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Abstract— This paper presents a model-free solution to the
robust stabilization problem of discrete-time linear dynamical
systems with bounded and mismatched uncertainty. An optimal
controller design method is derived to solve the robust control
problem, which results in solving an algebraic Riccati equa-
tion (ARE). It is shown that the optimal controller obtained
by solving the ARE can robustly stabilize the uncertain system.
To develop a model-free solution to the translated ARE, off-policy
reinforcement learning (RL) is employed to solve the problem in
hand without the requirement of system dynamics. In addition,
the comparisons between on- and off-policy RL methods are
presented regarding the robustness to probing noise and the
dependence on system dynamics. Finally, a simulation example
is carried out to validate the efficacy of the presented off-policy
RL approach.

Index Terms— Model-free, off-policy, on-policy, reinforcement
learning (RL), robust control, system uncertainty.

I. INTRODUCTION

ROBUST control of uncertain dynamical systems has
received considerable attention in the control community
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as well as many other fields such as chemical process, power
systems, robotics, and aerospace engineering. It is of para-
mount importance to achieve robust performance and/or sta-
bility in the presence of bounded system uncertainties, such as
external disturbances, unmodeled dynamics, and time-varying
system parameters [1]–[5]. There has been extensive research
on the robust control theory, including the frequency-domain
analysis [6], [7], optimization methods [8], and time-domain
method [9]. However, in most existing results, the system
dynamics is required for the robust controller design, which
might be vulnerable to exhaustive modeling and potential
attacks. The main concern of this paper is to obviate the
requirement of complete knowledge of system dynamics for
the robust stabilization problem of discrete-time linear systems
with mismatched uncertainty.

Recently, the relationship between robust stabilization and
optimal controller design has been studied in [10], in which
it is shown that the optimal controller of an auxiliary sys-
tem can stabilize the uncertain system. Solving the opti-
mal control problem results in solving the algebraic Riccati
equation (ARE) for linear systems or Hamilton–Jacobi–
Bellman (HJB) equation for nonlinear systems. However, for
general nonlinear systems, the HJB equation is essentially a
nonlinear partial differential equation, of which the analyti-
cal solution might not exist. Besides, dynamic programming
has to be implemented backward-in-time which often makes
the computation unavailable with increasing dimension [11].
Therefore, approximate dynamic programming (ADP) algo-
rithms [12] are developed to approximately solve the HJB
equation forward-in-time by using function approximation
techniques, such as neural networks [13]. Variants of ADP
methods are developed since then [14]–[16], including iterative
offline ADP [17], [18] and model-based online ADP [19]
and identification-based ADP [20]–[22]. Even though the
identification-based ADP does not require the system dynam-
ics, the accuracy of the system identification has an impact on
the control performance. Therefore, the data-driven controller
design of which the performance does not depend on the
complete knowledge of system dynamics is desired.

Reinforcement learning (RL) techniques have been success-
fully applied to solve the decision-making problems when the
agent is interacting with an uncertain environment [23], [24].
In general, RL approaches can be divided into on- and
off-policy RL methods. In the on-policy RL method, it is
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required that the control policy to be evaluated has to be
applied to the systems. Typical on-policy RL method is State-
Action-Reward-State-Action algorithm [25], which updates the
value function based on the experience obtained by executing
some policy. In contrast, the off-policy RL approach aims at
learning the optimal control policy when another admissible
policy, not necessarily optimal, is interacting with the environ-
ment. The well-known Q-learning algorithm belongs to the
off-policy RL class because the learning policy is different
from the policy to be carried out [26]. Off-policy RL has
been applied to deal with optimal regulation problems [27],
optimal tracking problem [28], and differential games [29],
[30] for single-agent systems. Recently, off-policy RL has
also been applied to output synchronization problem [31]–[33],
containment control problem [34], and graphical games [35]
for multiagent systems. To the best of the authors’ knowledge,
the off-policy RL method has not been applied to the robust
stabilization problem of discrete-time uncertain systems yet.
This paper develops an off-policy RL method to obtain the
robust controller of the uncertain system without requiring the
system dynamics a priori.

Motivated by the above-mentioned work, in this paper,
an off-policy RL-based method is developed for the robust
controller design of discrete-time linear systems in the pres-
ence of mismatched uncertainty. First, the robust control
problem for the original uncertain system is translated to
the optimal control problem for an auxiliary system with
a properly modified reward function. Then, the sufficient
condition that guarantees the translation equivalence, i.e., the
optimal control for the auxiliary system can robustly stabi-
lize the original uncertain system, is also discussed. Mean-
while, on- and off-policy RL methods are compared and
discussed in detail. The main contributions of this paper are as
follows.

1) Model-free robust controller design is derived to achieve
robust stabilization of the discrete-time uncertain system
by solving an optimal control problem for an auxiliary
system with a modified performance function. Sufficient
condition that guarantees the optimal controller could
ensure robust stabilization of the discrete-time uncertain
systems is also provided.

2) Variants of on- and off-policy RL methods are derived.
In addition, comparisons between on- and off-policy RL
methods are discussed in terms of the robustness to
the probing noise and the dependence on the system
dynamics.

The remainder of this paper is organized as follows.
Section II describes the robust control problem of the discrete-
time linear system with mismatched uncertainty. In Section III,
the robust control problem is translated into the optimal control
problem of an auxiliary system. The sufficient condition,
which guarantees the optimal control policy of the auxiliary
system can robustly stabilize the uncertain system, is also
given in Section III. Two types of RL methods, on- and off-
policy RL, are discussed in detail in Sections IV and V, respec-
tively. In Section VI, a simulation is conducted to demonstrate

the validity of the proposed approach. Finally, concluding
remarks and future works are presented in Section VII.

II. PROBLEM FORMULATION

In this paper, a class of discrete-time nonlinear systems with
uncertainty is considered, which can be described as

xk+1 = [A + �(p) ]xk + Buk (1)

with the system state xk ∈ R
n , the control input uk ∈ R

m ,
the drift dynamics A + � ∈ R

n×n , the input dynamics B ∈
R

n×m , and p is a vector of uncertain parameters which is
restricted to a prescribed bounded and compact set �. The
drift dynamics A + � ∈ R

n×n consists of nominal part A
and uncertain part � ∈ R

n×n . In addition, the nominal system
of (1) is

xk+1 = Axk + Buk . (2)

Moreover, the nominal system (2) satisfies the following
assumption.

Assumption 1: The pair (A, B) is stabilizable.
The system uncertainty � can be classified as matched and

mismatched uncertainties according to its relation to the input
dynamics B [10]. To be specific, the uncertainty in system (1)
belongs to the type of matched uncertainty if �(p) can be
expressed as

�(p) = Bφ(p). (3)

That is, the system uncertainty � is in the space spanned by
the columns of input matrix B . For the case of mismatched
uncertainty, � cannot be expressed in the form of (3). More-
over, mismatch uncertainty can be decomposed of match part
and mismatched part

�(p)= Sφ(p)= B B†Sφ(p) + (I − B B†)Sφ(p), ∀p ∈ �

(4)

where B† is the pseudoinverse of B , S �= B , S ∈ R
n×r is

a known weight matrix, and φ(p) ∈ R
r×n is the unknown

perturbation. In this paper, the perturbation φ(p) is bounded
in the following sense.

Assumption 2: There exists a positive semidefinite matrix F
such that

ε−1φT(p)φ(p) ≤ F, ∀p ∈ � (5)

where ε is a positive constant.
The robust control problem of system (1) of interest in this

paper can be formulated as follows.
Problem 1 (Robust Control Problem): Find a state feed-

back control law uk = K xk such that the close-loop system

xk+1 = (A + B K )xk + �xk (6)

is asymptotically stable for ∀p ∈ �.
For the purpose of designing the robust control uk = K xk

to stabilize system (1), the state feedback gain K is designed
by ARE approach in optimal control theory. By introducing
an extra term Dvk to the nominal system (2), one can obtain
an auxiliary system as

xk+1 = Axk + Buk + Dvk (7)
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where α is a positive constant, D = α(I − B B†)S ∈ R
n×r

and r is the rank of B . Then, the optimal control problem
of the auxiliary system (7), which is closely related to the
above-mentioned robust control problem, can be described as
follows.

Problem 2 (Optimal Control Problem): Find state feed-
back control laws uk = K ∗xk and vk = L∗xk such that the
performance

V (xk)

= 1

2

∞∑
j=k

(
xT

j Qx j+xT
j Fx j + β2xT

j x j + uT
j R1u j + cvT

j R2v j
)

(8)

with respect to the auxiliary system (7) is minimized, where
Q ≥ 0 is a positive semidefinite matrix, R1 	 0 and
R2 	 0 are the positive definite matrices, and β is a positive
constant.

For simplicity, the terms in the summation in (8) is
denoted as

r(xk, uk, vk) = xT
k Qxk + xT

k Fxk + β2xT
k xk

+uT
k R1uk + vT

k R2vk

which is referred to as the utility function.
Remark 1: As shown in Section III, under some specific

conditions, K ∗ can be used as robust state feedback gain to
stabilize the uncertain system (1). That is, the robust control
problem of uncertain system (1) can be translated to the
optimal control problem of the auxiliary system (7) with the
performance defined in (8). Note that the control input vk only
appears in the auxiliary system (7). Therefore, the feedback
gain L∗ does not affect the system (1) directly and vk is
referred to as virtual control.

III. ROBUST CONTROLLER DESIGN

USING ARE APPROACH

In this section, ARE approach in optimal control theory
is used to solve the robust control problem of the uncertain
system (1). The robust control problem of the uncertain system
(1) is transformed to an optimal control problem of the
auxiliary system (7) with respect to the performance (8). The
condition that guarantees the equivalence between the robust
control problem and the optimal control problem is provided.

To begin with, the following are required for the subsequent
discussions.

Definition 1 (Admissible Control): For the auxiliary sys-
tem (7), the control mappings u(x) and v(x) are said to be
admissible with respect to performance (8) if:

1) u(xk) and v(xk) are continuous;
2) u(0) = v(0) = 0;
3) u(xk) and v(xk) stabilize the auxiliary system (7); and
4) the value function V (xk) with respect to the policies u(·)

and v(·) is finite for ∀xk .
Lemma 1: For arbitrary admissible control u(xk) = K xk

and v(xk) = Lxk , the performance function V (xk) in (8) is
quadratic in xk , for ∀xk ∈ R

n .

Proof: Taking the control u(xk) = K xk and v(xk) = Lxk

into the auxiliary system (7), the closed-loop dynamics should
be

xk+1 = (A + B K + DL)xk = Āxk .

Therefore, xk+ j = Ā j xk, ∀ j = 0, 1, 2, . . .. Now inserting
u(xk) = K xk and v(xk) = Lxk into the reward function
r(xk, uk, vk) yields

r(xk, uk, vk) = xT
k (Q + F + β2 I + K T R1 K + +LT R2 L)xk

= xT
k Qxk

where Q = Q + F + β2 I + K T R1 K + LT R2 L . Therefore,
the value function is equivalent to

V (xk) =
∞∑
j=k

r(x j , u j , v j ) =
∞∑
j=k

xT
j Qx j

= xT
k

⎛
⎝ ∞∑

j=k

( ĀT)
j−kQ Ā j−k

⎞
⎠ xk .

This completes the proof.
To solve the optimal control problem of the auxiliary system

(7) with the performance (8), the optimal control laws uk =
K ∗xk and vk = L∗xk are derived in the following theorem.

Theorem 1: Suppose that there exists a positive definite
solution P 	 0 of the following ARE:

0 = −
[

BT P A
DT P A

]T[
R1 + BT P B BT P D

DT P B R2 + DT P D

]−1

×
[

BT P A
DT P A

]
+ AT P A−P + Q̄ (9)

where Q̄ = Q + F + β2 I . Then, the optimal control of
system (7) with respect to the performance function (8) can
be expressed as u∗

k = K ∗xk and v∗
k = L∗xk with gains K ∗

and L∗ satisfying

K ∗ = −[R1 + BT P B − BT P D(R2 + DT P D)
−1

DT P B]−1

[BT P A − BT P D(R2 + DT P D)
−1

DT P A] (10)

L∗ = −[R2 + DT P D − DT P B(R1 + BT P B)
−1

BT P D]−1

[DT P A − DT P B(R1 + BT P B)
−1

BT P A]. (11)

Proof: The Bellman equation for the value function V (xk)
in (8) is

V (xk) = V (xk+1) + r(xk, uk, vk). (12)

Define the Hamiltonian as

H (xk, uk , vk) = xT
k Qxk + xT

k Fxk + β2xT
k xk + uT

k R1uk

+vT
k R2vk + V (xk+1) − V (xk).

From Lemma 1, the value function in (8) can be denoted as

V (xk) = xT
k Pxk . (13)

Based on [36], the necessary conditions for optimal control u∗
k

and v∗
k is given by

∂ H (xk, uk , vk)

∂uk
= 0,

∂ H (xk, uk , vk)

∂vk
= 0. (14)
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Considering the Hamiltonian and the quadratic value function,
(14) is equivalent to[ (

R1 + BT P B
)

BT P D
DT P B

(
R2 + DT P D

) ] [
u∗

k
v∗

k

]
= −

[
BT P A
DT P A

]
xk .

Denote

E = BT P A

G = DT P A

M =
[M11 M12
M21 M22

]

=
[ (

R1 + BT P B
)

BT P D
DT P B

(
R2 + DT P D

) ]

then the optimal control u∗
k and v∗

k can be expressed as[
u∗

k
v∗

k

]
= −M−1

[ E
G

]
xk .

Let N = M−1 be partitioned into the block form as N =[N11 N12
N21 N22

]
. Based on the matrix inversion lemma [37], N can

be expressed as

N11 = (M11 − M12M−1
22 M21

)−1

N12 = −(M11 − M12M−1
22 M21

)−1M12M−1
22

N21 = −(M22 − M21M−1
11 M12

)−1M21M−1
11

N22 = (M22 − M21M−1
11 M12

)−1
.

Finally, the optimal control can be expressed u∗
k = K ∗xk and

v∗
k = L∗xk with

K ∗ = − (N11E + N12G) (15)

L∗ = − (N21E + N22G) . (16)

By collecting above-mentioned results, (15) and (16) are
equivalent to (10) and (11).

Let Q̄ = Q + F + β2 I . The optimal control u∗
k and v∗

k
satisfy

0 = min
uk ,vk

H (xk, uk, vk) = H
(
xk, u∗

k , v
∗
k

)
=

[
u∗

k
v∗

k

]T [
R1 + BT P B BT P D

DT P B R2 + DT P D

] [
u∗

k
v∗

k

]

+
[

u∗
k

v∗
k

]T [
BT P A
DT P A

]
xk + xT

k (AT P A − P)xk

+xT
k [AT P B AT P D]

[
u∗

k
v∗

k

]
+ xT

k Q̄xk . (17)

Inserting (15) and (16) into the Hamiltonian yields the ARE
in (9). This completes the proof.

Remark 2: In [38], an alternative form of ARE and the
optimal feedback gain K ∗ and L∗ are described as

P = AT(P−1 + B R1 BT + DR2 DT)−1 A + Q̄ (18)

K ∗ = −R−1
1 BT(

P−1 + BT R−1
1 BT + DT R−1

2 DT)−1
A (19)

L∗ = −R−1
2 DT(

P−1 + BT R−1
1 BT + DT R−1

2 DT)−1
A. (20)

It can be shown that under some manipulations, (9)–(11) are
equivalent to (18)–(20). The proof of equivalence between (9)
and (11) to (18) and (20) is given in Appendixes A and B.

As mentioned in Remark 1, the optimal control of the
auxiliary system (7) with performance (8) is able to solve
the robust control problem of uncertain system (1) only under
some specific conditions. The condition that guarantees the
feedback gain K ∗ in (10) asymptotically stabilizes system (1)
is provided as the following theorem.

Theorem 2: Under Assumption 2, suppose that the positive
constant ε in (5) satisfies

ε−1 I − ST PS 	 0. (21)

Then, the state feedback control uk = K ∗xk with K ∗ in (10)
can asymptotically stabilize system (1), provided that the
following is true:
AT

c (P−1 − εSST)
−1

Ac ≺ MT P−1 M + (K ∗)T R1 K ∗

+(L∗)T R2 L∗ + Q + β2 I (22)

where M = (P−1 + BT R−1
1 B + DT R−1

2 D)−1 A and L∗ is
given by (11).

Proof: When the feedback gain K ∗ in (10) is applied
to system (1), it can be shown that the performance function
V (xk) defined in (8) is a Lyapunov function of system (1)
if Assumption 2 and (22) are satisfied. First, because P is
the positive definite solution of the ARE (9), then V (xk) =
xT

k Pxk > 0, xk �= 0. Now, it remains to show that the time
difference �V ( xk) = V ( xk+1) − V ( xk) < 0,∀xk �= 0.

Inserting the feedback gain K ∗ (10) into the uncertain
closed-loop dynamics (6)

xk+1 = (Ac + Sφ)xk

where Ac = A + B K ∗. The time difference of V (xk) along
the state trajectory of (23) is

�V ( xk) = xT
k

(
AT

c P Ac + φT ST PSφ

+ φT ST P Ac + AT
c PSφ − P

)
xk . (23)

Based on condition (21), the following is true:
(ε−1 I − ST PS)−1 	 0.

Then, using Young’s inequality, one can obtain

AT
c PS(ε−1 I − ST PS)−1ST P Ac + φT(ε−1 I − ST PS)φ

≥ AT
c PSφ + φTST P Ac.

By rearranging items in above-mentioned equation, the
following is obtained:
AT

c PSφ + φTST P Ac + φTST PSφ

≤ AT
c PS(ε−1 I − ST PS)−1ST P Ac + ε−1φTφ.

Inserting above-mentioned equation into (23) yields

�V ( xk) ≤ xT
k

[
AT

c PS(ε−1 I − ST PS)
−1

ST P Ac

+ AT
c P Ac + ε−1φTφ − P

]
xk . (24)

Based on the matrix inversion lemma [37], the following is
true:

(P−1 − εSST)−1 = P + PS(ε−1 I − ST PS)−1ST P.
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Then, (24) is equivalent to

�V ( xk)≤ xT
k

[
AT

c (P−1−εSST)
−1

Ac+ε−1φTφ− P
]
xk . (25)

Replacing P in (25) with the expression in ARE (18)

�V ( xk) ≤ xT
k

[
AT

c (P−1 − εSST)
−1

Ac + ε−1φTφ

− AT(
P−1 + BT R−1

1 B + DT R−1
2 D

)−1
A− Q̄]xk .

(26)

Let

N = P−1 + BT R−1
1 B + DT R−1

2 D

M = N−1 A

then

AT(
P−1 + BT R−1

1 B + DT R−1
2 D

)−1
A

= AT N−1 P−1 N−1 A + AT N−1 BT R−1
1 B N−1 A

+AT N−1 DT R−1
2 DN−1 A

= MT P−1 M + K T R1 K + LT R2 L .

Inserting (27) into (26) yields

�V ( xk) = xT
k (ε−1φTφ − F)xk

+xT
k

[
AT

c (P−1 − εSST)
−1

Ac − MT P−1 M

−(K ∗)T R1 K ∗−(L∗)T R2 L∗− Q − β2 I
]
xk .

(27)

Note that the first and second terms in (27) is negative definite
if (5) in Assumption 2 and (22) holds, which also guarantees
�V ( xk) < 0. This completes the proof.

Remark 3: In the proof of Theorem 2, one can observe that
the parameter ε and the parameter β are used to compensate
the effect of the mismatched uncertainty, �, on the closed-loop
stability. The parameter ε should be small and the parameter β
should be large to guarantee that (21) and (22) hold, respec-
tively. Then, the robust stabilization can be guaranteed when
applying the optimal solution of Problem 2 to the uncertain
system (1).

Remark 4: Conditions (21) and (22) guarantee the asymp-
totic stability of system (1) when K ∗ serves as the state
feedback gain for uncertain system (1). Note that the optimal
feedback gains K ∗ and L∗ depend on the solution of the
ARE (9). In order to obtain optimal feedback gains K ∗ and L∗,
the exact model of the auxiliary system (7) is also required
for solving (9).

IV. ON-POLICY REINFORCEMENT LEARNING

Typically, RL approaches can be categorized into two
classes: on- and off-policy [23]. On-policy RL learns the per-
formance of the policy being carried out to the system. On the
contrary, off-policy RL learns the optimal policy independently
of the system’s control input [25]. In this section, two variants
of on-policy RL methods are developed to solve the ARE (9).
Moreover, the effect of adding probing noise to the on-policy
RL method is discussed.

A. Model-Based On-Policy RL
In this section, the on-policy RL-based algorithm for solving

ARE (9) is discussed.
The on-policy PI starts from an admissible policy u0(xk)

and v0(xk). In i th iteration, the policy ui (xk) and v i (xk) are
evaluated by solving the following on-policy Bellman equation
for the value function V i (·):

V i (xk) = r
(
xk, ui

k, v
i
k

) + V i (xk+1)

= r
(
xk, ui

k, v
i
k

)+V i (Axk +Bui(xk)+Dv i (xk)) (28)

with boundary condition V i (0) = 0, where xk+1 = Axk +
Bui(xk) + Dv i (xk). Then, based on the value function in i th
iteration,V i (·), the iterative control law is updated as

{ui+1(xk), v
i+1(xk)}

= arg min
uk ,vk

{r(xk, uk, vk) + V i (Axk + Buk + Dvk)}

or equivalently in the form of feedback gain K i+1 in (29)
and Li+1 in (29), which are shown on top of next page. The
on-policy PI algorithm is summarized in Algorithm 1

K i+1

= −[R1 + BT Pi B − BT Pi D(R2 + DT Pi D)
−1

DT Pi B]−1

×[BT Pi A − BT Pi D(R2 + DT Pi D)
−1

DT Pi A]
(29)

Li+1

= −[R2 + DT Pi D − DT Pi B(R1 + BT Pi B)
−1

BT Pi D]−1

×[DT Pi A − DT Pi B(R1 + BT Pi B)
−1

BT Pi A]. (30)

Algorithm 1 On-Policy RL Without Noise in the Control Input

1: Begin with an admissible initial control policies ui (·), v i (·)
and set the iteration index to be i = 0;

2: Policy Evaluation Step: Evaluate policies ui (·) and v i (·) by
solving (28) for V i (·):

3: Policy Improvement Step: Update the iterative feedback
gain K i+1 and Li+1 according to (29) and (29).

4: Let i = i + 1.
5: Stop if the criteria

∥∥V i (xk) − V i+1 (xk)
∥∥ ≤ ε, for ∀xk is

satisfied; Otherwise, go to Step 2.

The on-policy RL Algorithm 1 guarantees the conver-
gence to the optimal value function and optimal control,
i.e., V i (xk) → V ∗(xk), ui (xk) → u∗(xk) and v i (xk) → v∗(xk)
as i → ∞. For convergence proof, see [18] for reference.

Remark 5: ui (xk) and v i (xk) can be viewed as the approx-
imation of u∗(xk) and v∗(xk) in the i th iteration. Note that
ui+1(xk) and v i+1(xk) are obtained based on V i (xk), which
is the performance of ui (xk) and v i (xk). Therefore, in each
iteration, the policy ui (xk) and v i (xk) have to be applied to
the system in order to be improved.

B. Dithered On-Policy RL
The tradeoff between exploration and exploitation in RL is

one of the critical issues with a great impact on the learning
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performance [23], [25]. The concept of persistent excitation
is closely related to the exploration in ADP [27]–[30], which
guarantees the convergence of the parameter learning to the
optimal case. In this section, we investigate the effect of
probing noise on the on-policy RL algorithm.

In the policy evaluation step in Algorithm 1, the on-policy
Bellman equation (28) can be equivalently written as(

xT
k ⊗ xT

k − xT
k+1 ⊗ xT

k+1

)
vec(Pi ) = r

(
xk, ui

k, v
i
k

)
(31)

which is a least squares (LS) equation of ((n + 1)n/2) inde-
pendent elements in Pi . To guarantee the existence and
uniqueness of solution to (31) for online implementation,
the concept of persistent excitation is required.

Definition 2 (Persistent Excitation): [39] A bounded vec-
tor signal ηi ∈ R

q , q > 1 is called persistently exciting if
there exist L > 0 and α0 > 0 such that

k+L∑
i=k

ηiη
T
i ≥ α0 I, ∀k ≥ i0.

In order to satisfy the persistent excitation condition, a prob-
ing noise ek is added into the control input [27]. Then, in i th
iteration, the control signal that applied to the system is

ūi
k = ui

k + ek

where ek is a probing noise. Applying (32) to the auxiliary
system (7) yields the following dithered on-policy Bellman
equation:

xT
k P̄i xk = r

(
xk, ūi

k, v
i
k

) + xT
k+1 P̄i xk+1

= xT
k Q̄xk + (

ūi
k

)T
R1ūi

k + (
v i

k

)T
R2v

i
k

+(
Axk + Bui

k + Bek + Dv i
k

)T
P̄i

× (
Axk + Bui

k + Bek + Dv i
k

)
. (32)

Based on the dithered on-policy Bellman equation (32),
the on-policy PI algorithm when applying the control input
with probing noise to the auxiliary system (7) is shown in
Algorithm 2.

Algorithm 2 On-Policy RL With Noise in the Control Input
1: Set the iteration index to be i = 0. Begin with initial

admissible control policies ui
k , v i

k ;
2: Add probing noise ek into the control input ui

k to obtain
ūi

k . Then, apply ūi
k and v i

k to the auxiliary system (7);
3: Policy Evaluation Step: Evaluate policies ui

k and v i
k by

solving the dithered on-policy Bellman equation (32) for
P̄i ;

4: Policy Improvement Step: Update the iterative feedback
gain K i+1 and Li+1 according to (29) and (29);

5: Let i = i + 1.
6: Stop if

∥∥P̄i − P̄i+1
∥∥ ≤ ε; Otherwise, go to Step 2.

The effect of probing noise ek on solving on-policy Bellman
equation is investigated in the following lemma.

Lemma 2: Denote the solution of the on-policy Bellman
equation (28) or (31) as Pi+1 when there is no probing noise
in the control input, i.e., ek = 0, and the solution of dithered

on-policy Bellman equation (32) as P̄i+1 when using a probing
noise in the control input, i.e., ek �= 0. Then, Pi+1 �= P̄i+1.

Proof: Considering the auxiliary system dynamics (7),
then the dithered on-policy Bellman equation (32) is equiva-
lent to

xT
k P̄i xk

= xT
k Q̄xk + (

ui
k

)T
R1ui

k + (
v i

k

)T
R2v

i
k + xT

k+1 P̄i xk+1

+eT
k (R1 + BT P̄i B)ek + 2eT

k R1ui
k + 2eT

k BT P̄i xk+1. (33)

Note that the dithered on-policy Bellman equation (32) is
the on-policy Bellman equation (28) with three extra terms
related to the probing noise ek . Then, Pi+1, the solution to the
on-policy Bellman equation (28) does not satisfy the dithered
on-policy Bellman equation (32) or (33). Therefore, Pi+1 is
not the same as P̄i+1. This completes the proof.

Remark 6: From Lemma 2, it is shown that the dithered on-
policy Bellman equation (32) is inconsistent with the on-policy
Bellman equation (28). Therefore, Algorithm 2 will not gen-
erate the same solution as Algorithm 1. That is, Algorithm 1
is not robust to probing noise, which restricts the exploration
of the on-policy RL approach.

Remark 7: In both variants of on-policy RL approaches
(Algorithms 1 and 2), it is shown that the policy to be evaluated
has to be applied to the system. Therefore, on-policy RL
is essentially an offline algorithm. Meanwhile, in the policy
evaluate step of Algorithm 1 (solving (28) for V i (·)) and
Algorithm 2 (solving (32) for P̄i ), the complete knowledge
of system dynamics, i.e., (A, B, D), is required. Therefore,
on-policy RL is a model-based method.

In order to obviate the offline and model-based features
of the on-policy RL method, off-policy RL approach, which
learns the optimal policy in an online and model-free manner,
is developed in Section V.

V. OFF-POLICY REINFORCEMENT LEARNING

In this section, another type of RL methods, named off-
policy RL with its variants, is developed to solve the ARE (9),
in order to obtain the robust control for Problem 1. Compared
with the on-policy RL approach, it is shown that the off-policy
RL algorithm can solve the ARE in an online and model-free
manner, while being robust to the probing noise.

A. Model-Based Off-Policy RL

Suppose that the admissible policies uk = u(xk) and uk =
u(xk) are applied to the system (7). The auxiliary system (7)
can be rewritten as

xk+1 = Ai xk + B(uk − K i xk) + D(vk − Li xk),

i = 0, 1, 2, . . . (34)

where Ai = A + B K i + DLi , ui
k = K i xk, v

i
k = Li xk . The

policies u(·) and v(·) are the behavior policies that applied to
the system. The policies ui

k = K i xk and v i
k = Li xk are the

iterative policies in the learning process.
Considering the value function with respect to ui

k = K i xk

and v i
k = Li xk in i th iteration V i (xk) = xT

k Pi xk , applying
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Taylor series expansion to the quadratic function V i (xk) yields

V i (xk) − V i (xk+1)

= 2xT
k+1 Pi (xk − xk+1) + (xk − xk+1)Pi (xk − xk+1).

Inserting the closed-loop system dynamics (34) gives

V i (xk) − V i (xk+1)

= xT
k Pi xk − xT

k (Ai )T Pi Ai xk

−(uk − K i xk)
T BT Pi xk+1 − (uk − K i xk)

T BT Pi Ai xk

−(
vk −Li xk

)T
DT Pi xk+1−(

vk −cLi xk
)T

DT Pi Ai xk . (35)

Based on (12), the following discrete time Lyapunov equation
holds:

Pi = Q̄ + (K i )T R1 K i + (Li )T R2 Li + (Ai )T Pi Ai

where Q̄ = Q + F + β2 I . By taking the above-mentioned
equation and V i (xk) = xT

k Pi xk into (35), one can obtain the
off-policy Bellman equation

xT
k Pi xk − xT

k+1 Pi xk+1

= xT
k Q̄xk + xT

k (K i )T R1 K i xk + xT
k (Li )T R2 Li xk

−(vk − Li xk)
T DT Pi xk+1 − (vk − Li xk)

T DT Pi Ai xk

−(uk − K i xk)
T BT Pi xk+1 − (uk − K i xk)

T BT Pi Ai xk .

(36)

To this end, the model-based off-policy RL for solving the
off-policy Bellman equation (36) is shown in Algorithm 3.

Algorithm 3 Model-Based Off-Policy RL Without Noise
1: Apply admissible control policies uk and vk to the auxiliary

system (7). Let ui (xk) = uk , v i (xk) = vk and set the
iteration index to be i = 0;

2: Policy Evaluation Step: Evaluate policies ui (·) and v i (·) by
solving off-policy Bellman (36) for Pi :

3: Policy Improvement Step: Update the iterative feedback
gain K i+1 and Li+1 according to (29) and (29).

4: Let i = i + 1.
5: Stop if

∥∥Pi − Pi+1
∥∥ ≤ ε; Otherwise, go to Step 2.

The equivalence between the off-policy RL in Algorithm 3
and the on-policy RL in Algorithm 1 is discussed in the
following lemma.

Lemma 3: The on-policy RL in Algorithm 1 is equivalent
to the off-policy RL in Algorithm 3 in the sense that the
on-policy Bellman equation (28) or (31) and the off-policy
Bellman equation (36) are equivalent.

Proof: Inserting Ai = A + B K i + DLi into the off-policy
Bellman equation (36) gives

xT
k Pi xk − (Axk + Buk + Dvk)

T Pi (Axk + Buk + Dvk)

= xT
k Q̄xk + xT

k (K i )T R1 K i xk + xT
k (Li )T R2 Li xk

−(
uk − K i xk

)T
BT Pi (Axk + Buk + Dvk)

−(uk − K i xk)
T BT Pi (A + B K i + DLi )xk

−(vk − Li xk)
T DT Pi (Axk + Buk + Dvk)

−(vk − Li xk)
T DT Pi (A + B K i + DLi )xk .

Eliminating the common terms in the above-mentioned equa-
tion yields

xT
k Pi xk − xT

k AT Pi Axk

= xT
k Q̄xk + xT

k (K i )T R1K i xk + xT
k (Li )T R2 Li xk

+xT
k (K i )T BT Pi B K i xk + xT

k (K i )T BT Pi DLi xk

−2xT
k (Li )T DT Pi Axk + xT

k (Li )T DT Pi B K i xk

−2xT
k (K i )T BT Pi Axk + xT

k (Li )T DT Pi DLi xk .

By rearranging terms in above-mentioned equation on can
obtain

0 = xT
k Q̄xk + xT

k (K i )T R1 K i xk + xT
k (Li )T R2 Li xk

+xT
k (Ak + B K i + DLi )T Pi (A + B K i + DLi )xk,

−xT
k Pi xk

which is equivalent to the on-policy Bellman equation (28)
or (31). This completes the proof.

B. Dithered Model-Based Off-Policy RL
In this section, the effect of the probing noise on the

convergence of the off-policy RL algorithm is investigated.
Let the behavior policy with probing noise be

ûk = uk + ek . (37)

Considering (34), the off-policy Bellman equation for the
control input ûk with the probing noise ek can be expressed as

xT
k P̂i xk − [xk+1 + Bek]T P̂i [xk+1 + Bek]
= xT

k Qxk + xT
k (K i )T R1 K i xk + xT

k (Li )T R2 Li xk

−(uk + ek − K i xk)
T BT P̂i Ai xk − (vk − Li xk)DT P̂i Ai xk

−(uk + ek − K i xk)
T BT P̂i [xk+1 + Bek]

−(vk − Li xk)DT P̂i [xk+1 + Bek]. (38)

Based on the dithered off-policy Bellman equation (38),
the off-policy RL algorithm with probing noise in the control
input is shown in Algorithm 4.

Algorithm 4 Model-Based Off-Policy RL With Probing Noise
1: Begin with admissible policies uk and vk .
2: Add probing noise ek to admissible control policy uk to

obtain ûk . Apply ûk and vk to the auxiliary system (7). Let
ui (xk) = uk , v i (xk) = vk and set the iteration index to be
i = 0;

3: Policy Evaluation Step: Evaluate policies ûi (·) and v i (·) by
solving dithered off-policy Bellman (38) for P̂i :

4: Policy Improvement Step: Update the iterative feedback
gain K i+1 and Li+1 according to (29) and (29).

5: Let i = i + 1.
6: Stop if

∥∥∥P̂i − P̂i+1
∥∥∥ ≤ ε; Otherwise, go to Step 3.

The effect of probing noise ek in (37) on solving the
off-policy Bellman equation is investigated in the following
lemma.

Lemma 4: Suppose that both the off-policy Bellman equa-
tion (36) and the dithered off-policy Bellman equation (38)
have unique solution. Denote the solution of the off-policy
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Bellman equation (36) as Pi+1 when there is no probing
noise in the control input, i.e., ek = 0, and the solution
of dithered off-policy Bellman equation (38) as P̂i+1 when
using a probing noise in the control input, i.e., ek �= 0.
Then, the off-policy Bellman equation (36) is equivalent to
the dithered off-policy Bellman equation (38) in the sense that
Pi+1 = P̂i+1.

Proof: By expanding the terms in (38), one can obtain

xT
k P̂i xk − xT

k+1 P̂i xk+1 − 2xT
k+1 P̂i Bek − eT

k BT P̂i Bek

= xT
k Q̄xk + xT

k (K i )T R1 K i xk + xT
k (Li )T R2 Li xk

−(uk − K i xk)
T BT P̂i xk+1 − (vk − Li xk)DT P̂i xk+1

−(uk − K i xk)
T BT P̂i Bek − (vk − Li xk)DT P̂i Bek

−(uk − K i xk)
T BT P̂i Ai xk − (vk − Li xk)DT P̂i Ai xk

−xT
k+1 P̂i Bek − eT

k BT P̂i Bek − eT
k BT P̂i Ai xk . (39)

Considering the fact that

xT
k+1 P̂i Bek = xT

k (Ai )T P̂i Bek + (uk − K i xk)
T BT P̂i Bek

+(vk − Li xk)DT P̂i Bek .

Then, inserting the above-mentioned equation into (39) yields

xT
k P̂i xk − xT

k+1 P̂i xk+1

= xT
k Q̄xk + xT

k (K i )T R1 K i xk + xT
k (Li )T R2 Li xk

−(uk − K i xk)
T BT P̂i xk+1 − (uk − K i xk)

T BT P̂i Ai xk

−(vk − Li xk)DT P̂i xk+1 − (vk − Li xk)DT P̂i Ai xk

(40)

which is an alternative equivalent formulation of the dithered
off-policy Bellman equation (38). By comparing the dithered
off-policy Bellman equation (38) or (40) with the off-policy
Bellman equation (36), it can be shown that P̂i , the solution
of the dithered off-policy Bellman equation (38) satisfies the
off-policy Bellman equation (36). Therefore, Pi+1 = P̂i+1.
This completes the proof.

Remark 8: According to Lemma 4, it is shown that the
off-policy Bellman equation (36) is consistent with the
dithered off-policy Bellman equation, i.e., Algorithm 3 is
equivalent to Algorithm 4. Therefore, the probing noise added
to the behavior policy will not yield a biased result for the
off-policy RL algorithm. This is in contrast to the on-policy
RL approaches, as discussed in Remark 6.

C. Model-Free Off-Policy RL
By using the Kronecker product, the off-policy Bellman

equation (36) can be rewritten as(
xT

k ⊗ xT
k

)
vec(Pi ) − (

xT
k+1 ⊗ xT

k+1

)
vec(Pi )

+2[(vk − Li xk)
T ⊗ xT

k ]vec(DT Pi A)

+[(vk − Li xk)
T ⊗ (uk + K i xk)

T]vec(DT Pi B)

+[(vk − Li xk)
T ⊗ (vk + Li xk)

T]vec(DT Pi D)

+2[(uk − K i xk)
T ⊗ xT

k ]vec(BT Pi A)

+[(uk − K i xk)
T ⊗ (uk + K i xk)

T]vec(BT Pi B)

+[(uk − K i xk)
T ⊗ (vk + Li xk)

T]vec(BT Pi D)

= xT
k Q̄xk + xT

k (K i )T R1 K i xk + xT
k (Li )T R2 Li xk . (41)

Let

Xi = [(
Xi

1

)T(
Xi

2

)T(
Xi

3

)T(
Xi

4

)T(
Xi

5

)T(
Xi

6

)T(
Xi

7

)T]T
(42)

with

Xi
1 = vec(Pi ), Xi

2 = vec(DT Pi A), Xi
3 = vec(DT Pi B)

Xi
4 = vec(DT Pi D), Xi

5 = vec(BT Pi A),

Xi
6 = vec(BT Pi B), Xi

7 = vec(BT Pi D).

The data collected online in compact form is denoted as

H i
k = [

H ik
x x H ik

vx H ik
vu H ik

vv H ik
ux H ik

uu H ik
uv

]
with

H ik
x x = (

xT
k ⊗ xT

k

) − (
xT

k+1 ⊗ xT
k+1

)
H ik

vx = 2[(vk − Li xk)
T ⊗ xT

k ]
H ik

vu = (vk − Li xk)
T ⊗ (uk + K i xk)

T

H ik
vv = (vk − Li xk)

T ⊗ (vk + Li xk)
T

H ik
ux = 2[(uk − K i xk)

T ⊗ xT
k ]

H ik
uu = (uk − K i xk)

T ⊗ (uk + K i xk)
T

H ik
uv = (uk − K i xk)

T ⊗ (vk + Li xk)
T.

Furthermore, the utility function can be expressed in terms of
the online measurement

r i
k = xT

k Qxk + xT
k Fxk + β2xT

k xk

+xT
k (K i )T R1 K i xk + xT

k (Li )T R2 Li xk .

Finally, the Kronecker product based off-policy Bellman equa-
tion (41) can be rewritten in compact form as

H i
k Xi = rk . (43)

Note that in (41), there are N = n2 +m2 +r2 +2mr +nr +mn
unknown components. Therefore, at least N data are required
to be collected in order to solve (41) or (43) by LS methods.
Assumed that N1 ≥ N data are collected as

H1:N1 Xi =

⎡
⎢⎢⎢⎣

H i
1

H i
2
...

H i
N1

⎤
⎥⎥⎥⎦ Xi =

⎡
⎢⎢⎢⎣

r1
r1
...

rN1

⎤
⎥⎥⎥⎦ = r1:N1 . (44)

Therefore, the LS solution of (44)

X̂ i = (
H T

1:N1
H1:N1

)−1
H T

1:N1
r1:N1 . (45)

Based on the LS solution X̂ i in (45), the feedback gain K i

and Li are updated as

K i+1 = −[
R1 + X̂ i

3 + X̂ i
6

(
X̂ i

7 + R2
)−1

X̂ i
5

]−1

×[
X̂ i

2 − X̂ i
6

(
X̂ i

7 + R2
)−1

X̂ i
4

]
(46)

Li+1 = −[
R2 + X̂ i

7 − X̂ i
5

(
R1 + X̂ i

3

)−1
X̂ i

6

]−1

×[
X̂ i

4 + X̂ i
5

(
R1 + X̂ i

3

)−1
X̂ i

2

]
. (47)

To this end, the model-free off-policy RL algorithm for solving
the off-policy Bellman equation (36) or (41) is shown in
Algorithm 5.
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Algorithm 5 Model-Free Off-Policy RL
1: Data Collection Phase: Apply admissible policies uk and

vk with probing noise to the auxiliary system (7) and collect
the online data {xk}, {uk} and {vk} to form H i

k and rk

in (43);
2: Initialization of Learning Phase: Set the iteration index to

be i = 0 and initialize the iterative policies as ui (xk) = uk ,
v i (xk) = vk to be admissible.

3: Learning Phase 1: Evaluate policies ui (·) and v i (·) by
solving the LS equation (44) for X̂ i ;

4: Learning Phase 2: Update the iterative feedback gain K i+1

and Li+1 according to (46) and (47).
5: Let i = i + 1.
6: Stop if

∥∥Pi − Pi+1
∥∥ ≤ ε̄, where ε̄ is a predetermined error

bound; Otherwise, go to Step 3.

Remark 9: The solution of LS equation (44) in Algo-
rithm 5 is equivalent to the off-policy Bellman equation (36),
i.e., Algorithm 5 is equivalent to Algorithm 3. Moreover,
as shown in Lemma 4, the model-based off-policy RL
approach in Algorithm 3 is robust to probing noise. Therefore,
the robustness of the model-free off-policy RL method in 5 is
also guaranteed.

Remark 10: From the above-mentioned discussions, one
can observe that Algorithm 5 is equivalent to Algorithms 4
and 3, which can solve Problem 2. Based on Theorem 2,
the feedback gain K ∗, obtained by Algorithm 5, also solves
Problem 1. Therefore, the off-policy RL algorithm together
with the problem transformation provides a model-free solu-
tion to the robust stabilization problem. That is, the system
matrices A, B , and S are not required.

VI. SIMULATION

In this section, the on- and off-policy RL approaches are
compared in terms of both the robustness against the probing
noise and the dependence on the system dynamics.

Consider the discrete-time model for the rotating inverted
pendulum used in [38]

xk+1 = (A + �)xk + Buk (48)

with the nominal system drift matrix and control input
dynamic matrix as

A =

⎡
⎢⎢⎢⎣

1.0008 0.005 0 0

0.3164 1.008 0 0

−0.0004 0 1 0.005

−0.1666 −0.0004 0 1

⎤
⎥⎥⎥⎦

B = [−0.0065 −2.6043 0.0101 4.0210]T.

The mismatched system uncertainty in (48) can be expressed
as � = S × φ, with

S = [0.0064 −2.5648 0.019 3.9805]T

φ = p × sin(6k) × [0.21 0.1 0.04 0.03].

Fig. 1. Convergence of on-policy RL Algorithm 1. P∗, K∗, and L∗
corresponds to the optimal case, where as Pi , Ki , and Li denote the
iterative approximation in ith iteration. The iterative learning process achieves
satisfactory result after three iterations.

The parameters of the uncertainty bound in (5) is selected as

F =

⎡
⎢⎢⎣

48.4 24.2 9.68 7.26
24.2 12.1 4.84 3.63
9.68 4.84 1.936 1.452
7.26 3.63 1.452 1.089

⎤
⎥⎥⎦

and ε = 0.005. The parameter α in the auxiliary system
dynamics (7) is selected as α = 0.02. Then, for the optimal
regulation problem of the auxiliary system (7), the weight
matrix is selected as Q = diag([1 2 3 1]), R1 = 4, R2 = 3
and β = 5. The exact solution of the ARE in (9) is

P∗ = 105 ×

⎡
⎢⎢⎣

1.8279 0.2783 0.1518 0.1763
0.2783 0.0472 0.0263 0.0297
0.1518 0.0263 0.0691 0.0168
0.1763 0.0297 0.0168 0.0191

⎤
⎥⎥⎦

and the optimal feedback gain is

K ∗ = [4.0643 0.7396 0.1668 0.2223]
L∗ = −[18.6377 2.8882 1.8788 1.8317].

We first implement Algorithm 1 to find the solution of the
ARE (9) in an offline manner. The iterative learning process
begins from the following admissible policy the auxiliary
system (7):

K 0 = [4.1682 0.7525 0.1668 0.2296]
L0 = [15.6727 2.4466 1.5507 1.5519]. (49)

Then, the convergence of the iterative iterative learning process
of Algorithm 1 is shown in Fig. 1. Note that Algorithm 1
requires complete knowledge of the system matrices, A, B ,
and D.

To investigate the robustness of the on-policy RL algorithm,
we add the probing noise into the iterative control policy. The
learning process is shown in Fig. 2. As given in Lemma 2,
adding the probing noise to the on-policy RL algorithm yields
a bias in the learning process. One can observe that the
iterative learning matrix Pi does not converge. Also, there
exist nonzero residuals between the iterative feedback gains
(K i and Li ) and the optimal feedback gains (K ∗ and L∗).
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Fig. 2. Effect of probing noise on the convergence of on-policy RL algorithm.
The probing noise in the iterative policy makes the learning does not converge
to the optimal case.

Fig. 3. Convergence of the off-policy RL algorithm with probing noise (50).
P∗, K∗, and L∗ represent the optimal case, whereas Pi , Ki , and Li denote
the learning in ith iteration.

Therefore, the effect of the probing noise on the on-policy RL
algorithm cannot be neglected.

In the next, we implement the off-policy RL algorithm to
solve the ARE (9) in an online fashion. In contrast to the
on-policy RL algorithm, the behavior policy applied to the
auxiliary system (7) is selected as

K = [4.1682 0.7525 0.1668 0.2296]
L = [15.6727 2.4466 1.5507 1.5519].

We add two types of probing noise into the off-policy RL
algorithm, that is,

e1(k) = cos(k) + cos(2k) + cos(20k)

e2(k) = sin(k) + sin(0.2k) (50)

for the first case and

e1(k) = 0.1 cos(k) + cos(2k) + sin2(1.7k)

e2(k) = sin(k) + sin(2k) + sin(0.538k) cos(0.538k) (51)

for the second case, where e1(k) is added to the iterative
policy uk = K xk and e2(k) is added to the iterative policy
vk = Lxk , respectively. The state trajectories and learning
process for these two cases with different probing noises are
shown in Figs. 3–6. For the data collection phase, the probing
noises are added to the behavior policy until 3000 steps.

Fig. 4. State trajectories using the off-policy RL algorithm with the probing
noise (50). The system state xk at time k is a vector which can be denoted
as xk = [xk (1) xk (2) xk (3) xk (4)]T, where xk ( j) is the j th element of the
state xk , for j = 1, 2, 3, 4.

Fig. 5. Convergence of the off-policy RL algorithm with probing noise (51).
P∗, K∗, and L∗ represent the optimal case, whereas Pi , Ki , and Li denote
the learning in ith iteration.

Then, the learning process begins from the same initial admis-
sible policy for the auxiliary system (7) as given in (49).
After the 3000th step, the learning process converges to the
optimal case and the approximate feedback gains K i and Li

are implemented to the auxiliary system (7), as shown in
Figs. 4 and 6, respectively, which yields the asymptotically
stable dynamics. The norm of learning errors between the
iterative control gain Ki and K ∗, Li and L∗, between the
iterative learning value function matrix Pi and optimal value
function matrix P∗ are shown in Figs. 3 and 5, respectively.
One can observe that the iterative value function matrix, Pi ,
the iterative control policies ui (x) = Ki x and vi (x) = Li x
converges to the solution to the ARE equation (9), P∗,
the optimal control policies u∗(x) = K ∗x and v∗(x) = L∗x ,
respectively, as the iteration continues. In addition, in both
cases, both the learning errors for the gains Ki and Li converge
to the optimal gains K ∗ and L∗, regardless of the probing noise
in the behavior policy.

When the off-policy RL algorithm converges, we use the
approximate optimal feedback gain K i to solve the robust

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:50:16 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: DATA-DRIVEN ROBUST CONTROL OF DISCRETE-TIME UNCERTAIN LINEAR SYSTEMS VIA Off-POLICY RL 3745

Fig. 6. State trajectories using the off-policy RL algorithm with the probing
noise (51). The system state xk at time k is a vector which can be denoted
as xk = [xk (1) xk (2) xk (3) xk (4)]T, where xk ( j) is the j th element of the
state xk , for j = 1, 2, 3, 4.

Fig. 7. Robust stabilization using the optimal controller design method.
The system state xk at time k is a vector which can be denoted as xk =
[xk (1) xk (2) xk (3) xk (4)]T, where xk( j) is the j th element of the state xk ,
for j = 1, 2, 3, 4.

stabilization problem. The uncertain system state trajectories
are shown in Fig. 7. Note that the uncertain parameter p
switches from −1.6 to 9.6 at k = 600, which results in a
small perturbation in the state trajectories. However, the robust
stabilization of the closed-loop system is achieved in the sense
that the state trajectories converge to the origin asymptotically,
as shown in Fig. 7. That is, with the presented optimal control
design-based method, the robust control problem of the linear
dynamic system with bounded mismatched uncertainty can be
solved.

VII. CONCLUSION

In this paper, a model-free solution is presented to solve
the robust control problem of discrete-time linear dynamical
systems. The robust control problem is first translated into an
optimal control problem with sufficient condition which guar-
antees the equivalence of problem translation. Then, off-policy

RL is used to solve the translated optimal control problem
using only measured data instead of the system dynamics.
Moreover, compared with the on-policy RL method, it is
shown theoretically that the off-policy RL method has two
main advantages. First, off-policy is robust to the probing
noise, i.e., there is no bias as a result of adding a probing
noise to the control input to satisfy the condition of persistence
of excitation. In addition, off-policy RL is a model-free
method, which is in contrast to the model-based on-policy
RL method. Finally, a simulation example is given to verify
the effectiveness of the presented off-policy RL algorithm.

APPENDIX A
PROOF OF THE EQUIVALENCE BETWEEN (9) AND (18)

First, (P−1 + BT R−1
1 BT + DT R−1

2 DT)−1 can be rewritten
as

(P−1 + BT R−1
1 BT + DT R−1

2 DT)−1

=
(

P−1 −
[

BT

DT

]T[ −R1 0
0 −R2

]−1 [
BT

DT

])−1

.

Based on the matrix inversion lemma [37], the above-
mentioned equation is equivalent to(

P−1 −
[

BT

DT

]T[ −R1 0
0 −R2

]−1 [
BT

DT

])−1

= P − P

[
BT

DT

]T

×
([−R1 0

0 −R2

][
BT

DT

]
P

[
BT

DT

]T
)−1

×
[

BT

DT

]
P

= P −
[

BT P
DT P

]T[
R1 + BT P B BT P D

DT P B R2 + DT P D

]−1

×
[

BT P
DT P

]
. (52)

By multiplying AT and A on both sides of (52), then adding
Q̄ yields the equivalence between (9) and (18).

APPENDIX B
PROOF OF THE EQUIVALENCE BETWEEN

(10) AND (11), AND (19) AND (20)

Based on (15), the following holds:[
K ∗
L∗

]
= −M−1

[ E
G

]

= −
[

R−1
1 0

0 R−1
2

] [
R1 0
0 R2

]
M−1

[ E
G

]
. (53)

Note that [
R1 0
0 R2

]
= M −

[
BT

DT

]
P[B D]. (54)
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Inserting (54) into (53) yields[
K ∗
L∗

]

= −
[

R−1
1 0
0 R−1

2

](
M −

[
BT

DT

]
P[B D]

)
M−1

[ E
G

]

= −
[

R−1
1 0
0 R−1

2

]([ E
G

]
−

[
BT

DT

]
P[B D]M−1

[ E
G

])

= −
[

R−1
1 BT P A

R−1
2 DT P A

]
+

[
R−1

1 BT P
R−1

2 DT P

] [
B D

]

×
[

R1 + BT P B BT P D
DT P B R2 + DT P D

]−1 [
BT P A
DT P A

]
. (55)

The first row of (55) gives

K ∗ = −R−1
1 BT P A + R−1

1 BT P[B D][
R1 + BT P B BT P D

DT P B R2 + DT P D

]−1 [
BT

DT

]
P A

= −R−1
1 BT

×
{

P − P[B D]
([

R1 0
0 R2

][
BT

DT

]
P[B D]

)−1

×
[

BT

DT

]
P

}
A

= −R−1
1 BT(

P−1 + BT R−1
1 B + DT R−1

2 D
)−1

A.

Therefore, (19) is equivalent to (10). The equivalence between
(20) and (11) can be obtained in a similar way.
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