to avoid the difficulty, the robust Huber

Y. Xia—This work is supported by the National Natural Science Foundation of
China under Grant No. 61473330.

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 511–520, 2017.
DOI: 10.1007/978-3-319-59072-1 60

512 Y. Xia

M-estimator was proposed as an effective alternative to the LAD estimator. For
robust sparse regression estimation, a robust sparse outlier estimator was devel-
oped. Because existing robust estimator problems include a non-smooth objec-
tive function, they are modeled exactly by a large convex quadratic programming
problem. Therefore, the resulting estimator algorithms will have a slow speed
in the case of large convex quadratic programming problems. Recently, a noise
constraint-based least square (NCLS) method was presented for robust para-
meter estimation of autoregressive signals and data fusion, respectively. It was
shown that the NCLS is robust against noise error, but the NCLS estimation
problem may become a large convex quadratic programming problem when the
input data is large.

This paper presents a new cooperative projection neural network for fast
solving a class of quadratic convex programming problems, which can contain
the robust NCLS estimation problem as its special case. The proposed coop-
erative projection neural network consists of two projection terms. Moreover,
compared with existing projection neural networks and numerical optimization
algorithms [17–25,27,28], the proposed cooperative projection neural network
has a very smaller model size than the original size of the quadratic convex
programming problems. Moreover, there is no limit condition of initial points.
Numerical results demonstrate that the proposed neural network has faster speed
than the existing projection neural networks. Because this type of quadratic con-
vex programming problems generalize the robust reconstruction problems, the
proposed cooperative projection neural network can be effectively used for fast
computation of the robust linear reconstruction problems.

2 Linear Reconstruction Model and Estimation

Consider linear reconstruction model:

y = Ax + n, (1)

where x ∈ Rm is the unknown parameter vector to be estimated, y ∈ Rn is
a observation vector, n ∈ Rn is observation noise vector, and A ∈ Rn×m is a
observation matrix. The linear reconstruction model is called underdetermined
when m > n and overdetermined when m < n. The linear reconstruction model
can contain many application models as its special cases, such as the model of
MR image reconstruction [3], CT image reconstruction [4], and signal and image
restoration [8,11]. The objective of the linear reconstruction model is to estimate
the unknown parameter vector from the observation vector in the presence of
observation noise.

Under an assumption of Gaussian noise, the traditional least squares (LS)
estimator is given by:

xLS = arg min
x

‖y − Ax‖22 (2)

or equivalently is the solution of one normal linear equation:

AT Ax = ATy (3)

A CPNN for Fast Solving Linear Reconstruction Problems 513

where ‖ · ‖ denotes l2 norm. In practices, matrix AT A is singular or very close
to singular so that the precision of the LS solution becomes very poor. The LS
estimator is thus replaced by the ridge estimator:

xR = arg min
x

‖y − Ax‖22 + λ‖x‖22 (4)

or equivalently is the solution of another normal linear equation:

(AT A + λI)x = ATy (5)

where λ > 0 is a regularization parameter. The ridge estimator is thus given by:

xR = (AT A + λI)−1ATy,

which is also called the regularization solution. To achieve edge preservation in
image information, the total variational (TV) regularization solution is presented
by:

xTV = arg min
x

‖x‖TV + ‖y − Ax‖2, (6)

where ‖ · ‖TV is the discrete TV regularization operator term. Both the ridge
solution and the TV regularization solution are in general biased since an optimal
regularization parameter is usually difficult to be taken.

To deal with non-Gaussian noise, several robust estimators were presented.
The traditional least absolute deviation (LAD) estimator is given by [1]:

xLAD = arg min
x

‖Ax − y‖1 (7)

where ‖ � ‖1 is l1 norm. In order to deemphasize outliers, the robust Huber M-
estimator is used as one abstracted alterative estimator to minimize the recon-
struction problem [7]:

minimize ϕ1(x, z) = γ‖Ax − y − z‖1 +
1
2
‖z‖22

subject to x ∈ Rm, z ∈ Rn (8)

where γ > 0 is a design parameter. A generalized least absolute deviation esti-
mator is another abstracted robust estimator to minimize the reconstruction
problem [12–14]:

minimize f1(x, z) = ‖Ax − b − z‖1
subject to z ∈ X (9)

where X = {z ∈ Rn | l ≤ z ≤ h} is the error set. Recently, in order to avoid
the nondifferentiability of the robust absolute value error residual, a noise con-
strained least square (NCLS) estimator was introduced to minimize the recon-
struction problem [15,16]:

minimize f1(x, z) = ‖Ax − b − z‖2
subject to z ∈ X (10)

514 Y. Xia

where ‖ · ‖2 denotes l2 norm. It was shown that the NCLS estimator is not only
robust [16] but also fast obtained by using a low-dimensional recurrent neural
network [20].

For general applications, this paper considers the following generalized recon-
struction problem:

minimize f2(x, z) = ‖Ax − Qz − b‖2
subject to x ∈ Ω1, z ∈ Ω1 (11)

where Q is an orthogonal matrix, and Ω1 ⊂ Rm and Ω2 ⊂ Rn are two closed
convex sets. It is seen that the robust reconstruction problem (10) is a special
case of (11). The objective of this paper is to propose a new recurrent neural
network for fast solving (11).

3 Cooperative Projection Neural Network

Recurrent neural networks have been used as computational models for solving
computationally intensive problems. Because of the inherent nature of parallel
and distributed information processing in neural networks, recurrent neural net-
works are promising computational models for real-time applications. Several
popular projection neural networks (PRNNs) for effectively solving (11) were
developed in [17–21]. Because the reconstruction problem (11) contains double
unknown vectors, the PRNNs have model size being n+m and model complexity
being O((n + m)2). For fast computation, we here introduce a new cooperative
projection neural network with both the model size being m and model com-
plexity being O(n) only.

3.1 Proposed Neural Network

For discussion convenience, we rewrite (11) as:

min f(xI , xII) =
1
2
‖AxI + BxII − c‖2 (12)

s.t xI ∈ Ω1, xII ∈ Ω2

where xI ∈ R
m, xII ∈ R

n, A ∈ R
n×m, B = −Q is an orthogonal matrix, and

c = b. By the optimality condition [24] we see that (x∗
I , x

∗
II) is an optimal

solution of (12) if and only if (x∗
I , x

∗
II) satisfies for any xI ∈ Ω1, ∀xII ∈ Ω2

(xI − x∗
I)

T ∂f(x∗
I , x

∗
II)

∂xI
+ (xII − x∗

II)
T ∂f(x∗

I , x
∗
II)

∂xI
≥ 0

where ∂f(xI ,xII)
∂xI

and ∂f(xI ,xII)
∂xII

denote the gradient of f(xI , xII) at xI and xII ,
respectively. Using the projection techniques [26] we can establish the following
result:

A CPNN for Fast Solving Linear Reconstruction Problems 515

Proposition 1. If u∗ = (u∗
I , u

∗
II) satisfies equations:

{
uI = −AT (APΩ1(uI) + QPΩ2(uII) − c) + PΩ1(uI)

uII = −QT (APΩ1(uI) − c) (13)

where PΩ1(uI) = arg minv∈Ω1‖uI − v‖2, and PΩ2(uII) = arg minv̂∈Ω2‖uII −
v̂‖2. Then (PΩ1(u

∗
I), PΩ2(u

∗
II)) is an optimal solution of (12). Motivated by the

reformulation (13), we propose a new cooperative projection neural network
(CPNN) as follows:

State equation

duI(t)
dt

= μ{−AT (APΩ1(uI(t)) + QPΩ2(w(t)) − c) + PΩ1(uI(t)) − uI(t)}
(14)

Output equation

v(t) = (PΩ1(uI(t)), PΩ2(w(t)))

where w(t) = −QT (APΩ1(uI(t))−c), uI(t) ∈ Rn is state trajectory, v(t) ∈ Rn+m

is the output trajectory, μ > 0 is a design constant. It is seen that the proposed
neural network consists of two projection terms with a cooperative structure
and thus we call it as the cooperative projection neural network. Because the
proposed cooperative projection neural network has the number of neurons being
n, the proposed neural network has the model size m only. As for the stability
and convergence of the proposed neural network, using the analysis technique
[19] we have the following results:

Theorem 1. The proposed CPNN in (14) is globally stable at its equilibrium
point and the output trajectory of the proposed CPNN in (14) will converge
globally to an optimal solution of (12).

3.2 Comparison with Related Works

To analyze the model complexity of the proposed neural network, let W1 =
I − AT A, W2 = −AT Q, q = AT c, and p = QT c where I ∈ Rn×n is an unit
matrix. Then (14) becomes:

duI(t)
dt

= μ{−uI(t) + W1PΩ1(uI(t)) + W2PΩ2(w(t)) + q}

where w(t) = WT
2 PΩ1(uI(t)) + p. We see that the proposed neural network has

the total number of multiplications being 2mn + m2 + m per iteration. Thus its
model complexity is O(n) when n << m.

We now compare the proposed CPNN with existing projection neural net-
works for solving (12). First, one projection neural network, called the extended
projection neural network (EPNN), was developed in [17], defined as:

516 Y. Xia

State equation

d

dt

(
xI(t)
xII(t)

)
= μ

(
PΩ1(xI(t)−AT (AxI(t) +QxII(t)− c))− xI(t)

PΩ2(Q
T c−QTAxI(t))− xII(t)

)
(15)

Output equation
x(t) = (xI(t), xII(t))

where (xI(t), xII(t)) ∈ R
n is the state trajectory, μ > 0 is a design constant,

PΩ1(xI) and PΩ2(xII) are defined in Proposition 1. It is seen that EPNN has both
the number of neurons being n + m and model complexity being O((n + m)2).

Second, another projection neural network, called the cooperative projection
neural network, was developed in [19], defined as:

State equation

d

dt

(
uI(t)
uII(t)

)
= μ

(
−AT (APΩ1(uI) +QPΩ2(uII)− c) + PΩ1(uI)− uI

−QT (APΩ1(uI) +QPΩ2(uII)− c) + PΩ2(uII)− uII

)
(16)

Output equation

v(t) = (PΩ1(uI(t)), PΩ2(uII(t)))

where u(t) ∈ Rn+m is state trajectory, v(t) ∈ Rn+m is the output trajectory. It
is seen that the projection neural network has both the number of neurons being
n + m and model complexity being O((n + m)2).

Recently, a bi-projection neural network (BPNN) was developed in [21],
defined as:

State equation

dxI(t)
dt

= μ{PΩ1(W1xI(t) + W2PΩ2(z(t)) + q) − xI(t)} (17)

Output equation

v(t) = (xI(t), PΩ2(z(t)))

where z(t) = p + WT
2 xI(t), xI(t) ∈ Rn is the state trajectory, v(t) ∈ Rn is the

output trajectory, and W1 and W2 are defined in the CPNN. The BPNN has
the number of neurons being n, but it assumes that initial point xI(t0) ∈ Ω1.
By contrast, the proposed CPNN can be guaranteed to converge globally to the
optimal solution of (1) without the initial point condition.

Finally, we compare the proposed CPNN with the gradient projection numer-
ical algorithm [22,23] and the disciplined convex programming algorithm [25].
Because the generalized reconstruction problem (11) has the solution space
dimension being n + m, the solution algorithm has the algorithm complexity
being O((n + m)2) at least.

A CPNN for Fast Solving Linear Reconstruction Problems 517

4 Illustrative Examples

In this section, we give illustrative examples to demonstrate the effectiveness of
the proposed CPNN algorithm. The simulation is conducted in MATLAB 7.0
platform where computation time unit is taken as second.

Example 1. Consider the generalized reconstruction problem (12):

min
1
2
‖AxI + BxII − c‖2 (18)

s.t CxI = b, l ≤ xII ≤ h

where A is the n×m random matrix, B is the n×n random orthogonal matrix,
C is the r×m random matrix, c is the n dimensional random vector, and b is the
r dimensional random vector. We choose two random integer vectors zI and zII

to construct vector c contaminated by uniformly distributed random noise. We
construct the vector b satisfying linear equality constraints, and construct the
inequality constants by using two uniformly distributed random vectors l and
h. All simulation results show the proposed CPNN is always convergent to the
optimal solution. For a comparison, we also perform the EPNN defined in (15),
the BPNN defined in (17), and the CVX numerical algorithm [25]. Computed
results are listed in Table 1. From the Table 1 we see that the proposed CPNN
has a faster speed than other three algorithms.

Table 1. Computed results of four algorithms in Example 1

Algorithm Problem size Error CPU time (sec.)

Proposed CPNN n1 = 200, n2 = 400, m = 400, r = 100 2.59 1.92

BPNN (17) n1 = 200, n2 = 400, m = 400, r = 100 2.61 2.06

EPNN (15) n1 = 200, n2 = 400, m = 400, r = 100 2.61 4.09

CVX numerical
algorithm

n1 = 200, n2 = 400, m = 400, r = 100 4.53 19.57

Proposed CPNN n1 = 400, n2 = 600, m = 600, r = 200 3.16 5.34

BPNN (17) n1 = 400, n2 = 600, m = 600, r = 200 3.29 6.08

EPNN (15) n1 = 400, n2 = 600, m = 600, r = 200 3.26 16.74

CVX numerical
algorithm

n1 = 400, n2 = 600, m = 600, r = 200 4.76 71.21

Proposed CPNN n1 = 600, n2 = 800, m = 800, r = 400 1.89 11.61

BPNN (17) n1 = 600, n2 = 800, m = 800, r = 400 1.90 12.32

EPNN (15) n1 = 600, n2 = 800, m = 800, r = 400 1.90 31.50

CVX numerical
algorithm

n1 = 600, n2 = 800, m = 800, r = 400 1.98 302.57

518 Y. Xia

Table 2. Computed results of four algorithms in Example 2

Algorithm Problem size Error CPU time (sec.)

Proposed CPNN n1 = 200, n2 = 400, m = 400, r = 100 1.97 1.45

BPNN (17) n1 = 200, n2 = 400, m = 400, r = 100 2.03 1.48

EPNN (15) n1 = 200, n2 = 400, m = 400, r = 100 1.98 2.81

CVX numerical
algorithm

n1 = 200, n2 = 400, m = 400, r = 100 2.35 24.57

Proposed n1 = 400, n2 = 600, m = 600, r = 200 2.17 4.46

BPNN (17) n1 = 400, n2 = 600, m = 600, r = 200 2.19 4.92

EPNN (15) n1 = 400, n2 = 600, m = 600, r = 200 2.18 10.66

CVX numerical
algorithm

n1 = 400, n2 = 600, m = 600, r = 200 2.45 112.06

Proposed CPNN n1 = 600, n2 = 800, m = 800, r = 400 3.69 10.16

BPNN (17) n1 = 600, n2 = 800, m = 800, r = 400 3.78 13.69

EPNN (15) n1 = 600, n2 = 800, m = 800, r = 400 3.74 39.84

CVX numerical
algorithm

n1 = 600, n2 = 800, m = 800, r = 400 6.19 211.89

Example 2. Consider the generalized reconstruction problem (12):

min
1
2
‖AxI + BxII − c‖2 (19)

s.t p ≤ xI ≤ q, DxII = d

where A is the n×m random matrix, B is the n×n random orthogonal matrix,
D is the r × n random matrix, c is the n dimensional random vector, and d is
the r dimensional random vector. We choose two random integer vectors zI and
zII to construct vector c contaminated by uniformly distributed random noise.
We construct vector d satisfying linear equality constraints, and construct the
inequality constants by using two uniformly distributed random vectors p and
q. All simulation results show the proposed CPNN is always convergent to the
optimal solution. For a comparison, we also perform the EPNN defined in (15),
the BPNN defined in (17), and the CVX numerical algorithm. Computed results
are listed in Table 2. From the Table 2 we see that the proposed CPNN has a
faster speed than other three algorithms.

5 Conclusion

This paper has presented a new cooperative projection neural network for
fast solving generalized reconstruction problems. The proposed cooperative
projection neural network has two projection terms. Compared with existing
projection neural networks, the proposed cooperative projection neural network

A CPNN for Fast Solving Linear Reconstruction Problems 519

has not only a small model size but also no limit condition of initial points.
Numerical results demonstrate that the proposed cooperative projection neural
network has a faster speed than the existing projection neural networks. There-
fore, the proposed cooperative projection neural network can be effectively used
for fast computation of the robust linear reconstruction problems.

References

1. Dodge, Y., Jana, J.: Adaptive Regression. Springer, New York (2000)
2. Huber, P.J.: Robust Statistics, 2nd edn. Wiley, Hoboken (2008)
3. Angshul, M., Ward, R.K.: An algorithm for sparse MRI reconstruction by Schatten

p-norm minimization. Magn. Reson. Imaging 29, 408–417 (2011)
4. Joost, B.K., Linda, P.: Fast approximation of algebraic reconstruction methods for

tomography. IEEE Trans. Image Process. 21, 3648–3658 (2012)
5. Shalvi, O., Weinstein, E.: Maximum-likelihood and lower bounds in system-

identification with non-Gaussian inputs. IEEE Trans. Inf. Theor. 40, 328–339
(1994)

6. Cadzow, J.A.: Minimum l1, l2, and l∞ norm approximate solutions an overdeter-
mined system of linear equations. Digit. Sig. Process. 12, 524–560 (2002)

7. Mangasarian, O.L., Musicant, D.R.: Robust linear and support vector regression.
IEEE Trans. Pattern Anal. Mach. Intell. 22(9), 1–6 (2000)

8. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing: Learning
Algorithms and Applications. Wiley, Hoboken (2002)

9. Kim, S.J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interior-point method
for large-scale l1-regularized least squares. IEEE J. Select. Topics Sig. Process. 1,
606–617 (2007)

10. Papageorgiou, G., Bouboulis, P., Theodoridis, S.: Obust linear regression analysis:
a greedy approach. IEEE Trans. Sig. Process. 63, 3872–3887 (2015)

11. Campisi, P., Egiazarian, K.: Blind Image Deconvolution: Theory and Applications.
CRC Press, Cambridge (2007)

12. Xia, Y.S., Kamel, M.S.: Novel cooperative neural fusion algorithms for image
restoration and image fusion. IEEE Trans. Image Process. 16, 367–381 (2007)

13. Xia, Y.S., Kamel, M.S.: Cooperative learning algorithms for data fusion using novel
L1 estimation. IEEE Trans. Sig. Process. 56, 1083–1095 (2008)

14. Xia, Y.S., Kamel, M.S.: A generalized least absolute deviation method for para-
meter estimation of autoregressive signals. IEEE Trans. Neural Netw. 19, 107–118
(2008)

15. Xia, Y.S., Kamel, M.S., Henry, L.: A fast algorithm for AR parameter estimation
using a novel noise-constrained least squares method. Neural Netw. 33, 396–405
(2010)

16. Xia, Y.S., Leung, H., Kamel, M.S.: A discrete-time learning algorithm for image
restoration using a novel L-2-norm noise constrained estimation. Neurocomputing
198, 155–170 (2016)

17. Xia, Y.S.: An extended projection neural network for constrained optimization.
Neural Comput. 16, 863–883 (2004)

18. Xia, Y.S.: Further results on global convergence and stability of globally projected
dynamical systems. J. Optim. Theor. Appl. 122, 149–627 (2004)

19. Xia, Y.S., Feng, G., Wang, J.: A novel recurrent neural network for solving nonlin-
ear optimization problems with inequality constraints. IEEE Trans. Neural Netw.
19, 1340–1353 (2008)

520 Y. Xia

20. Xia, Y.S., Wang, J.: Low-dimensional recurrent neural network-based Kalman filter
for speech enhancement. Neural Netw. 67, 131–139 (2015)

21. Xia, Y.S., Wang, J.: A bi-projection neural network for solving constrained
quadratic optimization problems. IEEE Trans. Neural Netw. Learn. Syst. 27, 214–
224 (2016)

22. Daubechies, I., Fornasier, M., Loris, I.: Accelerated projected gradient method
for linear inverse problems with sparsity constraints. J. Fourier Anal. Appl. 14,
764–792 (2008)

23. Malitsky, Y.: Projected reflected gradient methods for monotone variational
inequalities. SIAM J. Optim. 25, 502–520 (2015)

24. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2006)

25. Grant, M., Boyd, S., Ye, Y.Y.: Disciplined Convex Programming. Global Opti-
mization: From Theory to Implementation. Kluwer, Dordrecht (2005)

26. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and
Their Applications. Academic Press, New York (1980)

27. Cheng, L., Hou, Z.G., Lin, Y., et al.: Recurrent neural network for non-smooth
convex optimization problems with application to the identification of genetic reg-
ulatory networks. IEEE Trans. Neural Netw. Learn. Syst. 22, 714–726 (2011)

28. Liu, Q.S., Wang, J.: A one-layer projection neural network for nonsmooth opti-
mization subject to linear equalities and bound constraints. IEEE Trans. Neural
Netw. Learn. Syst. 24, 812–824 (2013)

A Complex Gradient Neural Dynamics
for Fast Complex Matrix Inversion

Lin Xiao1(B), Bolin Liao1, Qinli Zeng1,2, Lei Ding1, and Rongbo Lu1

1 College of Information Science and Engineering,
Jishou University, Jishou 416000, China

xiaolin860728@163.com
2 School of Electronics and Information Technology, Sun Yat-sen University,

Guangzhou 510275, China

Abstract. Complex-valued matrix inversion problem is investigated by
using the gradient-neural-dynamic method. Differing from the traditional
processing method (only for real-valued matrix inversion), the proposed
method develops a complex gradient neural dynamics for complex-valued
matrix inversion in the complex domain. The advantages of the proposed
method decrease the complexities in the aspects of computation, analysis,
and computer simulations. Theoretical discussions and computer simula-
tions demonstrate the efficacy and superiorness of the proposed method
for online the complex-valued matrix inversion in the complex domain,
as compared to the traditional processing method.

Keywords: Complex-valued matrix inversion · Theoretical analysis ·
Complex domain · Neural dynamic model

1 Introduction

The matrix inversion is often required in optimization [1], electromagnetic sys-
tems [2], and robot kinematics [3]. In addition, many physical phenomena can
be depicted by matrix inversion. Therefore, the desired inverses of the matrices
should be exploited to know the principle of physics about phenomena [4].

The approaches of the finding matrix inverses could be divided into two
classes: one based on numerical algorithms and one based on neural networks.
At first, much effort has been made towards rapid matrix inversion and various
iterative algorithms were developed to find the matrix inverses [4]. However, since
the computational operations of these algorithms are proportional to the dimen-
sion of the matrix [5], they might not be valid enough for real-time applications
and large-scale datum computation.

In order to overcome the computational bottleneck of traditional iterative
algorithms, recurrent neural network (RNN), as one kind of the key parallel-
processing approaches, is developed for computing matrix inversion problem [6–
9]. Compared with conventional numerical algorithms, RNNs have some promi-
nent advantages in real-time applications (such as high fault tolerance, self-
adaptation, distributed storage, and parallel processing) [10–17].
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 521–528, 2017.
DOI: 10.1007/978-3-319-59072-1 61

522 L. Xiao et al.

Noting that the above aforementioned approaches are usually used to com-
pute matrix inverse in the real domain, and few effort has been made towards
the research in the complex domain for finding complex-valued matrix inver-
sion. However, in some cases (for example, the input signals incorporate the
phase and magnitude information), complex-valued matrix inversion problems
can also appear [18]. Thus, the complex-valued problems have obtained a great
of attention of researchers. For example, Liao et al. [19] extended the results on
quadratic programming problems solving from the real to the complex domains.
In that case the real and imaginary components of complex quadratic program-
ming problems were solved respectively in the real domain, which increases the
computational complexities in modeling, simulation, and some real-time appli-
cations. Obviously, it is more convenient for the analysis and solution to such a
complex-valued problem in the complex field directly. This paper demonstrates
that the complex gradient neural dynamics can be applied directly to complex-
valued matrix inversion.

2 Problem Formulation and Equivalent Real-Valued
GND Model

The complex matrix inversion equation is described as follows:

AZ(t) = I ∈ C
n×n, or Z(t)A = I ∈ C

n×n, (1)

where complex Z(t) ∈ C
n×n stands for an unknown matrix, complex matrix

A ∈ C
n×n is a complex-valued coefficient of (1), and I ∈ C

n×n denotes complex-
valued identity matrix. Besides, Z∗ ∈ C

n×n is used to stand for the theoretical
inversion of (1).

It is worth mentioning that, in most of past papers about complex matrix
inversion, complex coefficient A ∈ C

n×n is usually split into its imaginary and
real parts, and handled separately. That is to say, A ∈ C

n×n is considered to be
the union of its imaginary and real parts, i.e., A(t) = Are + jAim with j =

√−1
denoting an imaginary unit [Z(t) = Zre(t)+jZim(t) as well]. Therefore, complex-
valued matrix inversion Eq. (1) is equivalent to the following one:

[Are + jAim][Zre(t) + jZim(t)] = Ire + jIim, (2)

where Are ∈ R
n×n, Aim ∈ R

n×n, Zre ∈ R
n×n, Zim ∈ R

n×n, Ire ∈ R
n×n and

Iim ∈ R
n×n.

Then, based on the traditional processing approach [19] and considering
Eq. (2), the real-valued linear system is obtained as below:{

AreZre(t) − AimZim(t) = Ire ∈ R
n×n,

AreZim(t) + AimZre(t) = Iim(t) ∈ R
n×n,

which is further equivalent to the following expression:[
Are −Aim

Aim Are

] [
Zre(t)
Zim(t)

]
=

[
Ire
Iim

]
∈ R

2n×n. (3)

A Complex Gradient Neural Dynamics for Fast Complex Matrix Inversion 523

Now, matrices B ∈ R
2n×2n, X(t) ∈ R

2n×n and D ∈ R
2n×n is used to stand for

the above matrices for presentation convenience, i.e.,

B =
[
Are −Aim

Aim Are

]
, X(t) =

[
Zre(t)
Zim(t)

]
, D =

[
Ire
Iim

]
.

Thus, the complex matrix inversion problem can be changed into the following
real matrix inversion problem:

BX(t) = D ∈ R
2n×n. (4)

Then, based on the gradient neural dynamic approach [6,7], starting with the
definition of energy function ε(t) = ‖BX(t)−D‖2F/2, we have the following real-
valued gradient neural dynamics (GND) for computing the real-valued matrix
inversion Eq. (4):

Ẋ(t) = −γBT(BX(t) − D) ∈ R
2n×n, (5)

where γ > 0 can adjust the convergence speed of the real-valued GND model
(5), and matrix X(t) ∈ R

2n×n is corresponding to X∗ = [Z∗
re, Z

∗
im]T ∈ R

2n×n of
(4), which makes up the complex inverse of (1), i.e., Z(t) = Zre(t) + jZim(t).

3 Fully Complex-Valued GND Model

Different from the conventional design processing, the complex gradient neural
dynamics (GND) is constructed on account of the fully complex matrix inversion
Eq. (1). To start with, an energy function can be defined as follows (instead of
the equivalent real-valued matrix inversion problem solving):

ε(t) = ‖AZ(t) − I‖22/2. (6)

Next, following the gradient neural dynamic method [6,7], we could design a
complex-valued gradient algorithm to evolve towards the descent direction until
the minimum value of this energy function is achieved. That is,

− ∂‖AZ(t) − I‖2F/2
∂Z(t)

= −AH(AZ(t) − I). (7)

Third, the following complex GND model for the complex matrix inversion
(3) can be derived by adopting the above negative gradient information:

Ż(t) = −γAH(AZ(t) − I), (8)

where γ > 0 is defined as before, and state matrix Z(t) ∈ C
n×n is also corre-

sponding to the Z∗ ∈ C
n×n of (3).

As we know, the convergence speed is of importance for a neural-dynamic
model to be applied successfully. Therefore, we should study the convergence
property of the complex GND model (8).

524 L. Xiao et al.

Theorem 1. Considering the complex matrix inversion Eq. (2), complex matrix
Z(t) of the complex GND model (8), starting from a randomly-generated Z(0) ∈
C

n×n, can converge to the theoretical inverse Z∗ of (2) exponentially. In addi-
tion, the convergence rate is the product of the value of γ and the minimum
eigenvalue α of AHA.

Proof. Define Z̃(t) = Z(t) − Z∗ with Z∗ being the theoretical inverse of Eq. (1)
and Z(t) generated by the complex GND model (8). Therefore, one can obtain:

Ż(t) = ˙̃Z(t) ∈ C
n×n and Z(t) = Z̃(t) + Z∗ ∈ C

n×n.

Let us substitute the above equations to (8), and based on AZ∗ − I = 0; and
the following dynamic system can be derived:

˙̃Z(t) = −γAHAZ̃(t). (9)

Thus, we could select a Lyapunov function v(t) as below:

v(t) = ‖AZ̃(t)‖2F/2 = tr
(
(AZ̃(t))H(AZ̃(t))

)
/2 � 0,

where tr(·) represents the trace of a matrix. Evidently, the Lyapunov function is
positive definite, since v(t) = 0 only for Z̃(t) = 0, and v(t) > 0 for any Z̃(t) �= 0.

On the other hand, the time derivative of v(t) can be further estimated as
follows:

v̇(t) =
dv

dt
= tr

(
(AZ̃(t))H(A ˙̃Z(t))

)
= −γ‖AHAZ̃(t)‖2F � 0, (10)

which ensures the negative-definiteness of v̇(t). That is to say, v̇(t) = 0 only
for Z̃(t) = 0, and v̇(t) < 0 for any Z̃(t) �= 0. It can also be concluded that
v(t) → +∞, when ‖Z̃‖ → +∞. In view of Lyapunov theory, complex matrix Z̃
converges to zero globally. Then, according to Z̃(t) = Z(t)−Z∗, complex matrix
Z(t) can converge to the theoretical inverse Z∗ globally.

Now, let us consider the exponential convergence rate. Given α > 0 as the
minimum eigenvalue of AHA, from (10), one can have:

v̇(t) = −γ‖AHAZ̃(t)‖2F
= −γtr{(AZ̃(t))HAAHAZ̃(t)}
� −αγtr{(AZ̃(t))HAZ̃(t)}
= −αγ‖AZ̃(t)‖2F
= −2αγv(t).

(11)

According to Eq. (11), the analytic solution can be estimated as below:

v(t) � v(0) exp(−2αγt).

A Complex Gradient Neural Dynamics for Fast Complex Matrix Inversion 525

−0.4
−0.2

0
0.2

0.4

−0.6

−0.4

−0.2

0

0.2
0

2

4

6

8

10
t

(s
)

Z11(t)

imaginary axis real axis
−0.5

0

0.5

1

−1

−0.5

0

0.5
0

2

4

6

8

10

t
(s

)

Z12(t)

imaginary axis real axis

0.4
0.6

0.8
1

1.2
1.4

−0.5

0

0.5

1
0

2

4

6

8

10

t
(s

)

Z21(t)

imaginary axis real axis
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8
0

2

4

6

8

10

t
(s

)

Z22(t)

imaginary axis real axis

Fig. 1. Transient behavior of Z(t) generated by the complex GND model (8) with
γ = 10.

Moreover, v(t) = tr((AZ̃(t))HAZ̃(t))/2 � αtr(Z̃(t)HZ̃(t))/2 = α‖Z̃(t)‖2F/2, and
v(0) = ‖AZ̃(0)‖2F/2 � ‖A‖2F‖Z̃(0)‖2F/2. In addition,

α‖Z̃(t)‖2F/2 � v(t) � v(0) exp(−2αγt),

which is written further as follows:

‖Z(t) − Z∗‖F � ‖A‖F‖Z̃(0)‖F√
α/2

exp(−αγt).

It can be concluded that, as t → ∞, Z(t) → Z∗ exponentially with the conver-
gence rate being αγ, which indicates, complex Z(t) of the complex GND model
(8) can converge to the theoretical inverse Z∗ of (1) with the convergence rate
being αγ > 0. This completes the proof. �

4 Illustrative Example

The real-valued GND model (5) and the fully complex-valued GND model (8)
are provides in the previous two sections for computing online complex-valued
matrix Eq. (1). In this part, one illustrative example is applied to demonstrate
the efficacy of the complex GND model (8).

526 L. Xiao et al.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t (s)

AZ(t) − I F

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

t (s)

AZ(t) − I F

Fig. 2. Convergence behavior of ‖AZ(t) − I‖F generated by the complex GND model
(8) with γ = 10 and γ = 100.

We choose the following complex-valued matrix to be inverted:

A =
[

exp(j10) − exp(−j10)
− exp(j10) 0

]
.

To validate the solution accuracy of the complex GND model (8), the the-
oretical inverse Z∗ of the complex matrix inversion Eq. (1) in this situation is
obtained as below:

Z∗ =
[

0 0.8391 − j0.5440
0.8391 + j0.5440 0.8391 + j0.5440

]
. (12)

To begin with, starting from an arbitrary initial state Z(0) ∈ C
2×2 and with

design parameter γ = 10, the complex GND model (8) is used to calculate the
above complex matrix inverse. The simulation results are described in Figs. 1 and
2. As observed from Fig. 1, complex neural-state matrix Z(t) ∈ C

2×2 generated
by the complex GND model (8) converges to a straight line within a little time. In
addition, these values are the theoretical inverses of complex neural-state matrix
Z(t), as compared to the theoretical inverse in (12). This conclusion illustrates
that the complex GND model (8) is valid for the complex matrix inversion.

To directly demonstrate the solution processing of the complex GND model
(8), the convergence property of the residual error ‖AZ(t) − I‖F is obtained in
Fig. 2(a) under the same conditions. From Fig. 2(a), it can be concluded that
‖AZ(t) − I‖F of the complex GND model (8) converges to zero after about 1.8
s. That is, the complex solution of the GND model (8) fits with the theoretical
matrix inverse very well. The simulative observation agrees well with the results
of Fig. 1.

Besides, as seen from Fig. 2(b), the convergence property of the complex
GND model (8) is improved when the value of γ becomes larger. Specifically,
the convergence time of the complex GND model (8) is decreased from 1.8 s to
0.18 s when the value of γ increases from 10 to 100. In a word, the complex GND
model (8) is valid for solving complex matrix inverse depicted in Eq. (1).

A Complex Gradient Neural Dynamics for Fast Complex Matrix Inversion 527

5 Conclusions

A complex gradient neural dynamics (GND) is proposed and studied in this
paper for finding complex matrix inversion in the complex domain. The proposed
processing method does not change the complex-valued matrix inversion into the
real-valued matrix inversion. The theoretical analysis and computer simulations
show the validness and superiorness of the complex GND model for calculating
the complex matrix inversion in the complex domain.

Acknowledgment. This work is supported by the Research Foundation of Education
Bureau of Hunan Province, China (grant no. 15B192), the Natural Science Foundation
of Hunan Province, China (grant no. 2016JJ2101), and the National Natural Science
Foundation of China (grant nos. 61503152, 61563017, and 61363073).

References

1. Xiao, L.: A nonlinearly-activated neurodynamic model and its finite-time solu-
tion to equality-constrained quadratic optimization with nonstationary coefficients.
Appl. Soft Comput. 40, 252–259 (2016)

2. Chen, Q., Chakarothai, J., Sawaya, K.: Hybrid approach of SPM and matrix-
inversion to estimate current distribution of electromagnetic radiation source. In:
Proceedings of IEEE Electrical Design of Advanced Packaging and Systems Sym-
posium, pp. 1–4 (2011)

3. Zhang, Z., Li, Z., Zhang, Y., Luo, Y., Li, Y.: Neural-dynamic-method-based dual-
arm CMG scheme with time-varying constraints applied to humanoid robots. IEEE
Trans. Neural Netw. Learn. Syst. 26(12), 3251–3262 (2015)

4. Zhang, Y., Leithead, W.E., Leith, D.J.: Time-series Gaussian process regression
based on Toeplitz computation of O(N2) operations and O(N)-level storage. In:
Proceedings of the 44th IEEE Conference on Decision and Control, pp. 3711–3716
(2005)

5. Mathews, J.H., Fink, K.D.: Numerical Methods Using MATLAB. Prentice Hall,
New Jersey (2004)

6. Xiao, L., Zhang, Y.: Zhang neural network versus gradient neural network for
solving time-varying linear inequalities. IEEE Trans. Neural Netw. 22, 1676–1684
(2011)

7. Zhang, Y., Shi, Y., Chen, K., Wang, C.: Global exponential convergence and sta-
bility of gradient-based neural network for online matrix inversion. Appl. Math.
Comput. 215, 1301–1306 (2009)

8. Zhang, Y., Ge, S.S.: Design and analysis of a general recurrent neural network
model for time-varying matrix inversion. IEEE Trans. Neural Netw. 16(6), 1477–
1490 (2005)

9. Zhang, Y., Ma, W., Cai, B.: From Zhang neural networks to Newton iteration for
matrix inversion. IEEE Trans. Circuits Syst. I 56(7), 1405–1415 (2009)

10. Xiao, L., Lu, R.: Finite-time solution to nonlinear equation using recurrent neural
dynamics with a specially-constructed activation function. Neurocomputing 151,
246–251 (2015)

11. Li, S., Chen, S., Liu, B.: Accelerating a recurrent neural network to finite-time
convergence for solving time-varying Sylvester equation by using a sign-bi-power
activation function. Neural. Process. Lett. 37, 189–205 (2013)

528 L. Xiao et al.

12. Xiao, L., Zhang, Y.: Two new types of Zhang neural networks solving systems of
time-varying nonlinear inequalities. IEEE Trans. Circuits Syst. I 59, 2363–2373
(2012)

13. Xiao, L.: A nonlinearly activated neural dynamics and its finite-time solution to
time-varying nonlinear equation. Neurocomputing 173, 1983–1988 (2016)

14. Xiao, L.: A new design formula exploited for accelerating Zhang neural network
and its application to time-varying matrix inversion. Theor. Comput. Sci. 647,
50–58 (2016)

15. Zhang, Y., Xiao, L., Xiao, Z., Mao, M.: Zeroing Dynamics, Gradient Dynamics,
and Newton Iterations. CRC Press, Cambridge (2015)

16. Xiao, L., Liao, B.: A convergence-accelerated Zhang neural network and its solution
application to Lyapunov equation. Neurocomputing 193, 213–218 (2016)

17. Xiao, L., Zhang, Y.: Dynamic design, numerical solution and effective verification
of acceleration-level obstacle avoidance scheme for robot manipulators. Int. J. Syst.
Sci. 47(4), 932–945 (2016)

18. Xiao, L.: A finite-time convergent neural dynamics for online solution of time-
varying linear complex matrix equation. Neurocomputing 167, 254–259 (2015)

19. Liao, W., Wang, J., Wang, J.: A recurrent neural network for solving complex-
valued quadratic programming problems with equality constraints. In: Tan, Y.,
Shi, Y., Tan, K.C. (eds.) ICSI 2010. LNCS, vol. 6146, pp. 321–326. Springer, Hei-
delberg (2010). doi:10.1007/978-3-642-13498-2 42

http://dx.doi.org/10.1007/978-3-642-13498-2_42

Burst and Correlated Firing in Spiking Neural
Network with Global Inhibitory Feedback

Jinli Xie(&), Qinjun Zhao, and Jianyu Zhao

School of Electrical Engineering,
University of Jinan, Jinan 250022, Shandong, China

{cse_xiejl,cse_zjy,cse_zhaoqj}@ujn.edu.cn

Abstract. Burst and correlated firing activities are observed experimentally in a
variety of brain areas, which transmit and communicate information predomi-
nantly through spikes. The firing mode of spiking neurons relies on specific
network characteristics. The inhibitory feedback is thought to be crucial to the
burst firing. However, the effects of inhibitory feedback, and in particular the
resulting bursting, on neural correlations need further studies. In order to
understand how inhibitory feedback circuit modulates correlations and burst, we
carry out numerical simulations of spiking neural network with global inhibitory
feedback. Owing to the feedback inhibition, the neurons fire correlated action
potentials of a long time scale and exhibit bursting fire pattern. We also found
that, with constant output firing rate, the burst firing enhanced network corre-
lations. These results suggest that in the spiking neural network with globally
inhibitory feedback the shifts in the feedback strength can induce changes in
burst probability, and then effect the correlated firing activities.

Keywords: Burst � Correlation � Inhibitory feedback � Leaky integrate-and-fire
neuron

1 Introduction

Neurons in many sensory systems tend to fire correlated action potentials [1–4].
Correlated firing activities have been participated in various neural functions, including
attention, memory, olfaction, vision, and motor behavior [1, 5–8]. Evidence has col-
lected that burst firing can also implicate in neural communication, which carries
specific, stimulus-related information [9–12]. Recent research sheds light on the rela-
tionship between burst firing and network correlation, suggesting that any features
affecting the prevalence of neural burst firing may play an important role in modulating
the overall level of correlations in neural network [13]. Given that experimentally
observed firing of bursts dependents on intrinsic cellular mechanisms that relate to
feedback from upper centers [10, 14], it is important to investigate the feedback
induced burst and correlated firing activities.

Our former studies suggested that network correlations can be modulated by
inhibitory feedback via the interplay of mean firing rate and oscillatory activity [15,
16]. The correlated firing activity could be suppressed by reducing the output firing
rate. While, the oscillation induced by the inhibitory feedback can modulate the firing

© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 529–535, 2017.
DOI: 10.1007/978-3-319-59072-1_62

activity of the post-synaptic neurons, leading to an improvement of the correlations of
the network. However, little is known about the influence of changes in strength of
feedback on bursts.

With the network of spiking neurons, we aimed to study the relationship between
inhibitory feedback and bursts, and the effects of resulting bursts on correlated firing by
numerical simulations in this work. The output firing rate is kept constant to avoid the
influence of firing rate on correlated firing [17]. Thus the firing activities of the network
are characterized by the level of input activities with various feedback gains. The bursts
and network correlations, as quantified by the firing time of the spike trains, are
obtained numerically. We demonstrate that bursting can be controlled by inhibitory
feedback input, which successively contributes to the network correlated firing.

2 Spiking Neural Network Model

The structure of the network model includes N excitatory neurons and M inhibitory
neurons. ALL the inhibitory neurons responded to the projection from the excitatory
neurons provide inhibitory feedback to all the excitatory after a fixed time delay. The
leaky integrate-and-fire (LIF) neuron models are used to simulate the neural dynamics.
The dynamic of membrane potential of the spiking neurons is described by:

C
dViðtÞ
dt

¼ �glViðtÞþ lE þ giðtÞþ niðtÞ � Ig ð1Þ

where C is the membrane capacitance, ViðtÞ is the membrane potential, gl is the
membrane leak conductance, lE denotes the base current, giðtÞ represents an internal
zero-mean Gaussian white noise of intensity DE, and niðtÞ represents the external
stimuli. The dynamics of membrane potential follow to a simple spike-and-reset rule,
where the values of firing threshold Vth and reset potential Vr are set to be 1 and 0
respectively. On behalf of the absolute refractory state, a time constant sr is selected
after firing. The spikes of the LIF neuron is modeled as d-functions:

yðtÞ ¼
X
fire

dðt � tfireÞ ð2Þ

where tfire is the threshold crossing instants. Ig in Eq. 1 indicates the feedback loop which
is computed by the spike trains of inhibitory neurons convoluted with an a function:

IgðtÞ ¼ G
Z1
sD

aðsÞ
XM
j¼1

yjðt � sÞds ð3Þ

with

aðtÞ ¼ t � sD
s2S

exp � t � sD
sS

� �
ð4Þ

530 J. Xie et al.

Here G is the feedback gain, tj are the successive firing times, sD is the transmission
delay of feedback, and sS is the synaptic time constant.

Each inhibitory neuron receives the convolution of the spike trains of excitatory
neurons and another delayed a function:

If ¼
Z 1

sD

aðsÞ
XN
i¼1

yiðt � sÞds ð5Þ

and it also has internal Gaussian white noise gðtÞ with intensity DI .

3 Characterizing Network Correlation and Burst Firing

Since the firing rate of the post-synaptic neurons is crucial to the correlated firing of the
network [17], the simulations are achieved by adjusting the external stimuli lE such
that the average output firing rate keeps constant (12 Hz) with varying values of
parameter.

The probability distribution of the joint inter-spike interval (ISI) of an output spike
train is used to gauge the prevalence of burst firing, which is defined by the probability
of two successive spikes which fires compactly with interval time being less than
10 ms [13]:

Pburst ¼ NspikeðtÞðISI\ 10msÞ
NspikeðtÞ ð6Þ

where NspikeðtÞ is the number of spikes of a spike train. Typically, according to Ref.
[13], when the value of interval time is smaller than on tenth of their mean, the spikes
are considered to be clustered.

To quantify the correlated firing of the network, we use spike train
cross-correlograms (CCGs) [1, 17]. Since the network firing rate is set to be constant,
we ignore it in the equation of CCGs.

CCGijðsÞ ¼
PK
k¼1

PL
t¼0

ypi ðtÞypj ðtþ sÞ
KðL� sj jÞ ð7Þ

There are K realizations of numerical simulation with time duration L for every real-
ization. As figured by Ref. [17], we use L� sj j as function of time lag s to correct
CCGs in order to eliminate the degree of overlap of two spike trains.

The auto-correlograms (ACGs) of the neurons, calculated similarly as the CCGs,
are used to normalize the CCGs, but by letting i ¼ j:

ACGjjðsÞ ¼
PK
k¼1

PL
t¼0

ypj ðtÞypj ðtþ sÞ
KðL� sj jÞ ð8Þ

Burst and Correlated Firing in Spiking Neural Network 531

Here we need the signal correlations. By subtracting the shift predictor (SPT) from all
CCGs and ACGs we can obtain the corrected values [1]. The SPT is calculated with
different trials, k and k0:

SPTijðsÞ ¼
PK
k¼1

PL
t¼0

yki ðtÞyk
0
j ðtþ sÞ

KðL� sj jÞ ð9Þ

Then the pairwise correlation is obtained as follow:

CijðTÞ ¼
PT

s¼�T
CCGijðsÞ �

PT
s¼�T

SPTijðsÞffi
½ PT
s¼�T

ACGiiðsÞ �
PT

s¼�T
SPTiiðsÞ�½

PT
s¼�T

ACGjjðsÞ �
PT

s¼�T
SPTjjðsÞ�

s ð10Þ

where T represents the time window used to estimate correlations.
In order to obtain network correlations, we average the correlation over all pairs of

neurons in the output layer:

Cor ¼ 1
NðN � 1Þ=2

XN
i¼1

XN
j¼iþ 1

Cij ð11Þ

4 Results

The values of parameters are: C ¼ 1;DE ¼ DI ¼ 0:08;N ¼ 80;M ¼ 20; sD ¼ 4ms;
gl ¼ 1; sS ¼ 0:5ms;Vth ¼ 1;Vr ¼ 0; sr ¼ 1ms;K ¼ 100; L ¼ 100 s. The time dura-
tion includes a transient period of 1s to remove the transient effects of initial conditions.

First, the responses of the model is clarified when the feedback loop is open and
non-zero respectively. Figure 1 presents the inter-spike interval for one randomly
chosen neuron. When simulated with global inhibition (Fig. 1 bottom), excitatory
neurons produce two visible peaks. The first strong peak at short delays represents burst
response, corresponding to spikes firing within time lags less than 10 ms. The second
peak represents oscillatory component, which corresponds to larger probability of two
spike firing within 20 ms. These two peaks are divided by a valley, indicating that the
transmission delay of inhibitory feedback blocks spikes in the time interval around
10 ms after every spike. The patterns of the neural firing are shifted when the inhibitory
feedback is blocked. The burst firing is weaken and the oscillatory activity is vanished
(Fig. 1 top). The switch of the response mode of excitatory neurons indicates that the
inhibitory feedback is of great significance as the neurons shift between firing modes.
The generation of burst is thus proved to relay on feedback.

These results reveal that the burst firing of the network can be modified and identify
a inhibitory feedback pathway as a basis for neurophysiology related to this

532 J. Xie et al.

modification. The illustration of refined relationship between inhibitory feedback gain
and the prevalence of bursts needs further studies. Correlated firing activities processed
and transmitted from a layer of neurons to the next is proved to be associated with
feedback. With constant firing rate and abolished oscillations, we further explore the
contributions of feedback inhibition on the correlations and bursts of the network by
changing the strength of the inhibitory feedback. Figure 2 reveals the results of
numerical simulations.

It is anticipated that post-synaptic neurons are harder to fire again within a circle
after every spike with increasing feedback strength. Hence, the prevalence of burst
firing is reduced. This is indeed shown to be true as illustrate in Fig. 2. The Pburst

decreases as G increase, suggesting that the burst firing which is induced by feedback
inhibition could be suppressed when the strength of feedback loop is enhanced con-
tinuously. Thus the possibility of burst firing can be switched by changing feedback
gain, corresponding to the predictions of Ref. [13].

In the absence of network oscillations, the firing rate of the network is remained
constant by changing the intensity of external stimuli. Therefore, the relationship
between bursting firing and network correlations could be identified in the network
involving inhibitory feedback. As shown in Fig. 2, Cor decreases with G, which
signals the reduction of Pburst. This suggests that the decreases in network correlations
are resulted from the relatively weak burst firing activity. Thus the correlated firing are
almost monotonic decreasing with burst.

In conclusion, in the spiking neural network, inhibitory feedback is responsible
for bursts. While the induced bursting firing contributes to the increase of network
correlations of a long time scale.

Fig. 1. ISI histograms

Burst and Correlated Firing in Spiking Neural Network 533

5 Conclusions

The role of the variability of neural firing activity in sensory systems is a topic
receiving increasing focus. One of the key questions is how network structure, for-
merly considered to indicate averaged trial phenomena, affects the properties of pop-
ulation activity. Especially, feedback is proved to be significant and participated in
behaviors related to transmitting of sensory information. Here, we propose to identify
the effects of inhibitory feedback on burst firing with interaction with network corre-
lations by numerical simulations.

In this work, we first showed that the generation of burst firing relied on the
feedback inhibition of the network. The excitatory neurons with inhibitory feedback
input exhibited much stronger bursts than those without inhibitory feedback. We then
found that bursting in response to inhibitory feedback could be reduced by increasing
the strength of feedback loop. Furthermore, adjusting the amount of bursting spikes by
the inhibitory feedback strength, we were able to show the relationship between burst
firing and correlations in this network model. The neurons in the output layer showed
corresponding shifts in burst and correlated firing. From the resulting analysis we
conclude that the feedback resulting burst firing plays a dominant role in modulating
the network correlated firing activities, which provides some enlightenments in
understanding the correlated coding for external stimulus.

Acknowledgement. This work is supported by the National Natural Science Foundation of
China (No. 61203375).

Fig. 2. Network correlation and prevalence of burst firing

534 J. Xie et al.

References

1. Kohn, A., Smith, M.A.: Stimulus dependence of neuronal correlation in primary visual
cortex of the macaque. J. Neurosci. 25, 3661–3673 (2005)

2. Averbeck, B.B., Latham, P.E., Pouget, A.: Neural correlations, population coding and
computation. Nat. Rev. Neurosci. 7, 358–366 (2006)

3. Okun, M., Lampl, I.: Instantaneous correlation of excitation and inhibition during ongoing
and sensory-evoked activities. Nat. Neurosci. 11, 535–537 (2008)

4. Gerkin, R.C., Tripathy, S.J., Urban, N.N.: Origins of correlated spiking in the mammalian
olfactory bulb. Proc. Natl. Acad. Sci. U.S.A. 110, 17083–17088 (2013)

5. Stephen, C., Andre, L., Leonard, M.: The neural dynamics of sensory focus. Nat. Commun.
6, 8764 (2015)

6. Dipoppa, M., Gutkin, B.S.: Correlations in background activity control persistent state
stability and allow execution of working memory tasks. Front. Comput. Neurosci. 7, 139
(2013)

7. Smith, M.A., Kohn, A.: Spatial and temporal scales of neuronal correlation in primary visual
cortex. J. Neurosci. 28, 12591–12603 (2008)

8. Miller, K.J., Leuthardt, E.C., Schalk, G., Rao, R.P., Anderson, N.R., Moran, D.W.,
Miller, J.W., Ojemann, J.G.: Spectral changes in cortical surface potentials during motor
movement. J. Neurosci. 27, 2424–2432 (2007)

9. Kepecs, A., Lisman, J.: Information encoding and computation with spikes and bursts.
Network 14, 103–118 (2003)

10. Krahe, R., Gabbiani, F.: Burst firing in sensory systems. Nat. Rev. Neurosci. 5, 13–23 (2004)
11. Sang-Yoon, K., Woochang, L.: Frequency-domain order parameters for the burst and spike

synchronization transitions of bursting neurons. Cogn. Neurodyn. 9(4), 411–421 (2015)
12. Sah, N., Sikdar, S.K.: Transition in subicular burst fring neurons from epileptiform activity

to suppressed state by feedforward inhibition. Eur. J. Neurosci. 38, 2542–2556 (2013)
13. Hoka, C., Dongping, Y., Changsong, Z., Thomas, N.: Burst firing enhances neural output

correlation. Front. Comput. Neurosci. 10, 42 (2016)
14. Sherman, S.M., Guillery, R.W.: The role of the thalamus in the flow of information to the

cortex. Phil. Trans. R. Soc. Lond. B 357, 1695–1708 (2002)
15. Jinli, X., Zhijie, W., Andre, L.: Correlated firing and oscillations in spiking networks with

global delayed inhibition. Neurocomputing 83, 146–157 (2012)
16. Jinli, X., Zhijie, W.: Effect of inhibitory feedback on correlated firing of spiking neural

network. Cogn. Neurodyn. 7(4), 325–331 (2013)
17. de La Rocha, J., Doiron, B., Shea-Brown, E., Josic, K., Reyes, A.: Correlation between

neural spike trains increases with firing rate. Nature 448, 802–806 (2007)

Burst and Correlated Firing in Spiking Neural Network 535

A Soft Computing Prefetcher to Mitigate Cache
Degradation by Web Robots

Ning Xie, Kyle Brown, Nathan Rude, and Derek Doran(B)

Department of Computer Science and Engineering, Kno.e.sis Research Center,
Wright State University, Dayton, OH, USA

{xie.25,brown.718,howard.rude,derek.doran}@wright.edu

Abstract. This paper investigates the feasibility of a resource prefetcher
able to predict future requests made by web robots, which are software
programs rapidly overtaking human users as the dominant source of
web server traffic. Such a prefetcher is a crucial first line of defense for
web caches and content management systems that must service many
requests while maintaining good performance. Our prefetcher marries a
deep recurrent neural network with a Bayesian network to combine prior
global data with local data about specific robots. Experiments with traf-
fic logs from web servers across two universities demonstrate improved
predictions over a traditional dependency graph approach. Finally, pre-
liminary evaluation of a hypothetical caching system that incorporates
our prefetching scheme is discussed.

Keywords: LSTM · Deep learning · Bayesian model · Web Caching ·
Resource prediction

1 Introduction

A Web robot is an autonomous agent that sends HTTP requests to web servers
around the world. Recent studies, including our own [16], indicate that upwards
of 60% of the traffic faced by web servers comes from robots [17], while only 20%
of traffic came from web robots a decade ago [13]. This rise in traffic may come
from the necessity for services to retrieve share-in-the-moment news and social
data [15]. Moreover, internet-of-things devices will increase this proportion as
more devices which operate autonomously are connected to the web.

Prefetching web resources for caching and content management systems is a
common technique to anticipate and pre-load the resources likely to be requested
next for fast, low latency access [3,8,14]. Prefetchers for human traffic are an
essential component of web caches, but as robots exhibit different function-
ality [5], access patterns [7], and traffic characteristics, traditional prefetch-
ing strategies applied to traffic with high levels of web robot activity exhibit
degraded performance. The degree of uncertainty and few restrictions on robot
behavior requires powerful soft computing techniques to find and utilize the

N. Xie and K. Brown are joint first authors of this paper.

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 536–546, 2017.
DOI: 10.1007/978-3-319-59072-1 63

A Soft Computing Prefetcher to Mitigate Cache Degradation by Web Robots 537

possibly weak latent patterns existing in their requests. This paper proposes
a prefetcher with such techniques for robot-laden web traffic. Evaluations show
that the synergistic use of a deep recurrent neural network (RNN) and a Bayesian
network greatly improves prefetching performance for robot traffic.

2 Related Work

There have been many previous studies which have examined the characteristics
of web robot traffic. Doran et al. [7] study the distribution of request types (e.g.
image files vs web pages) for human and robot traffic. The authors note that
web robots have a strong penchant for larger resources; they are 10 times more
likely to request resources larger than 10 MB when compared to human traffic.
Rude and Doran [16] develop an Elman Neural Network to predict global trends
of request types for robot traffic. Almeida et al. [1] investigate the impact of
web robots on cache hit rate. The authors examined the referencing pattern of
web robots and found out the pattern exhibits “round-robin” traits, disrupting
locality assumptions which can leave an LRU cache useless. In [5], the authors
classify web robots according to their functionality and request patterns. In
[2], the authors suggest web servers should implement new interfaces for robot
traffic that provide metadata archives describing the content. By querying the
metadata instead of requesting all resources from some precomputed list, a robot
is able to narrow its selection down to a more refined set of resources reducing
the amount of bandwidth consumed. Li et al. [12] propose a hybrid cache design
that is broken down into 3 sections: (i) an index cache which stores inverted
indices for user search queries (ii) a results cache which caches a results page
returned for a unique user search query and (iii) a document cache to cache
documents on the server. However, the authors filter out robot traffic to better
understand the user behavior and queries.

3 Prefetching Scheme

This section introduces the design of the request prefetcher. Its design and inte-
gration into a hypothetical caching architecture is illustrated in Fig. 1. After a
request is processed, it is labeled as originating from a robot or a human through
a real-time detection algorithm (of which many exist in the literature [6]). If the
request is labeled as a robot, the proposed prefetcher will predict what subse-
quent robot requests will be made. To identify the more subtle patterns that
exist in robot request sequences, prefetching is done by combining a deep recur-
rent neural network (RNN) with a Bayesian network model. The RNN is used
to predict the ‘orientation’ of the robot request stream by predicting the sub-
directories future robots will likely visit next given their past history. From the
k subdirectories the RNN predicts robots will visit next, a Bayesian network
selects the subset of resources within those directories to be prefetched. The
Bayesian network incorporates prior information in the form of global web robot
patterns, as well as the request patterns of the particular web robot who made

538 N. Xie et al.

Fig. 1. A caching architecture with robot request prefetching

the last request, to tailor the prediction to future requests from that robot. This
idea is motivated by the idea that robot request sequences often come from the
same robot, who send a number of requests within a short period of time.

em
be

dd
in

g_
in

pu
t_

1:
 In

pu
tL

ay
er

in
pu

t:

ou
tp

ut
:

(N
on

e,
 2

0)

(N
on

e,
 2

0)

em
be

dd
in

g_
1:

 E
m

be
dd

in
g

in
pu

t:

ou
tp

ut
:

(N
on

e,
 2

0)

(N
on

e,
 2

0,
 2

56
)

dr
op

ou
t_

1:
 D

ro
po

ut
in

pu
t:

ou
tp

ut
:

(N
on

e,
 2

0,
 2

56
)

(N
on

e,
 2

0,
 2

56
)

lst
m

_1
: L

ST
M

in
pu

t:

ou
tp

ut
:

(N
on

e,
 2

0,
 2

56
)

(N
on

e,
 2

56
)

dr
op

ou
t_

2:
 D

ro
po

ut
in

pu
t:

ou
tp

ut
:

(N
on

e,
 2

56
)

(N
on

e,
 2

56
)

de
ns

e_
1:

 D
en

se
in

pu
t:

ou
tp

ut
:

(N
on

e,
 2

56
)

(N
on

e,
 1

95
42

)

ac
tiv

at
io

n_
1:

 A
ct

iv
at

io
n

in
pu

t:

ou
tp

ut
:

(N
on

e,
 1

95
42

)

(N
on

e,
 1

95
42

)

Fig. 2. RNN structure to predict subdirectory requests

RNN Specification. The RNN architecture is presented in Fig. 2. It has an
embedding layer that translates ordered sequences of the subdirectories robots
visited to an input, a long short-term memory (LSTM) layer that learns sequence
patterns, dropout layers that control for overfitting, and a fully connected layer
to compute the likelihood a subdirectory will be visited next. An LSTM layer
is often used for sequence processing since LSTMs can hold “memory” over
long periods [9,10]. The RNN was trained with dropout parameters set to 0.2.
Validation loss was monitored with a patience of two. Training ended when no

A Soft Computing Prefetcher to Mitigate Cache Degradation by Web Robots 539

improvement in loss over a validation set was observed or after 128 epochs (passes
over the training data).

Fig. 3. Bayesian network of the simple model

Bayesian Networks. Two Bayesian models were developed to predict which
resources a robot will request next in a given set of subdirectories. The first
model, called the simple model (SM), first draws a resource type from a multino-
mial distribution and then an individual resource from another multinomial
distribution corresponding to the set of resources of the drawn type. Request
types are modeled based on past work that demonstrated request type prefer-
ences for Web robots [11,16]. Prior knowledge is given by hyper-parameter set-
tings for the resource type and resource request distributions, which considers
the number of times we observe any robot requesting resources in a subdirec-
tory. This is useful if a specific robot has not made many requests to the web
server in the past. The generative process and its hyper-parameters are shown in
Fig. 3 using the notation in Dietz [4]. The data likelihood of the simple model is
Pr (r1, · · · , rM , t1, tM |θ, P) = exp{∑K

j=1(mj log(θj)+
∑Rj

l=1 nj,l log(pj,l))} where
M is the total number of observed requests by the robot in this subdirectory, K is
the number of resource types, mj is the number of requests for a resource of type
j by the robot in this subdirectory, θj is the multinomial parameter for resource
type j, Rj is the number of resources of type j in this subdirectory, nj,l is the
number of times the l-th resource of type j in this subdirectory was requested by
the robot, and pj,l is the l-th component of the multinomial parameter vector pj

for resources of type j in the subdirectory. The parameter vector θ of resource
types is drawn from θ ∼ Dirichlet (α) and for each resource type j, the parame-
ter vector is drawn from pj ∼ Dirichlet

(
γj

)
. The values of the hyper-parameters

α and Γ =
{
γj

}K

j=1
are chosen using global statistics from all robots by

αj = αm
(g)
j /M (g), where α is the prior strength for α, so that

∑K
j=1 αj = α, m

(g)
j

is the global number of requests for resources of type j, and M (g) is the global
number of requests. γj is chosen as γj,k = γn

(g)
j,k/m

(g)
j where n

(g)
j,k is the global

number of requests for the k-th resource of type j, and γ is the prior strength
for Γ . A second model is an extension of the simple model, where resource types
are now generated by a Markov process instead of draws from a multinomial

540 N. Xie et al.

distribution. It attempts to consider patterns in the request type sequence of a
robot, which may be helpful when robots are only interested in specific kinds of
resources (e.g. an image scraper) [16]. For the Markov model, an “observation”
is not just a single resource-type pair, but a sequence of resource-type pairs. The
generative process for this model is depicted in Fig. 4. We assume there are L
such observations, and that the ith sequence has length Mi and is represented by
(r(i)1 , t

(i)
1), · · · , (r(i)Mi

, t
(i)
Mi

). The entire set of observations is denoted by R. Then
the data likelihood for the Markov model can be written as: Pr (R|θ, P,A) =
exp{∑K

j=1(mj log(θj) +
∑K

k=1 Tj,k log(aj,k) +
∑Rj

l=1 nj,l log(Pj,l))} where mj is
the number of times an observation started with a request for a resource of type
j, Tj,k is the number of transitions from type j to k within an observation were
observed, and nj,l is the number of requests for the l-th resource of type j over
all observations. The other symbols are the same as in the simple model. The
parameters θ and P in the Markov model are assumed to be generated from the
same distributions as the simple model. Each row aj of the transition matrix
A is drawn from aj ∼ Dirichlet (λj) for 1 ≤ j ≤ K. Here λj is the j-th row
of the hyper-parameter matrix Λ. As for the simple model, hyper-parameters
for the Markov model are computed from global statistics for all robots. α and
Γ are computed the same way as the simple model. Each element aj,k of A is
computed as aj,k = aT

(g)
j,k /T

(g)
j where T

(g)
j,k is the global number of transitions

from a resource of type j to type k, T
(g)
j =

∑K
k=1 T

(g)
j,k is the global transition

count from a resource of type j, and a is the prior strength of A.

Fig. 4. Bayesian network where request types are generated by a Markov process

Parameter estimation for all models was done using maximum a posteriori
estimation (MAP) because of the ability to obtain a closed-form solution for
parameters for the simple and Markov models. Since the models need to be
updated as requests come in to the web server, this approach was used to enable
an efficient implementation. The MAP parameter values for the simple model
are θ̃j = (αj + mj − 1)/(α + M − 1) for 1 ≤ j ≤ K and p̃j,l = (γj,l + nj,l −
1)/(Γj + mj − 1) for 1 ≤ j ≤ K and 1 ≤ l ≤ Rj , where Γj =

∑Rj

l=1 γj,l.

A Soft Computing Prefetcher to Mitigate Cache Degradation by Web Robots 541

4 Prefetching Evaluation

To evaluate the models, Web logs across all web servers at Wright State Univer-
sity (WSU) and the University of Pavia were collected. The WSU logs represent
a 3 month period in 2016 while the Pavia logs span a 5 month period over 2014.
Robot traffic was extracted from the logs by following a simple heuristic proce-
dure using the crowdsourced database botsvsbrowsers1. Checking the user-agent
of each request in the log against the nearly 1.5 million agents recorded on this
database, a user-agent match to a known robot is used to mark the session
as a robot. While many probabilistic detection methods exist [6], this heuristic
approach guarantees that we only evaluate the prefetcher on true robot traffic
while still giving us a sizable number of sessions. Specifically, 221,683 and 14,401
robot sessions were extracted from WSU and the University of Pavia logs, respec-
tively. The models were trained on two-thirds of earlier arriving sessions from
each dataset, while the remaining third was used for evaluation.

As a baseline for comparison of the system, a multinomial distribution was
fit over all resources in the directory. In the plots below, this is called a base
model. To show the improvement of the Markov model when using prior infor-
mation it was fit using both MLE and maximum a-posteriori estimation (MAP).
Evaluation was carried out by: (i) examining the top-k accuracy of the RNN for
subdirectory prediction; (ii) comparing the performance of the Bayesian models
for representative subdirectories on both servers; and (iii) testing the prefetchers
capability to accurately identify the next request a robot in a caching system.

RNN Evaluation. RNN evaluation was carried out by checking its top-k accu-
racy, which is defined as the percentage of time the true subdirectory visited
next by a robot is among the k most probable subdirectories predicted by the
RNN (called a hit). These accuracies are compared against a simple predictor
that always predicts the most commonly requested subdirectory as the next one
a robot will visit. the empirical probability of the most frequently requested
subdirectory in the in Fig. 52. They both show promising results as the RNN is
able to identify the subdirectory of the next resource to be requested 68% of the
time on WSU and 42% of the time over the Univ. of Pavia data. If we allow the
RNN to suggest k = 2 subdirectories to the Bayesian model, the accuracy sub-
stantially improves to 74% and 54%, respectively. It is interesting to note that
the accuracy of subdirectory predictions taper off as we let k > 5, where the
RNN sports accuracies of 77% and 66% on the two servers. This is a desirable
property for cache prefetching; the RNN should submit a minimum number of
subdirectories to the Bayesian model, thus minimizing the number of resources
it needs to predict requests for.

Bayesian Model Evaluation. Bayesian models were evaluated by checking its
average top-k accuracy for predicting resources across each subdirectory of the
WSU and Univ. of Pavia logs. These averages were taken over models for all

1 www.botsvsbrowsers.com.
2 The RNN is labeled LSTM in the figures.

www.botsvsbrowsers.com

542 N. Xie et al.

(a) WSU (b) University of Pavia

Fig. 5. RNN subdirectory prediction performance

robots seen making at least one request to a given subdirectory. Comparisons of
the model within subdirectories of the same web server and between the different
web servers provides information about when the models perform well or poorly.

Figure 6 compares the performance of the Simple Model to the Markov Model
(with parameters fitted using both MAP estimation and MLE) and to a ‘base
model’, which is defined as the prediction by drawing from a multinomial dis-
tribution fitted to the proportion of times each resource was requested in the
training data, to two directories on WSU. The ‘base model’ represents a basic
empirical approach for predicting requests made by a single robot with only
information about that robot. The WSU root directory is extraordinarily popu-
lar, with robots requesting resources from it over 60% of the time, and it contains
around 5% of the resources on the server. Despite the fact that about a thou-
sand resources are located in this directory, Fig. 6a shows how the large number
of requests provide many observations from various robots to yield a rich prior
distribution that allows the Simple Model to make better predictions compared
to the base model. It is also interesting to note how poorly the Markov Model
performs, even compared to the Base Model. This may be because the Markov
Model seeks to fit resource type patterns that are common to both global and
local robot traffic when no such pattern exists. For example, if the root subdi-
rectory contains an even distribution of resource types, it may be the case that
the Markov Model’s attempt to find patterns in resource type sequences may
add noise that reduces performance.

Figure 6b shows a comparison of the models against a different, less popular
subdirectory on the website. In contrast to the root directory, we find that both
Bayesian models perform almost identically to the Base Model. Such a pattern
may emerge when very few requests from all robots are made to the subdirectory,
since the Simple Model reduces to the Base Model when using MLE, which could
occur when the prior information is the same as the observations for the current
robot, or if there is no prior information. This suggests that the power of the
Bayesian models relies on observing a large number of requests from a diverse

A Soft Computing Prefetcher to Mitigate Cache Degradation by Web Robots 543

(a) Root directory, WSU (b) Attachment subdirectory, WSU

Fig. 6. Bayesian model performance, WSU subdirectories

set of robots in a subdirectory. It may also imply that, out of a risk for admitting
a number of resources that have low probability of being requested, prefetching
resources from some directories should not be done at all.

Figure 7 examines the performance of the Bayesian model over subdirecto-
ries at the University of Pavia. This web server represents the interesting con-
dition where the simple MLE-based Base Model for request prediction performs
astonishingly well (with 96% prediction accuracy on the root and on a seldom
requested image directory). This may be due to the different structure of the
University of Pavia’s website along with the smaller size of the dataset. As the
top-k plots tend to plateau quickly, this might indicate that there are fewer
resources commonly requested by robots for each subdirectory. Having a smaller
dataset size would provide less prior information, reducing the ability of the
Bayesian models to outperform the Base model.

Despite this, the Simple Model is still able to over-perform the Base Model
by fusing together data about global and specific-robot patterns. As with the

(a) Root directory, Univ. of Pavia (b) Image subdirectory, Univ. of Pavia

Fig. 7. Bayesian model performance, Univ. of Pavia

544 N. Xie et al.

WSU subdirectories, the Markov Model still underperforms the Base and Simple
Models in the root directory. This probably indicates that there is little pattern
between the resource types of robot requests in high-traffic directories such as
the root directory. Note that the Markov Model fit with MAP performs as well
as the Simple Model in the /contents/instance1/images directory (Fig. 7b),
which could indicate the lack of a pattern that is picked up on by the Markov
Model, i.e. the probability of requesting a resource of a certain type given the
previous type is always the same no matter the previous type and matches the
type probabilities predicted by the Simple Model.

Implications for Web Caching. Next, the implications of this prefetcher to
a caching system like the one shown in Fig. 1 is investigated. In this preliminary
study, the actions of this architecture were simulated over the later 1/3 of the
WSU logs (the same data used for testing the RNN and Bayesian models). The
cache limit was set to 100 MB, of which 80 MB was reserved to cache human
traffic and 20 MB was reserved to store requests predicted to be requested by
web robot traffic by the proposed prefetcher. Experiments were ran with varying
levels of robot sessions in the data by interweaving a random oversampling of
human sessions that were extracted by the botsvsbrowsers identification scheme.

The performance of the prefetcher is compared to a dependency graph, a pop-
ular and often used Markov model for prefetching resources in caching systems.
Figure 8 compares the precision and recall of these two prefetching approaches
over robot traffic. Here, precision is defined as the number of times the prefetcher
successfully prefetched the resource requested next divided by the total number
of prefetches that were made. Recall is defined as the percent of time that a
prefetched resource still in the cache was requested by any robot. Recall mea-
sures instances where, for example, a resource may be requested multiple times
after it is added to the cache, or a resource prefetched but not requested next
by a robot was eventually requested in the future while it was still in the cache.
The top-k subdirectories considered and the top-n resources chosen by the soft
prefetched were set to k = 3 and n = 2 following a parameter sweep of different

(a) Robot prefetching precision (b) Robot prefetching recall

Fig. 8. Cache prefetching performance: soft prefetcher vs. dependency graph

A Soft Computing Prefetcher to Mitigate Cache Degradation by Web Robots 545

values, choosing the pair that yielded the highest F1 score. In these settings,
Fig. 8 shows how the precision of a dependency graph is ∼5.5–7% and its recall
is 4% regardless of how many robots are visiting the cache. The soft prefetcher,
however, enjoys a 2-4x gain in performance, leading to significant improvements
in the efficiency of a web cache. Moreover, the soft prefetcher is able to maintain
these strong values even in the face of extraordinarily high levels of Web robot
traffic, which the web may experience in the future.

5 Conclusions and Future Work

This paper introduced a novel soft computing prefetcher for web caches tailored
to mitigate the degradation of web system caches by web robots. The approach is
rooted in the idea that a deep recurrent neural network would be able to find pat-
terns in the ordering of subdirectories visited by web robots, and that Bayesian
models can incorporate observations about all robot traffic with data about a
particular robot to formulate accurate request predictions within subdirecto-
ries. Evaluation results indicate significant gains over MLE-based approaches
for predicting web robot request patterns, and significantly better prefetching
performance for a web cache compared to the popular dependency graph app-
roach. Future work will further evaluate the dual caching approach and will be
exercised over datasets from different universities. Alternative Bayesian models,
incorporating patterns besides request type patterns, will also be explored for
robot resource request prediction.

Acknowledgment. The authors thank Logan Rickert for data processing support,
Maria-Carla Calzarossa for data from the University of Pavia, and Mark Anderson
for data from Wright State University. This paper is based on work supported by
the National Science Foundation (NSF) under Grant No. 1464104. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the NSF.

References

1. Almeida, V., Menascé, D., Riedi, R., Peligrinelli, F., Fonseca, R., Meira Jr., W.:
Analyzing web robots and their impact on caching. In: Proceedings of Sixth Work-
shop on Web Caching and Content Distribution, pp. 20–22 (2001)

2. Brandman, O., Cho, J., Garcia-Molina, H., Shivakumar, S.: Crawler-friendly web
servers. In: Proceedings of Performance and Architecture of Web Servers Confer-
ence (2000)

3. Chen, X., Zhang, X.: A popularity-based prediction model for web prefetching.
Computer 36(3), 63–70 (2003)

4. Dietz, L.: Directed factor graph notation for generative models. Technical report,
Max Planck Institute for Informatics (2010)

5. Doran, D., Gokhale, S.: A classification framework for web robots. J. Am. Soc. Inf.
Sci. Technol. 63, 2549–2554 (2012)

6. Doran, D., Gokhale, S.S.: Web robot detection techniques: overview and limita-
tions. Data Mining Knowl. Discov. 22(1–2), 183–210 (2011)

546 N. Xie et al.

7. Doran, D., Morillo, K., Gokhale, S.: A comparison of web robot and human
requests. In: Proceedings of ACM/IEEE Conference on Advances in Social Network
Analysis and Mining, pp. 1374–1380 (2013)

8. Gellert, A., Florea, A.: Web prefetching through efficient prediction by partial
matching. World Wide Web 19(5), 921–932 (2016)

9. Graves, A.: Neural networks. In: Graves, A. (ed.) Supervised Sequence Labelling
with Recurrent Neural Networks, pp. 15–35. Springer, Heidelberg (2012)

10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

11. Lee, J., Cha, S., Lee, D., Lee, H.: Classification of web robots: an empirical study
based on over one billion requests. Comput. Secur. 28(8), 795–802 (2009)

12. Li, H., Lee, W.-C., Sivasubramaniam, A., Giles, C.L.: A hybrid cache and prefetch
mechanism for scientific literature search engines. In: Baresi, L., Fraternali, P.,
Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 121–136. Springer, Heidel-
berg (2007). doi:10.1007/978-3-540-73597-7 10

13. Menascé, D., Almeida, V., Riedi, R., Ribeiro, F., Fonseca, R., Meira Jr., W.: In
search of invariants for e-business workloads. In: Proceedings of the 2nd ACM
Conference on Electronic Commerce, pp. 56–65 (2000)

14. Pallis, G., Vakali, A., Pokorny, J.: A clustering-based prefetching scheme on a web
cache environment. Comput. Electr. Eng. 34(4), 309–323 (2008)

15. Qualman, E.: Socialnomics: How Social Media Transforms the Way We Live and
Do Business. Wiley, Hoboken (2012)

16. Rude, H.N., Doran, D.: Request type prediction for web robot and internet of things
traffic. In: Proceedings of IEEE International Conference on Machine Learning and
Applications, pp. 995–1000 (2015)

17. Zeifman, I.: Report: Bot traffic is up to 61.5% of all website traffic. bit.ly/MoMRxE

http://dx.doi.org/10.1007/978-3-540-73597-7_10
http://bit.ly/MoMRxE

A Caputo-Type Fractional-Order Gradient
Descent Learning of BP Neural Networks

Guoling Yang, Bingjie Zhang, Zhaoyang Sang, Jian Wang(B), and Hua Chen

College of Science, China University of Petroleum, Qingdao 266580, China
yangguolingfwz@163.com, bingjie zhang 1993@163.com, sun1410@163.com,

{wangjiannl,chenhua}@upc.edu.cn

Abstract. Fractional calculus has been found to be a promising area of
research for information processing and modeling of some physical sys-
tems. In this paper, we propose a fractional gradient descent method for
the backpropagation (BP) training of neural networks. In particular, the
Caputo derivative is employed to evaluate the fractional-order gradient
of the error defined as the traditional quadratic energy function. Simu-
lation has been implemented to illustrate the performance of presented
fractional-order BP algorithm on large dataset: MNIST.

Keywords: Fractional calculus · BP · Caputo derivative · MNIST

1 Introduction

Fractional differential calculus has been a classical notion in mathematics for
several hundreds of years. It is based on differentiation and integration of arbi-
trary fractional order, and as such it is a generalization of the popular integer
calculus. Yet only recently it has been applied to the successful modeling of
certain physical phenomena.

The fractional differential calculus has been successfully adopted also in the
field of neural networks. Some remarkable research of fractional-order neural
networks has been presented in [1–5]. In [1], fractional calculus was used for the
Backpropagation (BP) [15] algorithm for feedforward neural networks (FNNs).
By extending the second method of Lyapunov, the Mittag-Leffler stability analy-
sis was performed for fractional-order Hopfield neural networks [2].

However, most research findings for fractional-order systems have been lim-
ited to studies of fully coupled recurrent networks of Hopfield type [2–9]. The
vast majority of papers have been focused on studying properties of fixed points

J. Wang—This work was supported in part by the National Natural Science
Foundation of China (No. 61305075), the China Postdoctoral Science Foundation
(No. 2012M520624), the Natural Science Foundation of Shandong Province (Nos.
ZR2013FQ004, ZR2013DM015), the Specialized Research Fund for the Doctoral
Program of Higher Education of China (No. 20130133120014) and the Fundamen-
tal Research Funds for the Central Universities (Nos. 14CX05042A, 15CX05053A,
15CX02079A, 15CX08011A).

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 547–554, 2017.
DOI: 10.1007/978-3-319-59072-1 64

548 G. Yang et al.

for non-integer order differential equations that describe such networks. The
researched networks vary in their properties: they are with or without delay
in the feedback loop, while other extensions have provided generalizations to
complex-valued neurons. In contrast, this work concerns fractional-order error
BP in FNNs.

Gradient descent method is commonly used to train FNNs by minimizing
the error function, being the norm of a distance between the actual network
output and the desired output. There exist other optional methods to imple-
ment the BP algorithm for FNNs, such as conjugate gradient, Gauss-Newton
and Levenberg-Marquardt. We note that all of the above optimal methods are
typically employed to train integer-order FNNs.

Inspired by [1,10], we apply the fractional steepest descent algorithm to train
FNNs. In particular, we employ the Caputo derivative formula to compute the
fractional-order gradient of the error function with respect to the weights and
obtain the deterministic convergence.

The structure of the paper is as follows: in Sect. 2, the definitions of the
commonly used fractional-order derivative is introduced. The traditional BP
algorithm and our novel algorithm of fractional-order BP neural networks train-
ing based on Caputo derivative are presented in Sect. 3. Numerical simulation
is presented to illustrate the effectiveness of our results in Sect. 4. Finally, the
paper is concluded in the last Section.

2 Fractional-Order Derivative

Unlike the situation with integer-order derivatives, several definitions are used
for fractional-order derivatives. The three most common definitions are referred
to Grunvald-Letnikov (GL), Riemann-Liouiville (RL), and Caputo [11–14]. In
this paper, We mainly focus on the Caputo definition.

Definition 1 (Caputo fractional-order derivative). The definition of the Caputo
fractional-order derivative of order α is defined as follows

Caputo
aDα

t f(t) =
1

Γ (n − α)

∫ t

a

(t − τ)n−α−1f (n)(τ)dτ, (1)

where Caputo
aDα

t is the Caputo derivative operator, α is the fractional order.

Particularly, when α ∈ (0, 1), the expression for Caputo derivative is as
follows

Caputo
aDα

t f(t) =
1

Γ (1 − α)

∫ t

a

(t − τ)−αf ′(τ)dτ. (2)

A Caputo-Type Fractional-Order Gradient Descent Learning 549

3 Algorithm Description

We think about a network with three layers and the numbers of neurons for
the input, hidden and output layers are p, n and 1, respectively. The training
sample set that we suppose in this paper is {xj , Oj}J

j=1 ⊂ R
p × R, in which xj

is the input of the j-th sample and Oj is the corresponding desired output. Let
g, f : R → R be given activation functions for the hidden and the output layers,
separately. Let V = (vij)n×p be the weight matrix connecting the input and

the hidden layers, and write vi = (vi1, vi2, · · · , vip)
T ∈ R

p for i = 1, 2, · · · , n.
The weight vector connecting the hidden and output layers is denoted by u =
(u1, u2, · · · , un)T ∈ R

n. Aimed to simplify the statement, we integrate the weight
matrix V with the weight vector u, namely, w = (uT ,vT

1 , · · · ,vT
n)T ∈ R

n(p+1).
For the sake of convenience, we present the following vector valued function

G(z) = (g(z1), g(z2), · · · , g(zn))T , ∀z ∈ R
n. (3)

3.1 BP Algorithm Based on Gradient Descent Method

For any given j-th input xj ∈ R
p, the final actual output is

y = f(u · G
(
Vxj

)
). (4)

For any fixed weights w, the error of the neural networks is defined as

E (w) =
1
2

J∑
j=1

(
Oj − f

(
u · G

(
Vxj

)))2

=
J∑

j=1

fj(u · G(Vxj)),

(5)

where fj(t) = 1
2 (Oj −f(t))2, j = 1, 2, · · · , J, t ∈ R. We note that the constructed

function fj(·) is a composite function of f and G in terms of the j-th sample.
Given an initial weight w0, the batch learning of standard BP [15] updates

the weights iteratively by

uk+1
i = uk

i − ηEuk
i
(w), (6)

vk+1
im = vk

im − ηEvk
im

(w), (7)

where k ∈ N, i = 1, 2, · · · , n, m = 1, 2, · · · , p; η > 0 is the learning rate; and

Euk
i
(w) =

J∑
j=1

f ′
j(u · G(Vxj))g(vk

i · xj), (8)

Evk
im

(w) =
J∑

j=1

f ′
j(u · G(Vxj))uig

′(vk
i · xj)xj

m, (9)

where k ∈ N, i = 1, 2, · · · , n, j = 1, 2, · · · , J .

550 G. Yang et al.

3.2 BP Algorithm Based on Caputo Fractional-Order Derivative

For the given j-th input sample xj ∈ R
p, θi,j = vi1x1

j + vi2x2
j + · · · + vipxp

j =
vi ·xj(i = 1, 2, · · · , n) is the j-th input value of i-th hidden neuron. The input of
output layer is represented by ζj = u1g(v1 ·xj)+u2g(v2 ·xj)+· · ·+ung(vn ·xj) =
u · G(Vxj) and yj = f(u · G

(
Vxj

)
) after activation as the actual output. For

any fixed weights w, a conventional square error function is the same as (5).
Given an initial weight w0 = (u0,V0), without loss of generality, assume

that c = min{ui
k, vim

k}(k ∈ N, i = 1, · · · , n,m = 1, · · · , p). The BP network
with Caputo α-order derivative updates the weights {wk} iteratively by

uk+1
i = uk

i − ηcD
α
uk
i
E(w), (10)

vk+1
im = vk

im − ηcD
α
vk
im

E(w), (11)

where η > 0 is the learning rate, 0 < α < 1 is the fractional order, i = 1, 2, · · · , n
and m = 1, 2, · · · , p.

According to the definitions of Caputo fractional derivative and the
fractional-order differential of a composite function, we have

cD
α
uk
i
E(w) =

1
(1 − α)Γ (1 − α)

J∑
j=1

f ′
j(u · G(Vxj))g(vk

i · xj)(uk
i − c)1−α.

(12)

cD
α
vk
im

E(w) =
1

(1 − α)Γ (1 − α)

J∑
j=1

f ′
j(u · G(Vxj))uk

i g′(vi · xj)xj
m(vk

im − c)1−α.

(13)
Write

cD
α
wE(w) = (cD

α
u1

E(w), · · · , cD
α
un

E(w), cD
α
v11

E(w), · · · , cD
α
vnp

E(w)).
(14)

4 Experiment

To verify the convergence of the proposed factional-order BP algorithm, simula-
tion has been done on the MNIST handwritten digital dataset.

The MNIST handwritten digital dataset is collected from the NIST database
of the National Institute of Standards and Technology. Digital images are nor-
malized to an image 28 × 28, and represented as 784 × 1 vectors. The value of
each element in the vector is between 0 and 255 on behalf of the gray levels of
each pixel. There have 60,000 training samples and 10, 000 testing samples in
the MNIST database.

To display the performances of differences of different fractional-order BP
neural networks, we employed different learning parameters: learning rates and

A Caputo-Type Fractional-Order Gradient Descent Learning 551

Fig. 1. The comparison of different fractional and integer order BP algorithms for
various learning rates with fixed numbers of hidden nodes.

552 G. Yang et al.

hidden nodes are set to be {0.5, 1, 2, 3} and {100, 200, 300, 500}. In this simula-
tion, we employ different fractional α-order derivatives to compute the gradient
of error function, where α = 1

9 , 2
9 , 3

9 , 4
9 , 1

2 , 5
9 , 6

9 , 7
9 , 8

9 and 9
9 = 1, separately (α = 1

corresponds to standard integer-order derivative for the common BP). For con-
venience, we graphed the training and testing accuracies with various learning
rates for fixed number of hidden nodes in Fig. 1. Each row of the figure shows
the training and testing accuracies based on various learning rates and fixed
hidden nodes, that is, one can observe the tendencies of accuracy for each learn-
ing parameter. Generally speaking, the accuracies with larger learning rates are
higher than those with smaller learning rates in each sub-figure. In addition,
we observe that training and testing accuracies are gradually increasing with
increasing fractional-orders and then reach the peak around 7

9 -order. One excep-
tion is in the sub-figure Fig. 1. (b2), the testing accuracy is slightly higher than
that in 8

9 -order case (learning rate is 3). Another one is that the training accu-
racies of 6

9 -order network with 500 hidden nodes are equal to or slightly higher
than those with 7

9 -order network. Under these experiments, we reach an inter-
esting conclusion that 7

9 -order BP algorithms have been observed to have better
performances in most cases.

To verify the theoretical results of this work, we have redone the simula-
tion (learning rate is 0.5, and 100 hidden nodes) with 1000 training epochs and
compare the 7

9 -order and integer-order BP algorithms in terms of the above per-
formance figures. Figure 2a shows the training accuracies for up to 1000 training
epochs. It clearly shows that 7

9 -order BP algorithm performs much better than
the integer-order BP algorithm. In addition, it performs stable after approxi-
mately 400 training epochs. Figure 2b demonstrates the errors of 7

9 -order BP
networks. It is clear to see that the errors are monotonically decreasing. It also
shows the norms of gradient of error function with respect to the total weights
(14) for 7

9 -order network in Fig. 2b. We observe that the 7
9 -order BP algorithms

0 100 200 300 400 500 600 700 800 900 1000
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

epoches

Tr
ai

ni
ng

 A
cc

ur
ac

y

(a) The training accuracies of 7
9
-order and

common integer BP algorithms.

0 100 200 300 400 500 600 700 800 900 1000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

epoches

error
norm of gradient

(b) The training error and the norm of gra-
dient with respect to weights.

Fig. 2. Performance of fractional-order BP algorithm and its convergent behavior.

A Caputo-Type Fractional-Order Gradient Descent Learning 553

perform stably and tend to converge to zero with increasing iterations. These
observations effectively verify the theoretical results of the presented algorithm
in this paper, such as monotonicity and convergence.

5 Conclusions

In this paper, we have extended the fractional steepest descent approach to BP
training of FNNs. The Caputo derivative is employed to evaluate the fractional-
order gradient of the error defined as the traditional quadratic energy function.
Numerical simulation is reported to illustrate the effectiveness of the proposed
factional-order neural networks. The illustrated simulation shows that there
exists one specific fractional-order (79 -order) BP network that often performs
the best for the example problem. Fractional orders [69 , 7

9 , 8
9] usually perform

better than the integer-order BP, for which, of course, the fractional order is
one. A 5

9 fractional order BP performs often at a comparable training level to
the integer-order BP.

References

1. Chen, X.: Application of fractional calculus in BP neural networks (in Chinese).
Master thesis. Nanjing Forestry University, Nanjing, Jiangsu (2013)

2. Zhang, S., Yu, Y., Wang, H.: Mittag-Leffler stability of fractional-order Hopfield
neural networks. Nonlinear Anal. Hybri. 16, 104–121 (2015)

3. Chen, B., Chen, J.: Global O(t−α) stability and global asymptotical periodicity
for a non-autonomous fractional-order neural networks with time varying delays.
Neural Netw. 73, 47–57 (2016)

4. Rakkiyappan, R., Sivaranjani, R., Velmurugan, G., Cao, J.: Analysis of global
O(t−α) stability and global asymptotical periodicity for a class of fractional-order
complex-valued neural networks with time varying dela. Neural Netw. 77, 51–69
(2016)

5. Rakkiyappan, R., Cao, J., Velmurugan, G.: Existence and uniform stability analysis
of fractional-order complex-valued neural networks with time delays. IEEE Trans.
Neural Netw. Learn. 26, 84–97 (2015)

6. Xiao, M., Zheng, W., Jiang, G., Cao, J.: Undamped oscillations generated by Hopf
Bifurcations in fractional-order recurrent neural networks with Caputo derivative.
IEEE Trans. Neural Netw. Learn. 26, 3201–3214 (2015)

7. Wang, H., Yu, Y., Wen, G.: Stability analysis of fractional-order Hopfield neural
networks with time delays. Neural Netw. 55, 98–109 (2014)

8. Wu, A., Zhang, J., Zen, Z.: Dynamic behaviors of a class of memristor-based Hop-
field networks. Phys. Lett. A. 375, 1661–1665 (2011)

9. Wu, A., Wen, S., Zen, Z.: Anti-synchronization control of a class of memristive
recurrent neural networks. Commun. Nonlinear Sci. 18, 373–385 (2013)

10. Pu, Y., Zhou, J., Zhang, Y., Zhang, N., Huang, G., Siarry, P.: Fractional extreme
value adaptive training method: fractional steepest descent approach. IEEE Trans.
Neural Netw. Learn. 26, 653–662 (2015)

11. Love, E.R.: Fractional derivatives of imaginary order. J. Lond. Math. Soc. 3, 241–
259 (1971)

554 G. Yang et al.

12. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Applications of
Differentiation and Integration to Arbitrary Order. Academic, Cambridge (1974)

13. Mcbride, A.C.: Fractional Calculus. Halsted, USA (1986)
14. Nishimoto, K.: Fractional Calculus: Integrations and Differentiations of Arbitrary

Order. New Haven University Press, New Haven (1989)
15. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back

propagating errors. Nature 323, 533–536 (1986)

Attracting Sets of Non-autonomous
Complex-Valued Neural Networks with both

Distributed and Time-Varying Delays

Zhao Yang and Xiaofeng Liao(B)

College of Electronic and Information Engineering,
Southwest University, Chongqing 400715, China

xfliao@swu.edu.cn

Abstract. In this paper, we investigate the attracting sets of a class
of complex-valued neural networks by using integro-difference inequal-
ity and properties of the M-matrix. To be specific, we consider both
time-varying and infinite distributed delays in complex-valued neural
networks and establish some sufficient conditions by setting up integro-
differential inequality and applying conjugate system of complex-valued
neural networks. Some new results on attracting sets of neural networks
are obtained. Simulation verifies our results.

Keywords: Complex-valued neural networks · Attracting sets ·
Distributed delays · Integro-differential inequality

1 Introduction

The complex-valued neural network (CVNN) is an extension of the neural net-
work in real domain and it uses complex-valued states, connection weights, or
activation functions. In recent years, CVNNs have attracted a public concern
due to their practical application in computer vision, image processing, opto-
electronics, filtering, speech synthesis, remote sensing, electromagnetics, ultra-
sonic, and quantum waves [1–4]. Therefore, it is important and necessary to
investigate complex-valued differential systems. Besides, considering stability is
an important performance criterion commonly used to quantize the quality of
CVNNs, many existed literature have discussed the stability analysis in CVNNs
[6–11]. In [9], the equilibrium point of the exponential stability of CVNNs with
time-varying delays has been derived by using conjugate system of the CVNNs
works, the theorem of Brouwer’s fixed point and a delay differential inequality.
In addition, some researchers have established the sufficient condition to verify
the existence of equilibrium and show its uniqueness. In the meanwhile, CVNNs’
asymptotic stability has been derived. Zhang studied global asymptotic stability
of equilibrium based on a Lynapunov function and mathematical analysis and
derived the sufficient condition by separating CVNNs into real and imaginary
parts [10].

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 555–563, 2017.
DOI: 10.1007/978-3-319-59072-1 65

556 Z. Yang and X. Liao

Although these aforementioned works studied the CVNNs, few literatures
have discussed non-autonomous CVNNs, and there are few results about the
attracting set of non-autonomous CVNNs by using differential inequality. Moti-
vated by the above discussions, we will use the integro-differential established in
[5] and conjugate system in [9] to investigate the attracting set of the CVNNs.

Motivated by the above considerations, we consider a CVNN and analyze its
global attracting set. To be more specific, this paper has the following contribu-
tions: (1) Using a different method in [9], we do not separate the activation func-
tions into their real and imaginary parts. (2) Taking advantage of CVNNs’ conju-
gate system, integro-differential inequality and M-matrix theory, we obtain some
sufficient conditions for checking the attracting set of non-autonomous CVNNs
with both time-varying delays and infinite distributed delays. We organize the
rest of this paper as follows. In Sect. 2, we illustrate the system model of distrib-
uted delay and time-varing CVNNs and describe some definitions and lemma.
Furthermore, we discuss a class of intego-differential inequality and present the
main results in Sect. 3. In Sect. 4, we simulate one instance by computers and
give an numerical example to verify the effectiveness of our results. In the end,
we give a summary of this paper in Sect. 5.

Notations: Unless otherwise specified in this article, notations we use in
this paper can be summarized as follows. To be specific, E, R denotes the
unit matrix and the set of real numbers, R+ = [0,+∞). R

n, C
n denote the

n-dimensional Euclidean space and the n-dimensional complex vector space,
respectively. R

m×n, C
m×n denote the sets of m × n real and complex matri-

ces, respectively. Let y = a + ib be a complex number, a, b ∈ R, |y| =
√

a2 + b2.
y = a + i(−b) is the conjugate complex number of y. For y, φ ∈ C

n, we define

[|y(t)|] = (|y1(t)|, . . . , |yn(t)|)T , ‖y(t)‖ =
√

Σn
k=1|yk(t)|2. Let C

�
= ((−∞, 0], Cn),

PC
�
= ((−∞, 0], Rn). � = {v(t) : R −→ R|(t) is a positive integral con-

tinuous function and lim
t→∞

∫ t

a
v(s)ds = ∞, sup

a≤t<b

∫ t

t−τ
v(s)ds = σ1 < ∞ and

sup
a≤t<b

{ sup
−∞<s<0

{v(t + s)}} = σ2 < ∞}. For C,D∈ R
m×n or ∈ C

m×n, we define

the Hadamard product or Schur product C ◦ D = (cijdij)m×n, |C| = (|cij |)m×n.

2 Problem Formulation and Preliminaries

In our paper, we investigate a model of time-delay CVNNs:

ẏ(t) = − D(t)y(t) + A(t)f(y(t)) + C(t)g(y(t − τ(t)))

+
∫ t

−∞
P (t − s)w(y(t))ds + J(t), (1)

the initial conditions of (1) can be given by y(t) = φ(t),−∞ ≤ t ≤ t0. Where
y(t) = (y1(t), . . . , yn(t))T ∈ C

n is the state vector of the neural network with
n neurons, ẏ(t) = (ẏ1(t), . . . , ẏn(t))T ∈ C

n. D(t) = diag{d1(t), . . . , dn(t)} ∈
Rn×n with di(t) > 0 is the self-feedback connection weight matrix.

Attracting Sets of Non-autonomous Complex-Valued Neural Networks 557

A(t) = (aij(t))n×n, C(t) = (cij(t))n×n, P (t) = (pij(t))n×n ∈ C
n×n is the connec-

tion weight matrix. J(t) = (J1(t), . . . , Jn(t))T ∈ C
n is the external input vector.

f(·), g(·), w(·) : C
n → C

n, are the activation functions of the neurons and
f(y(t)) = (f1(y1(t)), . . . , fn(yn(t)))T , w(y(t)) = (w1(y1(t)), . . . , wn(yn(t)))T ,
g(y(t − τ(t))) = (g1(y1(t − τ1(t))), g2(y2(t − τ2(t))), . . . , gn(yn(t − τn(t))))T

(0 ≤ τi(t) ≤ τ is the transmission delays).
A conjugate system of model (1) is represented by

ẏ(t) = − D(t)y(t) + A(t)f(y(t)) + C(t)g(y(t − τ(t)))

+
∫ t

−∞
P (t − s)w(y(t))ds + J(t), (2)

where y(t) = (y1(t), . . . , yn(t))T , C(t) = (cij(t))n×n, C(t) = (cij(t))n×n,
P (t) = (pij(t))n×n, f(y(t)) = (f1(y1(t)), . . . , fn(yn(t)))T , w(y(t)) = (w1(y1(t)),
. . . , wn (yn(t)))T , g(y(t − τ(t))) = (g1(y1(t − τ1(t))), . . . , gn(yn(t − τn(t))))T .

Moreover, there are some necessary definition and lemma need to be illus-
trated in detail.

Definition 1. If for any initial value φ ∈ C, the set S ⊂ C is called a global
attracting set of (1), the solution y(t, t0, φ) converges to S as t −→ +∞; that is,

dist(y(t, t0, φ)), S) −→ 0, t −→ +∞,

where dist(y, S) = infψ∈Sdist(y, ψ) and dist(y, ψ) = sup−τ�s�0|y(s) − ψ(s)|.
The following Lemma has basically the same proof in [9].

Lemma 1. Let c(t), d(t) ∈ C
n, c(t) ◦ d(t) = (c1(t)d1(t), . . . , cn(t)dn(t))T ,

[|c(t)|]2 = (|c1(t)|2, . . . , |cn(t)|2)T , and Re(c(t)) is the real part of c(t), then:

(1) c(t) + c(t) = 2Re(c(t)),
(2) [|c(t)|] = [|c(t)|],
(3) [|c(t)|2] = c(t) ◦ c(t),
(4) [c(t) ◦ d(t)]′ = c(t) ◦ d′(t) + d(t) ◦ c′(t).

If D is a M matrix, according to the characteristic of M matrix, we can
obtain

ΩM (D) � {ξ ∈ R
n×n|Dξ > 0, ξ > 0}.

3 Main Results

For network (1), we give the following hypotheses.

(H1) 1
ρ2

≤ h(t) ≤ 1
ρ1

, |D(t)| ≥ D̃h(t), and |J | ≤ J̃h(t), where h(t) ∈ �, constants
ρ1, ρ2 > 0, nonnegative constant matrices D̃ = diag{d̃11, . . . , d̃nn} ∈ R

n×n

and nonnegative vector J̃ = [J̃1, . . . , J̃n]T ∈ R
n.

558 Z. Yang and X. Liao

(H2) There exist nonnegative constant matrices Ã = (ãij)n×n, C̃ = (c̃ij)n×n ∈
R

n×n make |A(t)| ≤ Ãh(t), |C(t)| ≤ C̃h(t) established.
(H3) There exist nonnegative constant diagonal matrices F = diag{f1, . . . , fn},

G = diag{g1, . . . , gn} and W = diag{w1, . . . , wn} ∈ R
n×n make

|f(y(t))| ≤ F |y(t)|, |g(y(t))| ≤ G|y(t)| and |w(y(t))| ≤ W |y(t)| established.
(H4) Let −Π = (D̃ − ÃF − C̃G−PW) be an M matrix, where P = (pij)n×n �

(
∫ ∞
0

pij(s)ds)n×n.

First, we propose a integro-difference inequality as follows.

Theorem 1. Let x(t) ∈ PC([t0,∞), Rn) satisfy the following integro-
differential inequality

⎧
⎨

⎩
D+x(t) ≤ u(t){Wx(t) + V [x(t)]τ +

∫ ∞

0

R(s)x(t − s)ds + L}, t ≥ t0

x(t) = φ(t), −∞ < t ≤ t0

,

(3)
where 0 ≤ x(t) = (x1(t), . . . , xn(t))T ,φ(t) ∈ PC([t0 − τ, t0], Rn), W = (wij)n×n

and wij ≥ 0 for i �= j, V = (vij)n×n ≥ 0, L = (L1, . . . , Ln)T ≥ 0, u(t) ∈ �,
R = (rij)n×n � (

∫ ∞
0

rij(s)ds)n×n.

If K = −(W + V + R) is a nonsingular M matrix, there exists a positive
vector ξ = (ξ1, . . . , ξn)T ∈ ΩM (K), then

x(t) ≤ κξe
−λ
∫ t
t0

u(s)ds − (W + V + R)−1L, t ≥ t0, (4)

where κ ≥ 0, and the inequality determines the constant λ and λ is always more
than 0:

[λE + W + V eλσ1 +
∫ ∞

0

R(s)eλσ2sds]ξ < 0, (5)

for the given ξ ∈ ΩM (K).

Proof. The proof is similar to [5, Theorem 3], so omitted.

Theorem 2. Suppose that (H1)–(H4) hold, then the global attracting set of (1)
can be represented as S = {φ ∈ C|‖φ‖ ≤ −Π−1J̃}.

Proof. On the basis of the property of Lemma1 with systems (1) and (2), we
can achieve

[|y(t)|2]′ = (y(t) ◦ y(t))′

= y(t) ◦ ẏ(t) + y(t) ◦ ẏ(t)
= −2[y(t) ◦ D(t)y(t)]

+ y(t) ◦ A(t)f(y(t)) + y(t) ◦ A(t)f(y(t))

Attracting Sets of Non-autonomous Complex-Valued Neural Networks 559

+ y(t) ◦ C(t)g(y(t − τ(t))) + y(t) ◦ C(t)g(y(t − τ(t)))

+ y(t) ◦
∫ t

−∞
P (t − s)w(y(s))ds + y(t) ◦ J(t) + y(t) ◦ J(t)

+ y(t) ◦
∫ t

−∞
P (t − s)w(y(s))ds. (6)

From hypotheses (H1) and (H2), we can derive

y(t) ◦ A(t)f(y(t)) + y(t) ◦ A(t)f(y(t))

= y(t) ◦ A(t)f(y(t)) + y(t) ◦ A(t)f(y(t))
≤ 2[|y(t)|] ◦ (|A(t)|[|f(y(t))|])
≤ 2[|y(t)|] ◦ (Ãh(t)[F |y(t)|])
= 2[|y(t)|] ◦ (Ãh(t)[F |y(t)|]). (7)

Similarly,

−y(t) ◦ D(t)y(t) − y(t) ◦ D(t)y(t)

= −2[|y(t)|] ◦ (D̃h(t)[|y(t)|]), (8)

y(t) ◦ C(t)g(y(t − τ(t))) + y(t) ◦ C(t)g(y(t − τ(t)))

= 2[|y(t)|] ◦ (C̃h(t)G[|y(t)|]τ), (9)

y(t) ◦
∫ t

−∞
P (t − s)w(y(s))ds + y(t) ◦

∫ t

−∞
P (t − s)w(y(s))ds

= 2[|y(t)|] ◦
∫ ∞

0

|P (s)|W [|y(t − s)|]ds, (10)

y(t) ◦ J(t) + y(t) ◦ J(t)

≤ 2[y(t)] ◦ [J̃v(t)]. (11)

Taking (7)–(11) into (6), with the following equation

[|y(t)|2]′ = 2[|y(t)|] ◦ [|y(t)|]′,
we can get

2 [|y(t)|] ◦ [|y(t)|]′
≤ −2[|y(t)|] ◦ {D̃h(t)[|y(t)|] − Ãh(t)F [|y(t)|]

− C̃h(t)G[|y(t)|]τ −
∫ ∞

0

|P (s)|W [|y(t − s)|]ds − J̃v(t)}

≤ −2[|y(t)|] ◦ h(t){D̃[|y(t)|] − ÃF [|y(t)|]

− C̃G[|y(t)|]τ −
∫ ∞

0

ρ1|P (s)|W [|y(t − s)|]ds − J̃}. (12)

560 Z. Yang and X. Liao

Finally, we can obtain

[|y(t)|]′ ≤ h(t){−D̃[|y(t)|] + ÃF [|y(t)|]

+ C̃G[|y(t)|]τ +
∫ ∞

0

ρ1|P (s)|W [|y(t − s)|]ds + J̃}. (13)

On the basis of Theorem 1 and (H4), we can get that −Π = (D̃ − ÃF −
C̃G − PH) is a M matrix. Moreover, according to the property of M matrix,
there must exists a vector ξ, −Πξ > 0, where ξ = (ξ1, . . . , ξn)T ∈ ΩM (−Π), and
−Π−1J̃ ≥ 0.

Based on the initial conditions mentioned above in (1), y(t) = φ(t), where
t ∈ (−∞, t0] and φ(t) ∈ C, we can get

[|y(t)|] ≤ κ0ξ[|φ|], κ0 =
1

min1≤i≤n{ξi} , − ∞ < t < t0,

and
[|y(t)|] ≤ κ0ξ[|φ|]e−λ

∫ t
t0

u(s)ds − Π−1J̃ , t ≥ t0.

This implies

‖y(t)‖ ≤ κ0ξ‖φ‖e
−λ
∫ t
t0

u(s)ds − Π−1J̃ , t ≥ t0,

where λ is determined by

[λE + (−D̃ + ÃF) + C̃Geλσ1 +
∫ ∞

0

ρ1|P (s)|Weλσ2sds]ξ < 0.

The proof is completed.

Remark 1. With conditions (H1)–(H4) and J̃ = 0, we can find that CVNNs
(1) is globally exponentially stable at zero point.

Remark 2. If we put the system (1) into the real domain, then we can obtain
y(t), J(t) ∈ R

n, A(t) ∈ R
n×n, C(t) ∈ R

n×n, P (t) ∈ R
n×nand f(·), g(·), w(·) :

R
n → R

n, that is to say, the complex-valued system (1) become to a real valued
system. Then we can count the upper right derivative of [|y(t)|]′ under equation
(1) as

[|y(t)|]′ ≤ − |D(t)||y(t)| + |A(t)||f(y(t))| + |C(t)||g(y(t − τ(t)))|

+
∫ t

−∞
|P (t − s)||w(y(t))|ds + |J(t)|,

Using (H1)–(H3), we can obtain Eq. (13). Next, repeating the proof
below Eq. (13) in Theorem 2, we can get the global attracting set S as
S = {φ ∈ PC|‖φ‖ ≤ −Π−1J̃} for the real-valued system which is transformed
by the complex-valued system (1).

Attracting Sets of Non-autonomous Complex-Valued Neural Networks 561

4 Numerical Example

Example 1. Consider a two-neuron CVNNs (1) with the following parameters:
where d11 = 8, d22 = 7, a11 = arctan(t) +

√
3

10 cos(t)i, a22 = e−t + arctan(t)i,
c11 = arctan(t)i, c22 = p22 = e−2t, p11 = e−t, J1 =

√
3

10 sin(t) +
√
5

10 cos(t)i,
J2 =

√
5

10 cos(t) +
√
3

10 sin(t)i, d12 = d21 = b12 = b21 = c12 = c21 = p12 = p21 = 0.
and the activation functions fi(yi) = gi(yi) = wi(yi) = 0.5|xi| + 0.5i|yi|, with
yi = xi + iyi ∈ C and i = 1, 2.

The parameters of hypothesis (H1)–(H3) are as follows:

D̃ =
[
8 0
0 7

]
, Ã =

[
3.8 0
0 3.8

]
, C̃ =

[
2.461 0

0 2.227

]
, P =

[
1 0
0 0.5

]
,

J̃ =
[
0.282
0.282

]
, F = W = H =

[√
5 0

0
√

5

]
,

we set h(t) = 1
1+e−t ∈ �, 1

2 ≤ h(t) ≤ 1, t ≥ 0.

It is easy to compute that −Π = D̃ − ÃF − C̃G − PW =
[
5.5437 0

0 4.6226

]

is a nonsingular M -matrix. Therefore, by Theorem 2, we can obtain the
global attracting sets of non-autonomous complex-valued system (1) that is
S = {φ ∈ C|‖φ‖ ≤ −Π−1J̃ = (0.0510, 0.0612)T }.

0 2 4 6 8 10 12
−0.1

0

0.1

0.2

time t

re
al

 p
ar

ts

Re(y1)

Re(y2)

0 2 4 6 8 10 12
−0.1

0

0.1

0.2

time t

im
ag

in
ar

y
pa

rts

Im(y1)

Im(y2)

Fig. 1. Real and imaginary parts of state trajectories.

562 Z. Yang and X. Liao

0 1 2 3 4 5 6 7 8
−0.1

0

0.1

0.2

time t

re
al

 p
ar

ts

Re(y1)

Re(y2)

0 1 2 3 4 5 6 7 8
−0.1

0

0.1

0.2

time t

im
ag

in
ar

y
pa

rts

Im(y1)

Im(y2)

Fig. 2. Real and imaginary parts of state trajectories with J = 0.

Then we consider three cases. Case 1: τ1 = 0.5 and τ2 = 0.2, the initial
sate y1(t) = 0.1 + 0.2i for t ∈ [−τ1, 0] and y2 = −0.05 − 0.05i for t ∈ [−τ2, 0].
Case 2: τ1 = 0.3 and τ2 = 0.4, the initial sate y1(t) = 0.2 − 0.1i for t ∈ [−τ1, 0]
and y2 = −0.1 − 0.1i for t ∈ [−τ2, 0]. Case 3: τ1 = τ2 = 0.2, the initial sate
y1(t) = 0.05 + 0.1i for t ∈ [−τ1, 0] and y2 = 0.15 + 0.1i for t ∈ [−τ2, 0]. Figure 1
shows the time responses of (1). Figure 2 indicate that the zero solution of (1)
with J(t) = 0 is globally exponentially stable.

5 Conclusions

In this paper, we have discussed non-autonomous CVNNs in which system para-
meters change with time. Besides, we have considered both time-varying and infi-
nite distributed delays and investigate the attracting sets in this system model. In
addition, we have established some sufficient conditions by setting up integro-
differential inequality and applying conjugate system of CVNNs. Moreover, a
attracting set of the system and have been obtained. Finally, we simulate one
instance by computers to verify the effectiveness of our results.

Acknowledgment. This work was supported by the National Key Research and
Development Program of China (No. 2016YFB0800601) and the National Natural
Science Foundation of China (No. 61472331).

Attracting Sets of Non-autonomous Complex-Valued Neural Networks 563

References

1. Hirose, A.: Complex-Valued Neural Networks: Theories and Applications. World
Scientific, Singapore (2003)

2. Bohner, M., Sanyal, S.: Global fof complex-valued neural networks on time case.
Differ. Equ. Dyn. Syst. 19, 3–11 (2011)

3. Liu, X., Fang, K., Liu, B.: A synthesis method based on stability analysis for
complex-valued Hopfield neural network. In: 2009 Asian Control Conference, pp.
1245–1250 (2009)

4. Hirose, A.: Recent progress in applications of complex-valued neural networks. In:
Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2010. LNCS, vol. 6114, pp. 42–46. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-13232-2 6

5. Xu, L.G., Xu, D.Y.: Exponential stability of nonlinear impulsive neutral integro-
differential equation. Nonlinear Anal. 69, 2910–2923 (2008)

6. Zhou, B., Song, Q.K.: Boundedness and complete stability of complex-valued
neural networks with time delay. IEEE Trans. Neural Netw. Learn. Syst. 24, 1227–
1238 (2013)

7. Xu, X.H., Zhang, J.Y., Shi, J.Z.: Exponential stability of complex-valued neural
networks with mixed delays. Neurocomputing 128, 483–490 (2014)

8. Song, Q.K., Yan, H., Zhao, Z.J., Liu, Y.R.: Global exponential stability of complex-
valued neural networks with both time-varying delays and impulsive effects. Neural
Netw. 79, 108–116 (2016)

9. Pan, J., Liu, X.Z.: Exponential stability of a class of complex-valued neural net-
works with time-varying delays. Neurocomputing 164, 293–299 (2015)

10. Zhang, Z.Y., Lin, C., Chen, B.: Global stability criterion for delayed complex-
valued recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25, 1704–
1708 (2014)

11. Hu, J., Wang, J.: Global stability of complex-valued recurrent neural networks with
time-delays. IEEE Trans. Neural Netw. Learn. Syst. 23, 853–865 (2012)

http://dx.doi.org/10.1007/978-3-642-13232-2_6
http://dx.doi.org/10.1007/978-3-642-13232-2_6

Stability of Complex-Valued Neural Networks
with Two Additive Time-Varying Delay

Components

Zhenjiang Zhao1(B), Qiankun Song2(B), and Yuchen Zhao3(B)

1 College of Science, Huzhou University, Huzhou 313000, China
zhaozjcn@163.com

2 Department of Mathematics, Chongqing Jiaotong University,
Chongqing 400074, China
qiankunsong@163.com

3 Deloitte Consulting (Shanghai) Co. Ltd., Shanghai 200002, China
yuczhao@deloitte.com.cn

Abstract. In this paper, a class of complex-valued neural networks
including two additive time-varying delay components has been dis-
cussed. By making use of the combinational Lyapunov-Krasovskii func-
tional and free weighting matrix method, as well as matrix inequality
technique, a delay-dependent criterion of stability is derived.

Keywords: Complex-valued neural networks · Additive delay compo-
nents · Stability · Lyapunov-Krasovskii functional · Time-varying delays

1 Introduction

With the application of artificial intelligence technology, the research of artificial
neural networks (NNs) is becoming more and more important. Especially, in the
past twenty years, neural networks have been applied in many fields, such as
optimization problem, associative memory, model identification, pattern recog-
nition, signal processing, and other engineering and scientific areas, so the neural
network is attracting more and more attention [1]. As we all know, in the process
of the realization of neural networks, time delays often occur, which may lead
to the performance of neural networks to reduce, or even induce instability [2].
Therefore, the research of delayed NNs have attracted great interest, also many
stability criterion have been obtained [1–5].

Meanwhile, in the literature [6], the authors introduced a new type of time-
varying delay with two additive components in the state of neural networks. In
many practical applications, such as remote control, network control system, etc.,
we may encounter such a system. For example, in networked controlled systems,
the signal transmitted from one location to another location may experience
some segments of networks, which can possibly cause a series of delays. Due to
the uncertain network transmission conditions, the delay of the sensor to the

c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 564–571, 2017.
DOI: 10.1007/978-3-319-59072-1 66

Stability of Complex-Valued Neural Networks 565

controller has different characteristics with the controller to actuator delay. This
means that the study of the system having time-vary delays will become more
complicated and more meaningful. Therefore, the stability of the NNs having
additive time-varying delays have been widely investigated [6–9].

Complex-valued NNs is an extension of real-valued NNs, due to its practical
applications of complex-valued neural networks in physical systems for process-
ing quantum waves, electromagnetic, ultrasonic and light, complex-valued NNs
consisting of complex-valued states, outputs, connection weights, and activation
functions has also become a research hot spot [10]. In addition, some problems
can be only solved by complex-valued NNs, but cannot be solved by real-valued
NNs [11]. At present, some achievements have been obtained in the study of sta-
bility of various complex-valued neural networks, relevant results are available in
[12–20]. In [12–16], the methods used to examine the stability of complex-valued
NNs were still using the method of analyzing the stability of real-valued NNs.
It is a method of dividing complex-valued NNs into two parts, real parts and
imaginary parts. However, this method will bring two questions. One problem
is that the dimension of the real-valued NNs is twice as much as the complex-
valued neural network. This will result in the difficulty of analysis. The other is
that the real and imaginary parts of the activation function need to be distinct,
but there is lack of a analytical form to express such difference. In [17–20], under
the condition that both the real and imaginary portions of the complex-valued
neural network were not split, the stability of the system was explored. Several
criteria for the stability of the system were obtained.

In the above complex-valued NNs, the time delay in a state was only a sin-
gular form. However, as far as we know, few scholars have studied the stability
of the complex-valued NNs having additive time-varying delays so far. Based on
the above analysis, we study the problem. In the second section of this article, we
described the problem and made some preparatory work. In the third section, we
did the analysis of delay dependent stability of complex-valued NNs having addi-
tive time-varying delay. Then by making hybrid use of the Lyapunov-Krasovskii
functional and the free weighting matrix approach, innovative delay dependent
stability criteria are derived.

2 Problem Description and Preliminaries

The stability analysis of complex-valued NNs having two additive time-varying
delays components is examined.

ż(s) = −Cz(s) + Af(z(s)) + Bf(z(s − τ1(s) − τ2(s))) + J (1)

s ≥ 0, z(s) = (z1(s), z2(s), · · · , zn(s))T ∈ C
n, where zi(s) is the state of the

ith neuron at time t, i = 1, 2, · · · , n; f(z(s)) = (f1(z1(s)), f2(z2(s)), · · · ,
fn(zn(s)))T ∈ C

n is the vector-valued activation function; A = (aij)n×n ∈
C

n×n and B = (bij)n×n ∈ C
n×n are the connection weight matrices; C =

diag{c1, c2, · · · , cn} ∈ R
n×n is the self-feedback connection weight matrix, where

566 Z. Zhao et al.

ci > 0; the input vector is J = (J1, J2, · · · , Jn)T ∈ C
n; τ1(s) and τ2(s) are two

time-varying delays.
The following assumptions are made:
(H1). Two time-varying delays should meet the following conditions

0 ≤ τ1(s) ≤ τ1, 0 ≤ τ2(s) ≤ τ2, τ̇1(s) ≤ μ1, τ̇2(s) ≤ μ2,

where τ1, τ2, μ1, μ2 are constants, and we denote

τ(s) = τ1(s) + τ2(s), τ = τ1 + τ2, μ = μ1 + μ2.

(H2). There exists a diagonal matrix L = diag{l1, l2, · · · , ln} such that

|fi(γ1) − fi(γ2)| ≤ li|γ1 − γ2|, i = 1, 2, · · · , n

for all γ1, γ2 ∈ C, where li > 0.
The initial conditions of model (1) are zi(u) = φi(u), u ∈ [−τ, 0], where φi is

continuous and bounded on [−τ, 0], i = 1, 2, · · · , n.
To simplify the model, suppose that z̃ is an equilibrium point of system (1),

using the transform y(s) = z(s) − z̃, (1) is converted to the following system

ẏ(s) = −Cy(s) + Ag(y(s)) + Bg(y(s − τ1(s) − τ2(s))), (2)

where g(y(s)) = f(y(s) + z̃) − f(z̃).

3 Main Result

Theorem 1. Under the assumptions of (H1) and (H2), system (2) is glob-
ally asymptotically stable given the seven positive-definite Hermite matrices
Pi (i = 1, 2, · · · , 7), two real-valued positive diagonal matrices R and S, four
complex-valued matrices Qi(i = 1, 2, 3, 4) such that the following complex-valued
LMI holds:

Π = (Πij)11×11 < 0, (3)

where Π11 = −P1C−CP1+P2+P3+P4+P5+C(τ1P6+τ2P7)C+Q2+Q∗
2+KRK,

Π12 = −Q2, Π16 = P1A − C(τ1P6 + τ2P7)A, Π17 = P1B − C(τ1P6 + τ2P7)B,
Π18 = Q2, Π22 = −(1 − μ1)P2 + Q1 + Q∗

1, Π23 = −Q1, Π29 = Q1, Π33 =
−P3 +Q4 +Q∗

4, Π34 = −Q4, Π3,10 = Q4, Π44 = −(1−μ)P4 +Q3 +Q∗
3 +KSK,

Π45 = −Q3, Π4,11 = Q3, Π55 = −P5, Π66 = A∗(τ1P6 + τ2P7)A − R, Π67 =
A∗(τ1P6 + τ2P7)B, Π77 = B∗(τ1P6 + τ2P7)B − S. Π88 = − 1

τ1
P6, Π99 = − 1

τ1
P6,

Π10,10 = − 1
τ2

P7, Π11,11 = − 1
τ P7, others are zero.

Proof. The Lyapunov-Krasovskii functional candidate for model (2) is
constructed as follows

V (s) = V1(s) + V2(s) + V3(s) + V4(s), (4)

Stability of Complex-Valued Neural Networks 567

where

V1(s) = y∗(s)P1y(s), (5)

V2(s) =
∫ s

s−τ1(s)

y∗(θ)P2y(θ)dθ +
∫ s

s−τ1

y∗(θ)P3y(θ)dθ, (6)

V3(s) =
∫ s

s−τ1(s)−τ2(s)

y∗(θ)P4y(θ)dθ +
∫ s

s−τ1−τ2

y∗(θ)P5y(θ)dθ. (7)

V4(s) =
∫ 0

−τ1

∫ s

s+ξ

ẏ∗(θ)P6ẏ(θ)dθdξ +
∫ τ1

−τ1−τ2

∫ s

s+ξ

ẏ∗(θ)P7ẏ(θ)dθdξ. (8)

From assumption (H1), calculating the time derivative of V1(s), V2(s), V3(s)
and V4(s), we get that

V̇1(s) = y∗(s)P1ẏ(s) + ẏ∗(s)P1y(s)
= −y∗(s)(P1C + CP1)y(s) + y∗(s)P1Ag(y(s)) + g∗(y(s))A∗P1y(s)

+y∗(s)P1Bg(y(s − τ(s))) + g∗(y(s − τ(s)))B∗P1y(s), (9)

V̇2(s) ≤ y∗(s)(P2 + P3)y(s) − (1 − μ1)y∗(s − τ1(s))P2y(s − τ1(s))
−y∗(s − τ1)P3y(s − τ1), (10)

V̇3(s) ≤ y∗(s)(P4 + P5)y(s) − (1 − μ)y∗(s − τ(s))P4y(s − τ(s))
−y∗(s − τ)P5y(s − τ), (11)

V̇4(s) = ẏ∗(s)(τ1P6 + τ2P7)ẏ(s) −
∫ s

s−τ1

ẏ∗(θ)P6ẏ(θ)dθ

−
∫ s−τ1

s−τ

ẏ∗(θ)P7ẏ(θ)dθ

= y∗(s)C(τ1P6 + τ2P7)Cy(s)
−y∗(s)C(τ1P6 + τ2P7)Ag(y(s)) − g∗(y(s))A∗(τ1P6 + τ2P7)Cy(s)
−y∗(s)C(τ1P6 + τ2P7)Bg(y(s − τ(s)))
−g∗((s − τ(s)))B∗(τ1P6 + τ2P7)Cy(s)
+g∗(y(s))A∗(τ1P6 + τ2P7)Ag(y(s))
+g∗(y(s))A∗(τ1P6 + τ2P7)Bg(y(s − τ(s)))
+g∗(y(s − τ(s)))B∗(τ1P6 + τ2P7)Ag(y(s))
+g∗(y(s − τ(s)))B∗(τ1P6 + τ2P7)Bg(y(s − τ(s)))

−
∫ s−τ1(s)

s−τ1

ẏ∗(θ)P6ẏ(θ)dθ −
∫ s

s−τ1(s)

ẏ∗(θ)P6ẏ(θ)dθ

−
∫ s−τ(s)

s−τ

ẏ∗(θ)P7ẏ(θ)dθ −
∫ s−τ1

s−τ(s)

ẏ∗(θ)P7ẏ(θ)dθ. (12)

568 Z. Zhao et al.

From assumption (H2), we can get

0 ≤ y∗(s)LRLy(s) − g∗(y(s))Rg(y(s)), (13)

0 ≤ y∗(s − τ(s))LSLy(s − τ(s)) − g∗(y(s − τ(s)))Sg(y(s − τ(s))). (14)

By Newton-Leibniz formula, we have

0 = y∗(s − τ1(s))Q1

(
y(s − τ1(s)) − y(s − τ1) −

∫ s−τ1(s)

s−τ1

ẏ(θ)dθ
)

+
(
y(s − τ1(s)) − y(s − τ1) −

∫ s−τ1(s)

s−τ1

ẏ(θ)dθ
)∗

Q∗
1y(s − τ1(s)), (15)

0 = y∗(s)Q2

(
y(s) − y(s − τ1(s)) −

∫ s

s−τ1(s)

ẏ(θ)dθ
)

+
(
y(s) − y(s − τ1(s)) −

∫ s

s−τ1(s)

ẏ(θ)dθ
)∗

Q∗
2y(s), (16)

0 =
(
y(s − τ(s)) − y(s − τ) −

∫ s−τ(s)

s−τ

ẏ(θ)dθ
)∗

Q∗
3y(s − τ(s))

+y∗(s − τ(s))Q3

(
y(s − τ(s)) − y(s − τ) −

∫ s−τ(s)

s−τ

ẏ(θ)dθ
)
, (17)

0 =
(
(s − τ1) − y(s − τ(s)) −

∫ s−τ1

s−τ(s)

ẏ(θ)dθ
)
∗Q∗

4y(s − τ1)

+y∗(s − τ1)Q4

(
(s − τ1) − y(s − τ(s)) −

∫ s−τ1

s−τ(s)

ẏ(θ)dθ
)
. (18)

By Eqs. (12), (15), (16), (17), (18) and inequality (13), (14), we can get

V̇ (t) ≤ y∗(s)
(

− P1C − CP1 + P2 + P3 + P4 + P5 + C(τ1P6 + τ2P7)C

+Q2 + Q∗
2 + LRL

)
y(s) − y∗(s)Q2y(s − τ1(s)) − y∗(s − τ1(s))Q∗

2y(s)

−y∗(s)Q2

∫ s

s−τ1(s)

ẏ(θ)dθ −
(∫ s

s−τ1(s)

ẏ(θ)dθ
)∗

Q∗
2y(s)

+y∗(s)
(
P1A − C(τ1P6 + τ2P7)A

)
g(y(s))

+g∗(y(s))
(
A∗P1 − A∗(τ1P6 + τ2P7)C

)
y(s)

+y∗(s)
(
P1B − C(τ1P6 + τ2P7)B

)
g(y(s − τ(s)))

Stability of Complex-Valued Neural Networks 569

+g∗(y(s − τ(s)))
(
B∗P1 − B∗(τ1P6 + τ2P7)C

)
y(s)

+y∗(s − τ1(s))
(
Q1 − (1 − μ1)P2 + Q∗

1

)
y(s − τ1(s))

−y∗(s − τ1(s))Q1y(s − τ1) − y∗(s − τ1)Q∗
1y(s − τ1(s))

−y∗(s − τ1(s))Q1

∫ s−τ1(s)

s−τ1

ẏ(θ)dθ

−
(∫ s−τ1(s)

s−τ1

ẏ(θ)dθ
)∗

Q∗
1y(s − τ1(s))

+y∗(s − τ1)
(
Q4 − P3 + Q∗

4

)
y(s − τ1)

−y∗(s − τ1)Q4y(s − τ(s)) − y∗(s − τ(s))Q∗
4y(s − τ1)

−y∗(s − τ1)Q4

∫ s−τ1

s−τ(s)

ẏ(θ)dθ −
(∫ s−τ1

s−τ(s)

ẏ(θ)dθ
)∗

Q∗
4y(s − τ1)

+y∗(s − τ(s))
(
Q3 − (1 − μ)P4 + Q∗

3 + LSL
)
y(s − τ(s))

−y∗(s − τ)Q∗
3y(s − τ(s)) − y∗(s − τ(s))Q3y(s − τ)

−
(∫ s−τ(s)

s−τ

ẏ(θ)dθ
)∗

Q∗
3y(s − τ(s)) − y∗(s − τ(s))Q3

∫ s−τ(s)

s−τ

ẏ(θ)dθ

−y∗(s − τ)P5y(s − τ)

+g∗(y(s))
(
A∗(τ1P6 + τ2P7)A − R

)
g(y(s))

+g∗(y(s))A∗(τ1P6 + τ2P7)Bg(y(s − τ(s)))
+g∗(y(s − τ(s)))B∗(τ1P6 + τ2P7)Ag(y(s))

+g∗(y(s − τ(s)))
(
B∗(τ1P6 + τ2P7)B − S

)
)g(y(s − τ(s)))

−
∫ s

s−τ1(s)

ẏ∗(θ)P6ẏ(θ)dθ −
∫ s−τ1(s)

s−τ1

ẏ∗(θ)P6ẏ(θ)dθ

−
∫ s−τ1

s−τ(s)

ẏ∗(θ)P7ẏ(θ)dθ −
∫ s−τ(s)

s−τ

ẏ∗(θ)P7ẏ(θ)dθ

= η∗(s)Π̃η(s) + τ1(s)y∗(s)Q2P
−1
6 Q∗

2y(s)
+(τ1 − τ1(s))y∗(s − τ1(s))Q1P

−1
6 Q∗

1y(s − τ1(s))
+(τ − τ(s))y∗(s − τ(s))Q3P

−1
7 Q∗

3y(s − τ(s))
+(τ(s) − τ1)y∗(s − τ1)Q4P

−1
7 Q∗

4y(s − τ1)

−
∫ s

s−τ1(s)

[y∗(s)Q2 + ẏ∗(θ)P6]P−1
6 [Q∗

2y(s) + P6ẏ(θ)]dθ

−
∫ s−τ1(s)

s−τ1

[y∗(s − τ1(s))Q1 + ẏ∗(θ)P6]P−1
6 [Q∗

1y(s − τ1(s)) + P6ẏ(θ)]dθ

−
∫ s−τ(s)

s−τ

[y∗(s − τ(s))Q3 + ẏ∗(θ)P7]P−1
7 [Q∗

3y(s − τ(s)) + P7ẏ(θ)]dθ

570 Z. Zhao et al.

−
∫ s−τ1

s−τ(s)

[y∗(s − τ1)Q4 + ẏ∗(θ)P7]P−1
7 [Q∗

4y(s − τ1) + P7ẏ(θ)]dθ

≤ η∗(s)Π̃η(s) + τ1y
∗(s)Q2P

−1
6 Q∗

2y(s)
+τ1y

∗(s − τ1(s))Q1P
−1
6 Q∗

1y(s − τ1(s))
+τy∗(s − τ(s))Q3P

−1
7 Q∗

3y(s − τ(s))
+τ2y

∗(s − τ1)Q4P
−1
7 Q∗

4y(s − τ1)
= η∗(s)Ωη(s), (19)

where

η(s)=(y∗(s), y∗(s−τ1(s)), y∗(s−τ1), y∗(s−τ(s)), y∗(s−τ), g(y(s)), g(y(s−τ(s)))∗,

Π̃ = (Πij)7×7, Πji = Π∗
ij , Ω = (Ωij)7×7, Ωji = Ω∗

ij , Π11 = −P1C −CP1 +P2 +
P3 + P4 + P5 + C(τ1P6 + τ2P7)C + Q2 + Q∗

2 + LRL, Π12 = −Q2, Π16 = P1A −
C(τ1P6 +τ2P7)A, Π17 = P1B −C(τ1P6 +τ2P7)B, Π22 = −(1−μ1)P2 +Q1 +Q∗

1,
Π23 = −Q1, Π33 = −P3 + Q4 + Q∗

4, Π34 = −Q4, Π44 = −(1 − μ)P4 + Q3 +
Q∗

3 + LSL, Π45 = −Q3, Π55 = −P5, Π66 = A∗(τ1P6 + τ2P7)A − R, Π67 =
A∗(τ1P6 + τ2P7)B, Π77 = B∗(τ1P6 + τ2P7)B − S. Ω11 = Π11 + τ1Q2P

−1
6 Q∗

2,
Ω22 = Π22 + τ1Q1P

−1
6 Q∗

1, Ω33 = Π33 + τ2Q4P
−1
7 Q∗

4, Ω44 = Π44 + τQ3P
−1
7 Q∗

3,
and the rest of Πij and Ωij are zero.

By Schur complement, we know that Π < 0 in (3) be equivalent to Ω < 0,
which means the system (2) is globally asymptotically stable. The proof is ended.

4 Conclusions

In this article, the stability for the complex-valued NNs model having two
additive time-varying delay components has been studied. A delay-dependent
stability criterion has been obtained by making use of the Lyapunov-Krasovskii
functional and free weighting matrix method, and using matrix in-equality
technique. The obtained result in this paper is to generalize some well-known
research.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China under Grants 61473332, 11402214, and 61673169 and the Program of
Chongqing Innovation Team Project in University under Grant CXTDX201601022.

References

1. Chen, T.: Global exponential stability of delayed Hopfield neural networks. Neural
Netw. 14, 977–980 (2001)

2. Arik, S., Orman, Z.: Global stability analysis of Cohen-Grossberg neural networks
with time varying delays. Phys. Lett. A 341, 410–421 (2005)

3. Song, Q., Cao, J.: Impulsive effects on stability of fuzzy Cohen-Grossberg neural
networks with time-varying delays. IEEE Trans. Syst. Man Cybern. 37, 733–741
(2007)

Stability of Complex-Valued Neural Networks 571

4. Kwon, O.M., Park, J.H.: New delay-dependent robust stability criterion for uncer-
tain neural networks with time-varying delays. Appl. Math. Comput. 205, 417–427
(2008)

5. Weera, W., Niamsup, P.: Novel delay-dependent exponential stability criteria for
neutral-type neural networks with non-differentiable time-varying discrete and neu-
tral delays. Neurocomputing 173, 886–898 (2016)

6. Zhao, Y., Gao, H., Mou, S.: Asymptotic stability analysis of neural networks with
successive time delay components. Neurocomputing 71, 2848–2856 (2008)

7. Shao, H., Han, Q.: New delay-dependent stability criteria for neural networks
with two additive time-varying delay components. IEEE Trans. Neural Netw. 22,
812–818 (2011)

8. Xiao, N., Jia, Y.: New approaches on stability criteria for neural networks with two
additive time-varying delay components. Neurocomputing 118, 150–156 (2013)

9. Liu, Y., Lee, S.M., Lee, H.G.: Robust delay-depent stability criteria for uncertain
neural networks with two additive time-varying delay components. Neurocomput-
ing 151, 770–775 (2015)

10. Hirose, A.: Dynamics of fully complex-valued neural networks. Electron. Lett. 28,
1492–1494 (1992)

11. Lee, D.: Relaxation of the stability condition of the complex-valued neural net-
works. IEEE Trans. Neural Netw. 12, 1260–1262 (2001)

12. Hu, J., Wang, J.: Global stability of complex-valued recurrent neural networks with
time-delays. IEEE Trans. Neural Netw. Learn. Syst. 23, 853–865 (2012)

13. Zhou, B., Song, Q.: Boundedness and complete stability of complex-valued neural
networks with time delay. IEEE Trans. Neural Netw. Learn. Syst. 24, 1227–1238
(2013)

14. Chen, X., Song, Q.: Global stability of complex-valued neural networks with both
leakage time delay and discrete time delay on time scales. Neurocomputing 121,
254–264 (2013)

15. Zhang, Z., Lin, C., Chen, B.: Global stability criterion for delayed complex-valued
recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 25, 1704–1708
(2014)

16. Liu, X., Chen, T.: Global exponential stability for complex-valued recurrent neural
networks with asynchronous time delays. IEEE Trans. Neural Netw. Learn. Syst.
27, 593–606 (2016)

17. Bohner, M., Sree Hari Rao, V., Sanyal, S.: Global stability of complex-valued neural
networks on time scales. Differ. Equ. Dyn. Syst. 19, 3–11 (2011)

18. Fang, T., Sun, J.: Further investigate the stability of complex-valued recurrent
neural networks with time-delays. IEEE Trans. Neural Netw. Learn. Syst. 25,
1709–1713 (2014)

19. Song, Q., Zhao, Z., Liu, Y.: Impulsive effects on stability of discrete-time complex-
valued neural networks with both discrete and distributed time-varying delays.
Neurocomputing 168, 1044–1050 (2015)

20. Song, Q., Yan, H., Zhao, Z., Liu, Y.: Global exponential stability of complex-valued
neural networks with both time-varying delays and impulsive effects. Neural Netw.
79, 108–116 (2016)

Alpine Plants Recognition with Deep
Convolutional Neural Network

Tomoaki Negishi(B) and Motonobu Hattori

Interdisciplinary Graduate School of Medicine, Engineering and Agriculture,
University of Yamanashi, Kofu, Yamanashi, Japan

{g16tk010,m-hattori}@yamanashi.ac.jp

Abstract. In this study, the ultimate goal is to build a system which
identifies species of alpine plants from pictures. In this paper, in order
to build such a system, its fundamental recognition part is constructed
using a Deep Convolutional Neural Network (DCNN). A lot of recent
studies reveal that DCNNs show excellent performance for recognition
tasks by acquisition of feature representations from raw data. However,
it is necessary to prepare sufficient number of data for obtaining good
feature representations. Especially for alpine plants, this is rather dif-
ficult because of their habitat. In this paper, we add images of plants
other than alpine ones, and examine how such supplementary data have
influence on the recognition accuracy for the target domain, i.e., alpine
plants. Experimental results show the effectiveness of using supplemen-
tary images for alpine plants recognition.

Keywords: Deep Convolutional Neural Network · Alpine plants · Image
recognition

1 Introduction

Alpine plants are plants that grow in the alpine climate. The total number
of alpine plants species is about 440 in Japan where subspecies, varieties, and
breeds are excluded [1,2]. In general, a species of an alpine plant is identified by
its color of the flower, shape of the leaf, height and so on. However, it is very
tired of taking a picture book to high mountains and looking into it page by
page in order to identify an alpine plant among a large number of species.

The goal of this study is to develop an application software in hand-held
terminal such as a smart phone, which can identify the type of alpine plants
from pictures taken by the hand-held itself. Here, for this purpose, a recognition
system for images of alpine plants is constructed using feature representations
extracted from a Deep Convolutional Neural Network (DCNN).

In deep learning of a multilayer Neural Network (NN), it has been generally
recognized that it is necessary to use large-scale training data to obtain good
generalization ability [3,4].

However, it is not very likely to collect enough training data for alpine plants
recognition due to an abundance of species and their habitat. On the other hand,
c© Springer International Publishing AG 2017
F. Cong et al. (Eds.): ISNN 2017, Part I, LNCS 10261, pp. 572–577, 2017.
DOI: 10.1007/978-3-319-59072-1 67

Alpine Plants Recognition with DCNN 573

if plants are not limited to alpine plants, there are a large number of images
available in many databases. Therefore, in this paper, we try to supplement
the lack of training data with images of plants other than alpine plants, and
examine how such supplementary data improves recognition accuracy for the
target domain.

The rest of this paper is organized as follows. In Sect. 2, the experimen-
tal design is explained. In Sect. 3, we will show experimental results. Finally,
conclusions are given in Sect. 4.

2 Experimental Design

2.1 Deep Convolutional Neural Network

In this study, the deep learning framework, Caffe was used [5]. The structure of
a DCNN is shown in Fig. 1 and Table 1. It consists of 10 hidden layers and 3
fully-connected (fc) layers. In DCNNs, the max pooling, Rectified Linear Units
(ReLUs), and Local Response Normalization (LRN) were employed [3]. LRN
divides each input value xi by

⎛
⎝k + α

min(N−1,i+n/2)∑
j=max(0,i−n/2)

x2
j

⎞
⎠

β

(1)

where N is the total number of kernels in the layer, and k, n, α, and β are
hyper-parameters; we used k = 1, n = 5, α = 10−4, and β = 0.75. Each of the
first and second layers in the fully-connected layers have 4,096 units. The output
of a DCNN was calculated by the following softmax function,

f(un) =
exp(un)∑C
i exp(ui)

(2)

where ui denotes the internal state of the ith unit in the output layer, and C
denotes the number of classes to recognize.

Fig. 1. Structure of a DCNN

574 T. Neigishi and M. Hattori

Table 1. Details of the structure of the DCNN used in the experiments

Layer Patch Map size

Data - 227 × 227 × 3

Convolution 1 11 × 11 55 × 55 × 96

Pooling 1 3 × 3 27 × 27 × 96

Normalization 1 5 × 5 27 × 27 × 96

Convolution 2 5 × 5 27 × 27 × 256

Pooling 2 3 × 3 13 × 13 × 256

Normalization 2 5 × 5 13 × 13 × 256

Convolution 3 3 × 3 13 × 13 × 384

Convolution 4 3 × 3 13 × 13 × 384

Convolution 5 3 × 3 13 × 13 × 256

Pooling 5 3 × 3 6 × 6 × 256

fc 6 - 1 × 1 × 4096

fc 7 - 1 × 1 × 4096

fc 8 - 1 × 1 × 1000

We used the DCNN which had learned roughly 1.2 million natural images in
advance. The data set was provided by ImageNet Large Scale Visual Recognition
Challenge 2012 (ILSVRC2012), and consisted of 1,000 classes. We have fine-
tuned this prelearned DCNN by alpine plants images and other plants images.

In the previous research [6], Suzuki et al. have shown the effectiveness of
feature representations extracted from the DCNN which has prelearned a large
number of natural images and then has been fine-tuned by a small number of
target images. Therefore, we can expect that using the prelearned DCNN for the
feature extraction of alpine plants may be also effective.

2.2 Plants Data Set

As alpine plants, we chose 71 species out of 72 recorded in the alpine plant picture
book [2]. Although this book covers 72 typical alpine plants which inhabit the
alpine belt in Japan, we have omitted one species called Senjo-azami because it
was quite difficult to collect accurate images for this plant. We have collected
alpine plants images for 71 species from the Internet. The number of images for
each class was varied from 20 to 36, and the total number of images was 2,104.

As supplementary plants data set, we have collected images of 55 species
which belong to the same genus as 71 alpine plants. The images were collected
from ImageNet, and the total number of data was 25,255.

All plants images were resized to a fixed resolution of 256 × 256.

2.3 Fine-Tuning with Alpine Plants Data Set and Supplementary
Data Set

In order to examine how supplementary plants data set effects the recognition
accuracy, we have compared the following four methods to fine-tune DCNNs,

Alpine Plants Recognition with DCNN 575

(a) Fine-tuned with only alpine plants images.
(b) Fine-tuned with only supplementary plants images.
(c) Fine-tuned with supplementary plants images first, and followed by fine-

tuning with the alpine plants images.
(d) Fine-tuned by the alpine plants and supplementary images at the same time.

In addition, we examined the performance of DCNNs without any fine-tuning
as the baseline.

After fine-tuning, we used DCNNs as a feature extractor. That is, 4,096
dimensional output of the last hidden layer of the DCNN was used as feature
representations for input images. These feature vectors were learned by support
vector machines (SVMs) to classify plant images.

As for the methods (a) and (c), since the fully-connected layers in DCNNs
were also able to be used as classifiers, we examined their performance, too.

2.4 Details of Learning

We trained each DCNN using stochastic gradient descent with a batch size of 256
examples, momentum of 0.9, and weight decay of 0.0005 [3]. The learning rate
was initialized at 0.01 in prelearning and 0.001 in fine-tuning. In prelearning, the
learning rate was divided by 10 every 100,000 iterations. Dropout was applied
on the fully connected layer with ratio 0.5 [7].

To serve as data augmentation, we extracted random 227 × 227 patches from
the 256 × 256 images at each input and trained each DCNN with these extracted
patches.

3 Experimental Results

Table 2 shows the result when SVMs were used as classifiers. We used the
Gaussian kernel in SVMs and set the parameters: the soft margin parame-
ter, C = 100 [8] and the kernel parameter, γ = 0.001. The parameter pair
was selected by a grid search on C ∈ {1.0 × 101, 1.0 × 102, 1.0 × 103} and
γ ∈ {1.0 × 10−2, · · · , 1.0 × 10−6}.

As shown in the table, the fine-tuning even only with alpine plants images,
(a) improves the recognition accuracy in comparison with the result without
it. Interestingly, the fine-tuning only with supplementary plants images other
than alpine plants, (b) also improves the recognition accuracy. Collecting sup-
plementary images of 55 species belonging to the same genus as 71 alpine plants
may result in this improvement. Moreover, we can see that the fine-tuning with
supplementary plants images first and followed by that with domain images,
(c) improves recognition rate further. Statistically, the difference of the recogni-
tion rates between (a) and (c) was at significance level of 5%. This result shows
that the feature representations of plants which could not be obtained by alpine
plants images were extracted by using supplementary plants images. The differ-
ence of recognition rates between (b) and (c) was also at significance level of

576 T. Neigishi and M. Hattori

5%. On the other hand, the performance for the method (d) was as same as the
one without any fine-tuning. In (d), since both alpine plants images and other
plants ones were applied simultaneously, the resultant feature representations for
alpine plants images might be blurred due to the large number of supplementary
images.

Table 2. Recognition rates based on 10-fold cross validation (Classifier: SVMs)

Fine-tuning method Accuracy (%) Std. dev

Without fine-tuning 73.56 4.87

(a) Alpine plants 78.37 4.55

(b) Supplementary plants 78.54 4.25

(c) Supplementary plants → alpine plants 80.21 5.13

(d) Alpine plants + supplementary plants 73.02 3.70

Table 3 shows recognition results when we used the fully-connected layers in
DCNNs as classifiers. In comparison with the results using SVMs in Table 2, the
recognition rates are much improved. Since the hidden layers in a DCNN learn
training data in cooperation with the fully-connected layers, feature representa-
tions extracted by the hidden layers should come to suit to the fully-connected
layers through supervised learning. This may contribute to the better perfor-
mance than SVMs.

Moreover, in Table 3, the recognition rate by (c) was better than that by
(a) (p < 0.05). Therefore, we can say that the supplementary images are also
effective in this case.

Table 3. Recognition rates based on 10-fold cross validation (Classifiers: fully-
connected layers in DCNNs)

Fine-tuning method Accuracy (%) Std. dev

(a) Alpine plants 83.62 4.66

(c) Supplementary plants → alpine plants 85.73 4.06

4 Conclusions

In this paper, we have constructed a recognition system for Japanese alpine
plants by using features extracted from a Deep Convolutional Neural Network
(DCNN) which prelearned a large number of natural images in advance. Since it
is very difficult to prepare enough number of alpine plants images for fine-tuning

Alpine Plants Recognition with DCNN 577

in DCNNs, we collected images of plants other than alpine ones which belong to
the same genus as the alpine plants, and used them for fine-tuning to supplement
the lack of the number of training data.

Experimental results show that the fine-tuning with supplementary plants
images first followed by that with the alpine plants images significantly improves
the recognition accuracy. That is, we have shown the effectiveness of using sup-
plementary plants images for alpine plants recognition.

In the future research, we will expand species of alpine plants to recognize,
and consider employing other data augmentation techniques for better perfor-
mance. Moreover, we will implement our recognition system in a hand-held ter-
minal.

References

1. Shimizu, T., Kaota, Y., Kihara, H.: Flowers bloom in the alpine (in Japanese), p.
512, Yama to keikokusya (2014)

2. Arai, K.: Basics of alpine plants (in Japanese), p. 125, Eisyuppan (2012)
3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-

volutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)
4. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.:

DeCAF: a deep convolutional activation feature for generic visual recognition, arXiv
preprint arXiv:1310.1531v1 (2013)

5. Yangqing, J., Evan, S.: Caffe | Fine-tuning for style recognition, Caffe | Deep
Learning Framework. 8 December 2015. http://caffe.berkeleyvision.org/gathered/
examples/finetune flickr style.html

6. Suzuki, S., Shouno, H., Kido, S.: Feature analysis for diffuse lung disease with deep
convolutional neural network (in Japanese), IEICE Technical report, NC2014-114,
pp. 259–264 (2015)

7. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors, arXiv
preprint arXiv:1207.0580 (2012)

8. Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Trans.
Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

http://arxiv.org/abs/1310.1531v1
http://caffe.berkeleyvision.org/gathered/examples/finetune_flickr_style.html
http://caffe.berkeleyvision.org/gathered/examples/finetune_flickr_style.html
http://arxiv.org/abs/1207.0580

Author Index

Abdurahman, Abdujelil I-253
Ashena, Narges I-261
Ayhan, Bulent I-223, I-269, II-197

Ba, Wei II-380
Babul, Arif II-474
Bai, Ke I-277
Bai, Rui II-11
Bell, James F. II-197
Berezovskaya, Gelena A. I-379
Brown, Kyle I-536
Bureerat, Sujin I-143

Cai, Xufen I-3
Calhoun, Vince D. II-559
Cao, Jinde I-493
Chang, Yiping II-3
Chavaltada, Chanawee I-10
Chen, He II-533
Chen, Hong-Yi II-465
Chen, Hua I-547
Chen, Jiejie I-18
Chen, Lin I-170
Chen, Linlin I-285
Chen, Qing I-395
Chen, Rui II-239
Chen, Shanshan II-516
Chen, Shijun I-354
Chen, Sijie II-169
Chen, Xi II-222
Chen, Xuyang I-188
Chen, Yangqing II-239
Chen, Yaran I-28
Chen, Yuehui I-215
Cheng, Long II-178
Chong, Yong Shean II-189
Cong, Fengyu II-507, II-559
Cong, Hongchao II-75
Cui, Jia-le I-44

Dai, Xiaolin I-329
Danciu, Daniela I-51
Dao, Minh II-197

Daultani, Vijay I-293
de la Rosa, Erick I-304
Dimopoulos, Nikitas II-474
Ding, Lei I-120, I-521
Ding, Shuxue I-285, II-266, II-388
Dong, Guowei II-11
Dong, Hairong II-20
Dong, Mianxiong I-104
Doran, Derek I-536
Du, Hongyue I-457
Du, Sidan II-541
Duan, Shukai II-326

Ebuchi, Fumito I-60
Er, Meng Joo II-83, II-137

Fan, Jianchao II-207
Fang, Cui-juan I-71
Fuh, Chiou-Shann II-465

Gao, Hang II-214, II-231, II-248
Gao, Haoyuan II-28
Gao, Junbin I-313
Gao, Shigen II-20
Gao, Wei I-321
Gao, Yan I-95
Gaussier, Philippe I-421
Gentet, Enguerrand I-483
Gong, Dawei I-329
Gong, Weiguo II-222, II-239
Gong, Xiao-Feng II-559
Gu, Shenshen I-337
Guo, Ping I-36, I-242
Guo, Yi I-313
Guo, Zhishan I-197

Han, Min II-101, II-161
Hao, Pengyi I-354
Hao, Ying-Guang II-559
Hardoon, David R. I-10
Hattori, Motonobu I-572
He, Jie II-154
He, Zhong I-170

Hirota, Atsushi I-81
Hoshino, Osamu II-483
Hou, Jian I-87
Hou, Zeng-Guang II-498
Hsieh, Chi-Wei I-363
Hu, Changchang I-234
Hu, Cheng I-253
Hu, Jian I-242
Hu, Xiaolin I-277
Hu, Yongjun II-533
Huang, Bonan I-329
Huang, Jian-Bin II-36
Huang, Junchu I-180, I-346
Huang, Liqun I-95
Huang, Minqiang II-447
Huang, Tingwen II-178
Huang, Xiaotao I-95
Huang, Xing Hao II-457
Huang, Yu I-180, I-346
Huang, Yujiao I-354
Huo, Guanying II-427
Hwang, Kao-Shing I-363

Inoue, Katsumi I-483
Ishiyama, Asahi II-483
Ishizaka, Kazuhisa I-293

Jaroenapibal, Papot I-143
Jia, Li-Hao II-583
Jiang, Chunhui I-386
Jiang, Haijun I-253
Jiang, Jingqing I-321
Jiang, Ming-yang I-44
Jiang, Ping I-18
Jiang, Wei-Cheng I-363
Jin, Jing II-447
Jin, Jingna II-550

Kanamaru, Takashi I-371
Kang, Ling I-95
Kao, Hsien-Pei II-465
Keshavarz-Hedayati, Babak II-474
Kim, Kyoung-Sook I-104
Kitamura, Takuya I-60
Ko, Chun-Hsu II-36
Kobayashi, Taira II-483
Kumrai, Teerawat I-104
Kwan, Chiman I-223, I-269, II-197, II-416
Kwong, Sam II-257

Lazovskaya, Tatiana V. I-379
Le, Xinyi II-169
Lee, Junghoon I-113
Leung, Chi-Sing II-257
Li, Bing II-66
Li, Bo II-214, II-231, II-248
Li, Chunping II-274
Li, Da-Peng II-44
Li, Dong-Juan II-44
Li, Guiying I-386
Li, Hong II-507
Li, Huanjie II-507
Li, Jinming II-222
Li, Li I-36
Li, Peng II-507
Li, Qi II-380
Li, Qingwu II-427
Li, Qun II-567
Li, Tie-Shan II-101
Li, Weihong II-222, II-239
Li, Xiaoyan I-3
Li, Xiumin I-188, I-395
Li, Yan II-282
Li, Yang II-541
Li, Yi II-583
Li, Yongming II-11
Li, Yuangang II-405
Li, Yuetian II-154
Li, Yuhua I-95
Liang, Liyuan II-52
Liang, Steven I-223
Liang, Wenxin II-405
Liang, Yanjie I-36
Liao, Bolin I-120, I-521
Liao, Ding An II-457
Liao, Fangzhou I-277
Liao, Wudai II-3
Liao, Xiaofeng I-555
Lin, ChenHan II-299
Lin, I-Yu II-36
Lin, Jin-Ling I-363
Lin, Minlong I-386, II-353
Lin, Qiao II-60, II-148
Lin, Qiu-Hua II-336, II-559
Liu, Bin II-541
Liu, Cheng II-101
Liu, Derong II-148
Liu, Haihong II-345, II-439, II-516
Liu, Han II-214, II-231, II-248
Liu, Hong-Guang II-498

580 Author Index

Liu, Junlong I-386
Liu, Mingmin II-439, II-491
Liu, Qi II-498
Liu, Qingshan I-466
Liu, Shaozhuang I-36
Liu, Shike II-405
Liu, Yan-Jun II-44
Liu, Yunfeng I-404
Liu, Yunxia II-516
Liu, Zhipeng II-550
Long, Fei II-299
Long, Shujun II-66
Lu, Hu II-457
Lu, Huimin II-541
Lu, Jianquan I-493
Lu, Rongbo I-120, I-521
Lu, Yan-Feng II-583
Lu, Yi-nan I-44
Lui, Yik Lam II-257
Luo, Weilin II-75
Lv, Shuailin II-83, II-137

Ma, Chuan I-120
Ma, Cuihua I-36
Ma, Xiaohong I-285, II-266, II-388
Ma, Xiaoyu I-36
Ma, Yaping II-109
Mahini, Reza II-507
Mai, Jieyin I-404
Mayer, Norbert Michael I-413
Meng, Duo II-11, II-44
Meng, Qingfang I-215, II-154, II-345,

II-439, II-491, II-516
Miao, Zhuangguo II-266
Mitra, Pabitra II-310
Muhammadhaji, Ahmadjan I-253

Nandi, Asoke K. II-507
Negishi, Tomoaki I-572

Ogawa, Hirotaka I-104
Ohno, Yoshiyuki I-293
Oka, Natsuki I-81
Ouyang, Zhen II-274
Oztop, Erhan I-261, II-362

Pan, Yongping II-118
Papadourakis, Vassilis I-261
Park, Gyung-Leen I-113

Pasupa, Kitsuchart I-10
Pei, Zhi-li I-44
Peng, Zhouhua I-127, II-93
Petrischev, Nikolay N. I-379
Pevný, Tomáš I-135
Pham, Tuan D. II-524
Philip Chen, C.L. II-101
Pholdee, Nantiwat I-143
Pitti, Alex I-421
Poon, Leonard K.M. I-153
Popa, Călin-Adrian I-429, I-439
Promrit, Nuttachot I-449
Pu, Xiaorong II-282

Qian, Guangwu II-290
Qiao, Guang I-457
Qiao, Hong II-583
Qin, Qi II-101
Qiu, Hang II-282
Qiu, Shuang I-44
Quoy, Mathias I-421

Radpukdee, Thana I-143
Raos, Vassilis I-261
Răsvan, Vladimir I-51
Rude, Nathan I-536

Sang, Zhaoyang I-547
Sarkar, Sudeshna II-310
Shang, Jian I-466
Shao, Feng-jing I-71
Shao, Peng I-215
Shen, Zhixi II-109
Shi, Lifeng II-299
Singh, Sonam II-310
Somol, Petr I-135
Song, Chuyi I-321
Song, Jinliang I-329
Song, Q. II-318
Song, Qiankun I-564
Song, Ruizhuo II-148
Song, Yongduan II-52, II-109
Song, Yu Qing II-457
Sossa, Humberto I-304
Sui, Yi I-71
Sun, Chen II-274
Sun, Fuming II-11
Sun, Junyong II-178
Sun, T. II-318

Author Index 581

Sun, Tairen II-118
Sun, Yinhui II-282
Sun, Yu II-353

Tan, Jinpei II-326
Tan, Manchun I-404
Tan, Mi II-52
Tang, Ke I-386, II-353
Tang, Yang I-475
Tang, Yongliang II-222
Tarkhov, Dmitriy A. I-379
Tay, Yong Haur II-189
Thompson, Lara I-206
Tian, Min II-336
Tiep, Nguyen Huy I-81
Tong, Shaocheng II-44
Tourret, Sophie I-483
Tung, Tzu-Chia II-465

Van Khanh, Le I-81

Waijanya, Sajjaporn I-449
Wang, Aihui II-3
Wang, Dan I-127, II-93
Wang, Dong I-215, II-345, II-491, II-516
Wang, Fei I-493
Wang, Fen I-95
Wang, Gang II-118
Wang, He II-128
Wang, Jian I-547
Wang, Jun I-127, II-93, II-207
Wang, Ning II-83, II-137
Wang, Peijun II-178
Wang, Qian II-533
Wang, Shuihua II-541
Wang, Xiaobiao I-161
Wang, Xiaoping I-170
Wang, Xiaowen I-337
Wang, Xiaoyu II-20
Wang, Xin II-550
Wang, Xingyu II-447
Wang, Yong II-83, II-137
Wang, Yubing II-20
Wang, Zhanshan II-28
Wang, Zhiyong I-313
Wei, Qinglai II-60, II-148
Wei, Yingda II-345, II-439
Wen, Guanghui II-178
Wen, Guo-Xing II-44

Wen, Shengjun II-3
Wilson, William H. I-502
Wong, Cheng-Shih II-465
Wong, Hiu Tung II-257
Wong, K.Y. Michael II-128
Wu, Si II-128
Wunsch, Donald I-197

Xi, Juntong II-169
Xia, Deling II-154
Xia, Youshen I-511
Xiao, Jie I-354
Xiao, Lin I-120, I-521
Xie, Ge II-353
Xie, Jinli I-529
Xie, Ning I-536
Xin, Xin I-36, I-242
Xing, Chun-xiao I-71
Xing, Shaomin I-36
Xiong, Jiang I-206, I-466
Xu, Bingyuan I-180, I-346
Xu, Desheng I-404
Xu, Yancai II-148
Xue, Fangzheng I-188, I-395

Yang, Guoling I-547
Yang, Min I-3
Yang, Ming II-541
Yang, Ting II-326
Yang, Yongliang I-197
Yang, Yongqing I-493
Yang, Zhao I-555
Yang, Zhuo II-567
Yao, Li II-575
Yapar, Oytun II-362
Ye, Long I-3
Yin, Jianchuan II-83, II-137
Yin, Shen I-87
Yin, Tao II-550
Yin, Yixin I-197
Ying, Hong I-206
You, Hanxu II-371
Young, Kuu-Young II-36
Yu, Haoyong II-118
Yu, Wen I-304

Zeng, Qinli I-521
Zeng, Yi I-457
Zeng, Zhigang I-18, I-170

582 Author Index

Zhang, Ai-Xuan II-583
Zhang, Bingjie I-547
Zhang, Ce II-559
Zhang, Chao-Ying II-559
Zhang, Chenggang I-321
Zhang, Hanhan II-447
Zhang, Hanyong II-491
Zhang, Honglue II-380
Zhang, Huaguang II-28
Zhang, Lei II-290
Zhang, Liangpeng I-386
Zhang, Meng II-161
Zhang, Nian I-206
Zhang, Peng II-388
Zhang, Qiang I-161, II-439, II-491
Zhang, Qianjun II-290
Zhang, Qin I-3
Zhang, Qiushi II-575
Zhang, Tao II-567
Zhang, Wei I-466
Zhang, Wen-Hao II-128
Zhang, Wenle II-396
Zhang, Xianchao II-405
Zhang, Xiaoping II-380
Zhang, Yishen I-215
Zhang, Yu II-447
Zhang, Yudong II-541

Zhang, Zhizhao I-95
Zhao, Bingxin II-239
Zhao, Bo II-60
Zhao, Dongbin I-28
Zhao, Dongping II-575
Zhao, Jianyu I-529
Zhao, Qinjun I-529
Zhao, Xiao-Guang II-498
Zhao, Xiaojie II-575
Zhao, Yaou I-215
Zhao, Yihan II-299
Zhao, Yuchen I-564
Zhao, Zhenjiang I-564
Zheng, Xuedong I-161
Zheng, Yu II-169
Zhong, Jing I-206
Zhou, Changjun I-161
Zhou, Hongjun I-395
Zhou, Jin II-345, II-416, II-439
Zhou, Tianyi II-507
Zhou, Wen-peng I-71
Zhou, Yan II-427
Zhou, Zhiheng I-180, I-346
Zhu, Hangtao II-326
Zhu, Jie II-371
Zhu, Rong I-3
Zulkarnay, Ildar U. I-379

Author Index 583

	Preface
	Organization
	Contents -- Part I
	Contents -- Part II
	Clustering, Classification, Modeling, and Forecasting
	Online Multi-threshold Learning with Imbalanced Data Stream
	1 Introduction
	2 Online Multi-threshold Learning
	2.1 Notations and Problem
	2.2 Online Binary Classification
	2.3 Online Multi-threshold Learning

	3 Experiments and Discussion
	3.1 The Datasets
	3.2 Experimental Design and Implementation
	3.3 Results

	4 Conclusion
	References

	A Comparative Study of Machine Learning Techniques for Automatic Product Categorisation
	1 Introduction
	2 Methodology
	2.1 Text Processing
	2.2 Feature Extraction
	2.3 Classification

	3 Experimental Framework
	3.1 Data Collection
	3.2 Data Preprocessing
	3.3 Experiment Setting

	4 Results and Discussions
	5 Conclusion
	References

	Bootstrap Based on Generalized Regression Neural Network for Landslide Displacement for Interval Prediction
	1 Introduction
	2 Methods and Materials
	2.1 Confidence Interval
	2.2 Interval Prediction
	2.3 Bootstrap
	2.4 GRNNS

	3 Bootstrap-GRNN
	3.1 Confidence Interval
	3.2 Cost Function

	4 Application of Landslide Prediction
	4.1 Data
	4.2 Experiment and Results

	5 Conclusion
	References

	Multi-task Learning with Cartesian Product-Based Multi-objective Combination for Dangerous Object Detection
	1 Introduction
	2 Multi-task Learning
	2.1 Linear Multi-task Combination
	2.2 Cartesian Product-Based Multi-task Combination

	3 CP-MTL SSD Method
	3.1 Model Architecture
	3.2 Cartesian Product-Based Combination Targets

	4 Experiment
	5 Conclusion
	References

	Collaborative Response Content Recommendation for Customer Service Agents
	1 Introduction
	2 Related Works
	3 Recommendation Framework
	3.1 Problem Definition
	3.2 Tensor Network Model
	3.3 Algorithm
	3.4 Complexity Analysis

	4 Experimental Analysis
	4.1 Dataset
	4.2 Evaluation Metric and Baselines
	4.3 Performance

	5 Conclusion
	References

	Text Classification Based on ReLU Activation Function of SAE Algorithm
	Abstract
	1 Introduction
	2 Related Work
	2.1 Auto-encoder Neural Network (AENN) [3]
	2.2 Stacked Auto-encoder Neural Network (SAENN)

	3 SAE Algorithm of ReLU Activation Function
	4 Experimental Study
	4.1 Experimental Parameters Analysis
	4.2 Results Analysis

	5 Conclusion
	References

	On Designing New Structures with Emergent Computing Properties
	1 Introduction
	2 Neural Networks Containing Feedback. Elementary Theory of Hyperstability
	3 Hyperstable Neurons
	4 Localization and Stability for the Equilibria of a Triplet Cell of Hopfield Neurons
	5 Conclusions
	References

	Fast Sparse Least Squares Support Vector Machines by Block Addition
	1 Introduction
	2 Sparse Least Squares Support Vector Machine in the Sorted Empirical Feature Space
	2.1 Least Squares Support Vector Machine
	2.2 Sparse Least Squares Support Vector Machine in the Reduced Empirical Feature Space
	2.3 Sorting Method for Kernel Matrix Based on the Objective Function Value

	3 Fast Selection for Basis Vectors of the Empirical Feature Space
	3.1 Fast Selection Using the Phase Angle
	3.2 Fast Sparse Least Squares Support Vector Machines by Block Addition

	4 Computer Experiment
	4.1 Benchmark Datasets
	4.2 Setting Hyper-Parameters
	4.3 Discussion

	5 Conclusion
	References

	Construction and Analysis of Meteorological Elements Correlation Network
	Abstract
	1 Introduction
	2 The Method of Constructing a Meteorological Correlation Network
	3 The Topological Properties of Meteorological Correlation Network
	3.1 Degree
	3.2 Strength
	3.3 Betweenness Centrality
	3.4 Clustering Coefficient

	4 The Empirical of Meteorological Correlation Network
	4.1 Correlation Analysis
	4.2 The Degree of Node
	4.3 The Distribution of Edge Weight
	4.4 Strength
	4.5 Betweeness Centrality
	4.6 The Impact of the Season

	5 Results and Discussion
	References

	Classifying Helmeted and Non-helmeted Motorcyclists
	1 Introduction
	2 Overall System Configuration
	3 Rider Classifier
	3.1 Network Design
	3.2 Training

	4 Results
	4.1 Classifier Performance
	4.2 Execution Speed

	5 Discussion
	5.1 Typical Errors
	5.2 Importance of Preventing False Positives

	6 Conclusion
	References

	Dominant Set Based Density Kernel and Clustering
	1 Introduction
	2 Density Peak Clustering
	2.1 The DP Algorithm
	2.2 The Problems

	3 Our Algorithm
	3.1 Dominant Set
	3.2 Non-parametric Density Kernel

	4 Experiments
	5 Conclusions
	References

	Web Content Extraction Using Clustering with Web Structure
	Abstract
	1 Introduction
	2 CECWS Algorithm
	2.1 Select Cluster Algorithm
	2.2 Web Page Structure Similarity Measurement Method
	2.3 Content Extraction

	3 Experimental Result
	3.1 Performance Metrics
	3.2 Result
	3.3 Discussion

	4 Conclusion
	Acknowledgements
	References

	Optimal KD-Partitioning for the Local Outlier Detection in Geo-Social Points
	1 Introduction
	2 Problem Statement
	3 Genetic Optimization Process
	4 Performance Simulation
	4.1 Simulation Configurations
	4.2 Simulation Results

	5 Conclusion
	References

	V2G Demand Prediction Based on Daily Pattern Clustering and Artificial Neural Networks
	1 Introduction
	2 Data Processing
	3 Data Fusion and Group Prediction
	4 Conclusions
	References

	An Arctan-Activated WASD Neural Network Approach to the Prediction of Dow Jones Industrial Average
	1 Introduction
	2 Arctan-Activated WASD Neural Network and Theoretical Analysis
	2.1 Arctan-Activated WASD Neural Network
	2.2 Weights Direct Determination Method
	2.3 Structure Determination Method

	3 Experimental Verification
	3.1 Training
	3.2 Prediction
	3.3 Comparison

	4 Conclusion
	References

	State Estimation for Autonomous Surface Vehicles Based on Echo State Networks
	1 Introduction
	2 Preliminaries and Problem Formulation
	2.1 Echo State Network
	2.2 Problem Formulation

	3 ESN-Based Observer Design and Analysis
	4 Conclusions
	References

	Using Neural Network Formalism to Solve Multiple-Instance Problems
	1 Motivation
	2 Prior Art on Multi-instance Problem
	3 Neural Network Formalism
	4 Experimental Evaluation
	5 Conclusion
	References

	Many-Objective Optimisation of Trusses Through Meta-Heuristics
	Abstract
	1 Introduction
	2 Many-Objective Optimisation of Truss Structure
	2.1 Planar 10-Bar Truss Structure
	2.2 Planar 37-Bar Truss Structure
	2.3 Spatial 72-Bar Truss Structure
	2.4 Fifty-Two Bar Dome Truss (52barTruss)
	2.5 One Hundred Twenty Bar Dome Truss (120barTruss)

	3 Numerical Experiment
	4 Results and Discussion
	5 Conclusions
	Acknowledgements
	References

	Clustering with Multidimensional Mixture Models: Analysis on World Development Indicators
	1 Introduction
	2 Model-Based Clustering
	3 Pouch Latent Tree Models
	4 Analysis on World Development Indicators
	4.1 Data Set
	4.2 Empirical Comparison
	4.3 Selection of Clustering Variables

	5 Conclusion
	References

	Logic Calculation Based on Two-Domain DNA Strand Displacement
	Abstract
	1 Introduction
	2 Methods and Materials
	2.1 Two-Domain DNA Strand Displacement
	2.2 AND Gate and OR Gate Based on Two-Domain

	3 Experiments
	4 Conclusions
	Acknowledgements
	References

	Several Logic Gates Extended from MAGIC-Memristor-Aided Logic
	1 Introduction
	2 Operation Principle of the Logic Gates Extended from MAGIC
	3 IMP Logic Gate and the Extension to XNOR Logic Gate
	4 XNOR Logic Gate Extended from IMP Logic Gate
	5 IMP Logic Gate Within a Crossbar Array
	6 Evaluation and Design Considerations for the IMP Operation Extended from MAGIC
	7 Additional Logic Gates Extended from MAGIC
	8 Conclusion
	References

	Static Hand Gesture Recognition Based on RGB-D Image and Arm Removal
	Abstract
	1 Introduction
	2 The Proposed Static Gesture Recognition Algorithm
	2.1 Image Acquisition and Hand Segmentation
	2.2 Arm Removal
	2.3 Feature Extraction and Recognition

	3 Experimental Results
	4 Conclusion
	Acknowledgements
	References

	Real-Time Classification Through a Spiking Deep Belief Network with Intrinsic Plasticity
	1 Introduction
	2 Materials and Methods
	2.1 Deep Belief Networks
	2.2 Neuron Model
	2.3 Intrinsic Plasticity

	3 Experimental Setup
	4 Results
	4.1 Recognition Mode
	4.2 Generation Mode

	5 Conclusion
	References

	Hamiltonian-Driven Adaptive Dynamic Programming Based on Extreme Learning Machine
	1 Introduction
	2 Problem Formulation
	3 Hamiltonian-Driven ADP
	3.1 Evaluation Step
	3.2 Comparison Step
	3.3 Improvement Step

	4 Hamiltonian ADP Structure
	5 Simulation
	6 Conclusion
	References

	An Enhanced K-Nearest Neighbor Classification Method Based on Maximal Coherence and Validity Ratings
	Abstract
	1 Introduction
	2 The Enhanced K-Nearest Neighbor Method
	3 Numerical Example
	4 Experimental Results
	5 Conclusions
	Acknowledgment
	References

	Credit Risk Assessment Based on Flexible Neural Tree Model
	Abstract
	1 Introduction
	2 Data Collection and Variable Definition
	3 Classification Method
	3.1 Flexible Neural Tree
	3.2 Prediction Assessment

	4 Discussion and Results
	5 Conclusion
	Acknowledgements
	References

	A Portable Prognostic System for Bearing Monitoring
	Abstract
	1 Introduction
	2 Bearing Prognostic System
	2.1 Portable Prognostic System
	2.2 Prognostic Software

	3 Demonstration Experiments
	4 Conclusions
	Acknowledgement
	References

	Parameter Estimation of Linear Systems with Quantized Innovations
	1 Introduction
	2 Problem Formulation
	3 Identification Algorithms
	4 Illustrative Examples
	5 Conclusions
	References

	LSTM with Matrix Factorization for Road Speed Prediction
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Long Short Term Memory with Matrix Factorization
	4.1 The Model
	4.2 Training Algorithm
	4.3 Complexity Analysis

	5 Experiments
	5.1 Data Set
	5.2 Baseline Methods
	5.3 Overall Performances

	6 Conclusion
	References

	Cognition Computation and Neural Networks
	Adaptive Control Strategy for Projective Synchronization of Neural Networks
	1 Introduction and Preliminaries
	2 Main Results
	3 Numerical Simulations
	4 Conclusion
	References

	Real-Time Decoding of Arm Kinematics During Grasping Based on F5 Neural Spike Data
	1 Introduction
	2 Materials and Methods
	2.1 Data Definition and Experimental Setup
	2.2 Kinematics Data Extraction
	2.3 Motion Parameters Decoding

	3 Results and Discussion
	References

	Application of Deep Belief Network to Land Cover Classification Using Hyperspectral Images
	Abstract
	1 Introduction
	2 Technical Approach
	2.1 SAM [13] and M-SAM [4]
	2.2 Support Vector Machine (SVM) [11, 12, 16]
	2.3 Deep Neural Network (DNN)

	3 Comparative Studies
	3.1 About the Test Hyperspectral Image Data
	3.2 DBN Structure Used in This Study
	3.3 Results and Comparison with Benchmark Techniques SAM and SVM

	4 Conclusions
	References

	Reservoir Computing with a Small-World Network for Discriminating Two Sequential Stimuli
	1 Introduction
	2 Methods
	2.1 Experiment Paradigm
	2.2 Input
	2.3 Reservoir
	2.4 Output
	2.5 Gain Factor
	2.6 Small-World Structure
	2.7 Training and Testing Procedure

	3 Result
	3.1 Classification Accuracy
	3.2 The Importance of the Small-World Network
	3.3 Heterogeneous Firing Rate
	3.4 Regression Analysis

	4 Conclusion and Discussion
	References

	Single Channel Speech Separation Using Deep Neural Network
	1 Introduction
	2 Proposed Method
	2.1 Problem Formulation
	2.2 System Framework
	2.3 DNN Learning Strategy
	2.4 Discriminative Objective Function

	3 Experiments
	3.1 Experimental Setup
	3.2 Experimental Results

	4 Conclusions
	References

	Sparse Direct Convolutional Neural Network
	1 Introduction
	2 Background
	2.1 Convolutional Neural Networks
	2.2 Different Implementations of Convolution

	3 Related Work
	4 Proposed Technique
	4.1 Preprocessing Filters
	4.2 Sparse Direct Convolution Algorithm

	5 Experiment Set up
	6 Results & Analysis
	7 Conclusion
	References

	Fuzzy Modeling from Black-Box Data with Deep Learning Techniques
	1 Introduction
	2 Fuzzy Modeling Based on Input-Output Data
	3 Modelling Input-Output Property with Deep Learning
	4 Simulations
	5 Conclusions
	References

	Matrix Neural Networks
	1 Introduction
	2 Matrix Neural Network Model
	2.1 Network Structure
	2.2 Regularisation

	3 Multimodal Matrix Neural Networks
	4 Experimental Evaluation
	4.1 MNIST Handwritten Digits Classification
	4.2 Image Super Resolution

	5 Discussion
	References

	Simplified Particle Swarm Optimization Algorithm Based on Improved Learning Factors
	Abstract
	1 Introduction
	2 The Standard Particle Swarm Optimization Algorithm
	3 The Improved Particle Swarm Optimization Algorithm
	3.1 The Simplified PSO
	3.2 Improve the Learning Factor

	4 The Steps of the Improved PSO Algorithm
	5 Simulation Experience
	6 Conclusion
	Acknowledgement
	References

	Synchronization Analysis for Complex Networks with Interval Coupling Delay
	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Numerical Examples
	5 Conclusion
	References

	FPGA Implementation of the L Smallest k-Subsets Sum Problem Based on the Finite-Time Convergent Recurrent Neural Network
	1 Introduction
	2 Problem Formulation and Neural Network Model
	3 FPGA Implementation
	4 Simulation Results
	5 Conclusion
	References

	Accelerating Stochastic Variance Reduced Gradient Using Mini-Batch Samples on Estimation of Average Gradient
	1 Introduction
	2 Using Mini-Batch Samples on Estimation of Average Gradient
	3 Experiment
	4 Conclusion
	References

	Coexistence and Local Exponential Stability of Multiple Equilibria in Memristive Neural Networks with a Class of General Nonmonotonic Activation Functions
	1 Introduction
	2 Paper Preparation
	3 Main Result
	4 Illustrative Example
	5 Conclusion
	References

	A Reinforcement Learning Method with Implicit Critics from a Bystander
	Abstract
	1 Introduction
	2 Reinforcement Learning
	3 Actor Critic-Q with Continuous Actions
	3.1 Actor Critic-Q
	3.2 Actor-Critic-Q with Continuous Actions

	4 Simulation
	4.1 Compare Discrete Actions with Continuous Actions

	5 Conclusion
	References

	The Mixed States of Associative Memories Realize Unimodal Distribution of Dominance Durations in Multistable Perception
	1 Introduction
	2 One-Module System
	3 Pattern Alternations in Multiple Modules of Network
	4 Conclusions
	References

	Possibilities of Neural Networks for Personalization Approaches for Prevention of Complications After Endovascular Interventions
	1 Introduction
	2 Materials and Methods
	3 Results of Modeling and Classification
	4 Discussion of Results
	5 Conclusion
	References

	Relief R-CNN: Utilizing Convolutional Features for Fast Object Detection
	1 Introduction
	2 Relief R-CNN
	3 Experiments
	3.1 Setup
	3.2 Speed and Detection Performance
	3.3 Proposal Quality

	4 Conclusion
	References

	The Critical Dynamics in Neural Network Improve the Computational Capability of Liquid State Machines
	1 Introduction
	2 Network Description
	2.1 Network Architecture
	2.2 Neuron Model

	3 Results
	4 Conclusion
	References

	Exponential Stability of the Coupled Neural Networks with Different State Dimensions
	1 Introduction
	2 System Description and Preliminaries
	3 Exponential Stability Analysis
	4 Numerical Examples
	5 Conclusions
	References

	Critical Echo State Networks that Anticipate Input Using Morphable Transfer Functions
	1 Introduction
	2 Echo State Networks and Criticality
	3 Adaptive Transfer Functions
	4 Synthetic One Neuron Reservoirs
	5 Discussion
	References

	INFERNO: A Novel Architecture for Generating Long Neuronal Sequences with Spikes
	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	References

	Global Exponential Stability for Matrix-Valued Neural Networks with Time Delay
	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Numerical Example
	5 Conclusions
	References

	Global Asymptotic Stability for Octonion-Valued Neural Networks with Delay
	1 Introduction
	2 Preliminaries
	3 Main Results
	4 Numerical Example
	5 Conclusions
	References

	Convolutional Neural Networks for Thai Poem Classification
	Abstract
	1 Introduction
	2 Related Works
	3 Model and Methodology
	3.1 Process Overview
	3.2 Thai Poem (Input)
	3.3 Thai Word Segmentation
	3.4 Word2Vec
	3.5 Convolutional Neural Network

	4 Experimental and Result
	5 Conclusion and Future Work
	References

	A Quaternionic Rate-Based Synaptic Learning Rule Derived from Spike-Timing Dependent Plasticity
	1 Introduction
	2 Spike-Timing Dependent Plasticity
	3 Relating Spike-Based Learning Rules to Rate-Based Learning Rules
	3.1 The Definition of Instantaneous Firing Rate
	3.2 Rate-Based Aspect of STDP
	3.3 Experimental Validation

	4 Discussion
	References

	Cognitive Load Recognition Using Multi-channel Complex Network Method
	1 Introduction
	2 Main Method
	2.1 EEG Dataset
	2.2 Signal Preprocessing
	2.3 Generate a Multi-channel Complex Network from the Frequency Domain Representations
	2.4 Network Structural Features
	2.5 Classification Methods

	3 Experimental Results
	3.1 Multi-channel Network of Different Cognitive Load Levels
	3.2 Performance Comparison Among Different Features
	3.3 Performance Comparison Among Different Models

	4 Conclusions
	References

	Event-Triggering Sampling Based Synchronization of Delayed Complex Dynamical Networks: An M-matrix Approach
	1 Introduction
	2 Problem Statement
	3 Main Results
	4 Example
	5 Conclusion
	References

	Learning Human-Understandable Description of Dynamical Systems from Feed-Forward Neural Networks
	1 Introduction
	2 Problem Description
	3 The NN-LFIT Algorithm
	4 Experimental Results
	5 Conclusion
	References

	Stability and Stabilization of Time-Delayed Fractional Order Neural Networks via Matrix Measure
	1 Introduction
	2 Preliminaries and Model Description
	2.1 Caputo Fractional Operator
	2.2 Fractional Order Dini-Like Derivative
	2.3 Model Description

	3 Main Results
	3.1 Stability Analysis of Neural Network (3) via Matrix Measure Method
	3.2 Stabilization of Neural Networks via Matrix Measure Method

	4 Numerical Simulations
	5 Conclusion
	References

	Metrics and the Cooperative Process of the Self-organizing Map Algorithm
	1 Introduction
	2 Distance Measures in the SOM Algorithm
	2.1 Standard Euclidean Metric
	2.2 Metrics Based on the lmp-Norm (p 1)
	2.3 Metric Based on the Max-Norm
	2.4 Discrete Metric
	2.5 Distance Measures Based on the lmp-Formula (p < 1)
	2.6 Post Office Metric

	3 Simulations with Non-standard Distance Measures
	3.1 Data Sets
	3.2 Standard Euclidean Metric
	3.3 Distance Measures Based on the lmp-Norm (p 1)
	3.4 Metric Based on the Max-Norm
	3.5 Discrete Metric
	3.6 Distance Measures Based on the lmp-Formula (p < 1)
	3.7 Post Office Distance Metric

	4 Conclusion
	References

	A Cooperative Projection Neural Network for Fast Solving Linear Reconstruction Problems
	1 Introduction
	2 Linear Reconstruction Model and Estimation
	3 Cooperative Projection Neural Network
	3.1 Proposed Neural Network
	3.2 Comparison with Related Works

	4 Illustrative Examples
	5 Conclusion
	References

	A Complex Gradient Neural Dynamics for Fast Complex Matrix Inversion
	1 Introduction
	2 Problem Formulation and Equivalent Real-Valued GND Model
	3 Fully Complex-Valued GND Model
	4 Illustrative Example
	5 Conclusions
	References

	Burst and Correlated Firing in Spiking Neural Network with Global Inhibitory Feedback
	Abstract
	1 Introduction
	2 Spiking Neural Network Model
	3 Characterizing Network Correlation and Burst Firing
	4 Results
	5 Conclusions
	Acknowledgement
	References

	A Soft Computing Prefetcher to Mitigate Cache Degradation by Web Robots
	1 Introduction
	2 Related Work
	3 Prefetching Scheme
	4 Prefetching Evaluation
	5 Conclusions and Future Work
	References

	A Caputo-Type Fractional-Order Gradient Descent Learning of BP Neural Networks
	1 Introduction
	2 Fractional-Order Derivative
	3 Algorithm Description
	3.1 BP Algorithm Based on Gradient Descent Method
	3.2 BP Algorithm Based on Caputo Fractional-Order Derivative

	4 Experiment
	5 Conclusions
	References

	Attracting Sets of Non-autonomous Complex-Valued Neural Networks with both Distributed and Time-Varying Delays
	1 Introduction
	2 Problem Formulation and Preliminaries
	3 Main Results
	4 Numerical Example
	5 Conclusions
	References

	Stability of Complex-Valued Neural Networks with Two Additive Time-Varying Delay Components
	1 Introduction
	2 Problem Description and Preliminaries
	3 Main Result
	4 Conclusions
	References

	Alpine Plants Recognition with Deep Convolutional Neural Network
	1 Introduction
	2 Experimental Design
	2.1 Deep Convolutional Neural Network
	2.2 Plants Data Set
	2.3 Fine-Tuning with Alpine Plants Data Set and Supplementary Data Set
	2.4 Details of Learning

	3 Experimental Results
	4 Conclusions
	References

	Author Index

