
Journal of Systems Architecture 100 (2019) 101661

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

CASS: Criticality-Aware Standby-Sparing for real-time systems

Mingxiong Zhao

a , Di Liu

a , b , ∗ , Xu Jiang

c , Weichen Liu

b , Gang Xue

a , Cheng Xie

a , Yun Yang

a ,

Zhishan Guo

d

a School of Software, Yunnan University, China
b School of Computer Science and Engineering, Nanyang Technological University, Singapore
c School of Computer Science and Engineering, University of Electronical Science and Technology of China, China
d Department of Electrical and Computer Engineering, University of Central Florida, United States

a r t i c l e i n f o

Keywords:

Fault tolerance

Real-time systems

Energy-efficiency

DVFS

a b s t r a c t

The standby-sparing (SS) is a promising technique which deploys the dual-processor platform, i.e., one primary

processor and one spare processor, to achieve fault tolerance for real-time systems. In the existing SS framework,

all applications have their backup copies on the spare processor, but, in practice, not all applications on a system

are equally important to the system. Some low critical tasks may be traded off for other system objectives.

Motivated by this, in this paper, we integrate the concept of criticality into the SS framework. Such integration

enables the SS framework to further reduce energy consumption. We propose an offline approach to determine

an energy-efficient frequency for the primary processor. Additionally, as the cluster systems are emerging as

the mainstream computing platform, we consider the SS technique on the cluster/island systems and propose

an algorithm to determine the energy-efficient algorithm for such systems. We evaluate the proposed approach

on synthetic tasks and real-platforms. The experimental results demonstrate the effectiveness of our proposed

framework in terms of energy efficiency.

1

a

f

t

b

f

s

r

s

e

a

s

e

m

o

c

e

X

c

c

c

b

e

p

s

s

b

t

a

r

q

e

p

s

p

d

i

h

R

A

1

. Introduction

With the rapid development of the transistor technology, a huge

mount of transistors are fabricated on a single die to provide high per-

ormance. However, as the size of transistors shrinks, the probability

hat applications suffer from soft error increases [1] . Thus, the relia-

ility issue is arising as another design concern for systems, especially

or real-time systems which have a stringent real-time constraints to re-

pect. Different approaches were proposed to ensure fault tolerance for

eal-time systems, such as [2–6] . Meanwhile, the majority of real-time

ystems are embedded systems, usually powered by battery, so how to

nsure the reliability of the systems in an energy efficient fashion is

rising as a new challenge for real-time embedded systems [4–6] .

The standby-sparing (SS) technique is a promising approach to en-

ure fault tolerance by using hardware redundancy while achieving en-

rgy efficiency, where the SS architecture has two processors, one pri-

ary processor and one spare processor [5,6] . The execution semantics

f the SS is as follows: every task has a main copy on the primary pro-

essor which uses dynamic voltage/frequency scaling (DVFS) to save

nergy, and a backup copy on the spare processor which always exe-
∗ Corresponding author at: School of Software, Yunnan University, China.

E-mail addresses: mx_zhao@ynu.edu.cn (M. Zhao), dliu@ynu.edu.cn (D. Liu), jian

ue), xiecheng@ynu.edu.cn (C. Xie), yangyun@ynu.edu.cn (Y. Yang), zsguo@ucf.edu

ttps://doi.org/10.1016/j.sysarc.2019.101661

eceived 26 May 2019; Received in revised form 20 July 2019; Accepted 5 October 2

vailable online 24 October 2019

383-7621/© 2019 Elsevier B.V. All rights reserved.
utes at maximum frequency for on-time fault recovery. If the main copy

ompletes successfully, i.e., no fault occurred, the corresponding backup

opy on the spare processor is canceled to save energy. Otherwise, the

ackup copy executes to its completion for fault recovery purpose. To

ffectively balance energy efficiency and fault tolerance, the tasks on the

rimary processor are scheduled using a real-time scheduling algorithm,

uch as EDF and RM, but the backup copies on the spare processor are

cheduled as late as possible such that they have a high probability to

e canceled. More details about SS are discussed in Section 3.2 .

All existing SS approaches, like [5,6] , treat all tasks equally, i.e.,

hey assume that all tasks are of the same importance to the system

nd need to be recovered from a fault. However, in practice, not all

eal-time applications are equally important to a system, and are re-

uired to be recovered when a transient error occurs. We can see the

vidence from other models and systems, such as the imprecise com-

utational model [7] and the elastic model [8] . Those models either

acrifice quality of service (imprecise model) or performance (through-

ut in elastic model) to ensure the operation of the whole system un-

er the overloaded situation. Another primary example can be seen

n mixed-criticality research [9] , where the tasks of higher criticality
gxu@uestc.edu.cn (X. Jiang), liu@ntu.edu.sg (W. Liu), mass@ynu.edu.cn (G.

 (Z. Guo).

019

https://doi.org/10.1016/j.sysarc.2019.101661
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2019.101661&domain=pdf
mailto:mx_zhao@ynu.edu.cn
mailto:dliu@ynu.edu.cn
mailto:jiangxu@uestc.edu.cn
mailto:liu@ntu.edu.sg
mailto:mass@ynu.edu.cn
mailto:xiecheng@ynu.edu.cn
mailto:yangyun@ynu.edu.cn
mailto:zsguo@ucf.edu
https://doi.org/10.1016/j.sysarc.2019.101661

M. Zhao, D. Liu and X. Jiang et al. Journal of Systems Architecture 100 (2019) 101661

c

e

i

[

t

h

t

t

t

w

i

(

S

i

t

m

a

s

s

n

u

(

c

g

l

n

w

a

e

t

d

r

a

q

e

D

i

n

p

p

w

c

e

d

a

A

t

t

w

i

i

c

t

c

e

a

t

a

c

i

v

f

g

S

2

h

i

i

[

p

a

t

c

b

l

i

e

c

j

c

D

p

c

e

q

f

o

c

i

s

a

w

f

e

3

n

3

t

i

T
an receive extra execution budgets when they overrun their estimated

xecution time [10,11] . In contrast, the tasks of lower criticality will

nstead be stopped when they overrun their estimated execution time

12] . The major goal of mixed-criticality systems is to eliminate the sys-

em under-utilization while guaranteeing the temporal correctness of all

igh-criticality tasks. Recently, Brugge in [13] proposed a model which

akes into account fault tolerance and different importance of tasks. All

hose examples mentioned above show the merit of trading off the func-

ionality/performance of lower critical tasks for effective resource usage

hile guaranteeing the required functionality.

Inspired by this, we in this paper integrate the criticality concept

nto the SS technique and propose a Criticality-Aware Standby-Sparing

CASS in short) framework for fault-tolerant real-time systems. For the

S framework, if only critical tasks are recovered when a fault happens,

.e., only critical tasks are scheduled on the spare processor, it can reduce

he workload on the spare processor, and as a result more backup copies

ay be canceled on the spare processor. This will lead to a lower oper-

tional frequency of the primary processor as well as less energy con-

umption of the spare processor. Given that many embedded real-time

ystems are battery-supplied, prolonging the operational time is defi-

itely a preference. For instance, the unmanned vehicle aerials (UVAs)

sually have two types of tasks, flight control tasks and multimedia tasks

e.g., video surveillance). It is evident that flight control tasks would be

ritical to the whole system and needs to be recovered immediately to

uarantee the operation of UVA if any fault occurs. Otherwise, it may

ead to severe consequences. On the other hand, multimedia tasks may

ot have to do fault-recovery, because a blurry/missing image/video

ill not affect the safety of UVA. Then by only ensuring the fault toler-

nce of flight control tasks, the operational time of the UVA might be

xtended.

To reduce energy consumption, the SS framework applies DVFS on

he primary processor. The existing SS approaches [5,6] make online

ecisions to scale up/down the frequency for each task. However, for

eal-time systems, it is preferred to have a guarantee at design time

nd also DVFS itself occurs some overhead. Frequently changing fre-

uency will thus undermine the effectiveness of DVFS in terms of en-

rgy efficiency. In Section 6 , on a real-platform, we evaluate a dynamic

VFS approach comparing with a fixed maximum frequency approach

n terms of energy efficiency. We see that the dynamic approach does

ot show advantages over the maximum frequency one. Therefore, we

ropose an offline approach to determine the frequency for the primary

rocessor, and not only does this approach work for the CASS frame-

ork but also for the SS frameworks. The proposed offline approach

an be combined with the existing online approaches to achieve better

nergy efficiency, where the proposed offline approach can be used to

etermine the frequency in prior at design time and an effective online

pproach is deployed at runtime to further reduce energy consumption.

dditionally, besides the normal SS platform, we first consider the clus-

er/island platform for the SS framework, where all processors/cores on

he same cluster operate at the same frequency. Due to the high hard-

are overhead [14,15] , the increasing number of multicore systems are

mplemented based on the clusters/islands. Our detailed contributions

n this paper are as follows:

• We integrate the criticality concept into the standby-sparing tech-

nique for real-time systems. In order to derive an energy-efficient

frequency for the SS at design time, we present an analytical ap-

proach to compute the overlap between a job of any task and its

corresponding backup copy, because the overlap plays a pivot role

in determining the offline frequency of the primary processor.

• We analyze the trade-off relationship between the overlap and en-

ergy consumption. Based on our analysis, we derive an algorithm,

called CASS (Criticality-Aware Standby-Sparing), to determine the

energy efficient frequency for the primary processor;
• We consider the cluster/island platform as the SS platform and

present an algorithm, called CASS+, to determine offline frequency

for the cluster CASS framework.

Evaluation: We use a flight management system (FMS) [10] as our

ase study and use synthetic task sets to extensively evaluate the effec-

iveness of our approach in comparison with an online method [5] . This

omparison aims to demonstrate the potential of CASS in terms of en-

rgy efficiency. In addition, we implement CASS+ on an Intel desktop

nd use the widely used PARSEC benchmarks [16] to evaluate the effec-

iveness of CASS+. Experimental results show the effectiveness of CASS

nd CASS+ in terms of energy efficiency.

The remainder of this paper is organized as follows: Section 2 dis-

usses the related work. Section 3 presents some preliminaries includ-

ng task model, SS technique and power model. Section 4 gives moti-

ational examples to show the advantage of CASS framework over SS

ramework. Section 5 presents our analysis framework and proposed al-

orithms. Finally, Section 6 demonstrates the experimental results and

ection 7 concludes this paper and discusses the future work.

. Related work

In [6] , Ejlali et al, introduced the standby-sparing (SS) technique to

ard-real-time systems. However, they consider non-preemptive schedul-

ng and a task graph with a common deadline. Non-preemptive schedul-

ng is known to be NP-hard in the strong sense even for the uniprocessor

17] whereas we consider preemptive scheduling. Their approach is inap-

licable to periodic tasks which accounts for a big fraction of real-time

pplications.

In [18] , Haque et al. proposed an approach to energy-efficiently use

he SS technique for periodic tasks under fixed-priority scheduling. In

ontrast, in this paper we adopt EDF algorithm [19] which is known to

e the optimal algorithm on uniprocessor systems and has a higher uti-

ization bound than fixed-priority scheduling. The work closest to ours

s [5] , where the same task model and scheduling algorithm are consid-

red. The main difference between ours and [5] is that their approach

onsiders to change operational frequency at the granularity of a task

ob, i.e., an online/dynamic policy. However, DVFS technique itself oc-

urs considerable overhead [20] . As a consequence, the effectiveness of

VFS may be undermined by frequently varing frequencies. Some ex-

eriments on a real-platform show that the dynamic DVFS policy (i.e.,

hanging frequency according to the workload) may not lead to energy

fficiency even in comparison with the system always at maximum fre-

uency (see in Section 6). In contrary, our approach will only set a fixed

requency for the processor at design time and this will not cause any

verhead at run-time. Additionally, in our work, we integrate the con-

ept of criticality into the SS framework, this means that our approach

s more flexible and can leave more space for the primiary processor to

cale down its frequency in pursuit of more energy saving.

Our work also has some relevance with energy efficient scheduling

nd mixed-criticality scheduling [21] , but they are not as close as the

orks discussed above. Thus, we do not discuss them here, and we re-

er interesting readers to two comprehensive surveys, [22] for energy-

fficient real-time scheduling and [9] for mixed-criticality systems.

. Preliminaries

In this section, we introduce the task model, Standby-Sparing tech-

ique, and system model.

.1. Real-time task model

We consider the implicit-deadline periodic real-time task model

hat has been widely studied in literature, where there is a task set 𝛾,

ncluding n tasks. Each task 𝜏 i ∈ 𝛾 is characterized by 𝜏𝑖 = { 𝑇 𝑖 , 𝐶 𝑖 , 𝐿 𝑖 } .
 denotes period and C represents worst-case execution time (WCET) ,
i i

M. Zhao, D. Liu and X. Jiang et al. Journal of Systems Architecture 100 (2019) 101661

e

{

r

p

i

p

i

p

W

𝑈

m

s

c

e

l

e

c

e

m

t

t

t

t

C

c

n

o

3

t

t

t

S

o

o

s

c

p

t

f

m

e

a

l

t

w

s

i

c

w

w

s

a

a

e

i

s

w

d

w

s

i

u

3

p

𝑃

w

p

f

r

q

i

f

S

w

r

s

h

c

𝐸

w

t

𝐸

𝐸

𝛾

l

4

a

e

4

I

q

t

C

p

s

W

u

b

c

i

b

m

W

a

t
stimated at the maximum frequency f max of the processor. 𝐿 𝑖 =
 𝑇 𝑟𝑢𝑒, 𝐹 𝑎𝑙𝑠𝑒 } indicates the fault-tolerate requirement. If L i is true, then it

equires a recovery when a fault occurs. Otherwise, L i is false. In this pa-

er, we consider there are two types of tasks similar to the widely stud-

ed dual-criticality systems in mixed-criticality research [9] . For sake of

resentation, we call the tasks which need fault recovery FR tasks. The

mplicit deadline means that the deadline of each task is equal to its

eriod, so we omit deadline parameter in the task specification. With

CET (C i) and period (T i), the utilization of each task 𝜏 i is defined as

 𝑖 =

𝐶 𝑖

𝑇 𝑖
and the total utilization of task set 𝛾 is 𝑈 =

∑𝑛

𝑖 =1 𝑈 𝑖 .

Rational behind L i : L i is conceptually similar to criticality levels in

ixed-criticality (MC) research [9] . The major goal of mixed-criticality

ystems is to mitigate the under-utilization of safety-critical systems

aused by over-provision on the WCETs of high-criticality tasks. In lit-

rature, dual-criticality MC systems have two criticality levels, high and

ow . Highly critical tasks have two WCETs, a smaller one for its normal

xecution and a larger one for its abnormal execution, where highly

ritical tasks first are scheduled with their smaller WCET and receive

xtra execution budgets to complete its execution as something abnor-

al happens, such as recovery from fault [10] . In contrary, low critical

asks only have one WCET and they will not receive any extra budget

o complete their execution when any abnormal situation happens to

hem. This reflects the possibility that not all tasks need to have a fault-

olerate mechanism and motivates us to apply this paradigm to have our

ASS framework. The main difference between the well-studied mixed-

riticality model and the model considered in this paper is that we do

ot consider the varing WCET of each task, which is the special feature

f mixed-criticality systems.

.2. Standby-sparing technique

Different from the fault-tolerant appraoches based on the software

echniques, such as re-execution/ roll-back [23] , the motivation of

he SS technique is to utilize hardware-redundancy to guarantee fault-

olerance while reducing energy consumption. As in the literature, the

S technique is mainly used for transient fault. All tasks are scheduled

n the primary processor, and the backup copies of tasks are scheduled

n the spare processor. If a task completes successfully, then its corre-

ponding backup on the spare processor will be canceled to save energy

onsumption. Otherwise, the backup copy will be scheduled to its com-

letion to support fault recovery. To guarantee the fast execution of

he backup tasks, the spare processor always operates at the maximum

requency. Therefore, the goal of the existing SS approaches strives to

inimize the overlap between tasks and their backup copies such that

nergy consumption of the spare processor can be reduced. However,

s we observe that minimizing overlap strategy applied in [5 , 6] does not

ead to the minimal energy consumption, in some cases, we could trade off

he overlap for the lower operational frequency of the primary processor,

hich compensates the increased energy consumption of the spare proces-

or and thus leads to a more energy efficient system. An example is given

n Section 5 to demonstrate this possible tradeoff. Like other literature

onsidering SS techniques, we only consider the transient fault in this

ork.

The scheduling algorithms is an important factor for the SS frame-

ork to ensure reliability and reduce energy consumption. In this paper,

imilar to [5] , to minimize the overlap, all tasks on the primary processor

re scheduled under earliest deadline first (EDF) algorithm [19] , whereas

ll backup copies of tasks on the spare processor are scheduled under

arliest deadline as late as possible (EDL) algorithm [24] . EDF algorithm

s known to be optimal on uniprocessor systems and EDL is another ver-

ion of earlies deadline scheduling algorithm [24] . For both algorithms,

e use the same tiebreak policy when two or more tasks have the same

eadline. The task with a larger period is scheduled first and the task

ith smaller task ID is given higher priority in the case of having the

ame period. We select this tiebreak policy for the purpose of reduc-
ng the overlap and it does not affect the scheduling performance on

niprocessor systems [25] .

.3. System model

For power consumption of processors, we deploy the widely used

ower model [15,22,26]

 = 𝑎𝑓 𝑏 + 𝑠, (1)

here a and b ∈ [2, 3] are both hardware-related parameters. The first

art of Eq. (1) denotes the dynamic power consumption which accounts

or power consumption due to execution activity and is frequency-

elated. s denotes the leakage/static power which is not related to fre-

uency and is consumed as soon as the processor is switched on.

It is known that due to the presence of leakage power consumption it

s not beneficial to scale down the operational frequency below a certain

requency level, because it may lead to even more energy consumption.

uch frequency level is called critical frequency , denoted as f crit .

With Eq. (1) , we can compute energy consumption of a task set

ithin a hyper-period. Hyper-period is the least common multiple of pe-

iods of all tasks, denoted as hp . Since every hyper-period repeats the

ame schedule, we compute energy consumption of task set 𝛾 over one

yper-period. The total energy consumption is the summation of energy

onsumption of the primary processor and the spare processor.

 = 𝐸 𝑝 + 𝐸 𝑠 (2)

here E p and E s are energy consumption of the primary processor and

he spare processor, respectively. They are computed as follows:

 𝑝 = ℎ𝑝

(

𝑎 × 𝑓 𝑏
𝑘
×
∑

∀𝜏𝑖 ∈𝛾 𝐶 𝑖 ∕ 𝑇 𝑖
𝑓 𝑘 ∕ 𝑓 max

+ 𝑠

)

= ℎ𝑝 (𝑎 × 𝑓 max × 𝑓 𝑏 −1
𝑘

× 𝑈 + 𝑠) (3)

 𝑠 = 𝑎 × 𝑓 𝑎 max ×
∑

∀𝜏𝑗 ∈𝛾𝐹𝑇

ℎ𝑝 ∕ 𝑇 𝑗 ∑
𝑘

𝑂

𝑜
𝑗,𝑘

+ 𝑠 × ℎ𝑝 (4)

FT is the set of all FR tasks.
∑

∀𝜏𝑗 ∈𝛾𝐹𝑇

∑ℎ𝑝 ∕ 𝑇 𝑗
𝑘

𝑂

𝑜
𝑗,𝑘

denotes the total over-

ap of FR tasks within a hyper-period.

. Motivational example

In this section, we present two motivational examples to show the

dvantages of the CASS framework over the SS framework in terms of

nergy efficiency.

.1. Real-life benchmarks

We implement the SS technique on Ubuntu 16.04 of a desktop with

ntel i7-8700 CPU of 6 cores and 16GB memory and the maximum fre-

uency of each core is 3.2 GhZ. Likwid-powermeter tool [27] is used

o measure the energy consumption from the experimental desktop.

PU1 is used as the primary processor and CPU2 is used as the spare

rocessor. In addition, to prevent the interference on the primary or

pare processor, we fix the cpu affinity of likwid-powermeter to CPU3.

e select two benchmarks, freqmine and facesim from the widely

sed PARSEC benchmark suite [16] for the illustrative purpose, where

oth benchmarks are compiled with ’gcc-serial’ , i.e., a single thread exe-

utable is generated. Then, the benchmarks are executed with ’simlarge’

nput data. More details about compilation and execution of PARSEC can

e found in [16] . WCETs are estimated according to the real measure-

ent on the experimental platform with some additional overhead. The

CETs of freqmine and facesim are 5 s and 27 s, respectively, and we

ssign a period of 30s and 50s to them respectively. The parameters of

hese two benchmarks are given in Table 1 . The total utilization of these

M. Zhao, D. Liu and X. Jiang et al. Journal of Systems Architecture 100 (2019) 101661

Table 1

Benchmark parameters.

Benchmark T C L

Freqmine 30 s 5 s True

Facesim 50 s 27 s False

Table 2

Experimental results of the motivational exam-

ple.

Approach Energy Diff

Dynamic SS 2420.29J 604.92J

CASS 1815.37J 25%

Max SS 2398.49J 556.94J

CASS 1841.55J 23%

Table 3

Motivational Example.

task C T L

A 30 ms 50 ms False

B 20 ms 100 ms True

t

F

o

t

e

p

fi

c

i

e

o

w

i

o

J

T

t

t

d

s

fl

t

4

i

n

t

b

t

c

f

w

l

t

f

m

f

Table 4

Power parameters of ARM cortex A15 from Liu et al.

[26] .

b (W / MhZ 2) a P s (W)

3 . 03 × 10 −9 2.621 0.155

frequency levels (MhZ) 1200 1400 1600 1800 2000

t

a

h

c

o

p

e

h

i

p

e

2

s

i

s

s

c

E

W

p

t

p

5

t

a

t

c

t

T

q

[

b

s

q

s

E

i

j

s

u

f

t

t

e

i

c

b

s

b

o

wo applications is 70.6%. In addition, we set benchmark facesim ’s L to

alse, i.e., in the CASS framework, benchmark facesim is not executed

n the spare core.

We measure the energy consumption of both approaches for an in-

erval of 150 s which is the hyperperiod of the two benchmarks. In this

xample, we test two DVFS mechanisms, one is the fixed frequency ap-

roach (considered in this paper), denoted as ‘Max’ in Table 2 , where we

x the system’s frequency to the maximum frequency. Another method

onsidered is a ‘dynamic’ approach, i.e., the frequency changes accord-

ng to the utilization, similar to the approach presented in [18] . In this

xample, we deploy Ubuntu’s default ‘ondemand’ policy to emulate this

nline approach [28] . Experimental results are summarized in Table 2 ,

here SS and CASS denotes the traditional SS technique and the crit-

cality aware SS proposed in this paper, respectively.

We see from the results that if only FR task freqmine is scheduled

n the spare processor, energy consumption can be reduced by 604.92

oule and 556.94 Joule, for ’dynamic’ and ‘Max’ approach, respectively.

hat is more than 20% energy saving. This shows a significant reduc-

ion on energy consumption. Moreover, we see that even executing at

he maximum frequency does not consume a lot more energy than the

ynamic approach, even in no criticality case, the fixed frequency con-

umes less energy than the dynamic case. This inspires us to find an of-

ine approach to determine an energy-efficient and fixed frequency for

he CASS framework.

.2. Illustrative example

The real platform example shows the potential of the CASS technique

n terms of energy consumption. However, due to the limitation of the

ew Intel CPU, under ’userspace’ mode, all cores’ frequencies are set as

he same. Thus, it cannot show how the CASS save energy consumption

y scaling the primary processor’s frequency. By only scheduling FR

asks on the spare processor, the system is able to cancel more backup

opies and leaves more room for the primary processor to scale down its

requency, thereby reducing more energy consumption. In this section,

e use an illustrative example to show this.

Given a task set shown in Table 3 , there are two tasks where: task A is

ow critical and needs no fault recovery, while task B is a critical task and

hus has a backup copy upon the spare processor. Power parameters and

requency levels used in this example are from an ARM Cortex A15 core

easured in [26] . Note that as indicated in [15] , the critical frequency

 of Cortex A15 is not observed within range [1200 MhZ, 2000 MhZ],
crit
his means that the operational frequency can be scaled down as much

s possible once the deadlines can be guaranteed.

First, we show how tasks executes in the SS framework, i.e., all tasks

ave backup copies on the spare processor. In this case, to save energy

onsumption, the objective is to minimize the overlap between tasks

n the primary processor and their corresponding backups on the spare

rocessor such that the execution of backup copies can be canceled as

arly as possible. In this example, the schedule of task A and B within a

yper-period 100 ms derived by using the existing approach [5] is given

n Fig. 1 , where “Overlap ” denotes the overlap execution on the spare

rocessor when there is no fault. It can be seen that there exists overlap

ven as the primary processor operates at the maximum frequency of

 GhZ , so the operational frequency of the primary processor will not be

caled down. The total overlap is 20 ms.

In contrast, if we only have the FR task on the spare processor shown

n Fig. 1 , the advantage is evident. Since there is no overlap and the

pare processor does not consume dynamic power, the primary proces-

or can scale down its frequency to 1.6 GhZ while not violating deadline

onstraints. Energy consumption is reduced due to the lower frequency.

nergy consumption of the two approaches is summarized in Table 5 .

e see that CASS saves energy consumption over SS by 36%. This exam-

le shows how the CASS framework utilizes the advantages of fewer FR

asks on the spare processors to scale down the frequency of the primary

rocessors for better energy efficiency.

. The proposed approach

The preceding section shows the benefit of the CASS framework. In

his section, we address the key issue in this framework, i.e., determining

 proper frequency for the primary processor.

The frequency selection of the primary processor is determined by

wo factors: (1) the total utilization of the primary processor: on unipro-

essor systems, the processor can scale down its frequency as long as

he total utilization is smaller than or equal to 1 under EDF scheduling.

hus, the total utilization plays an essential role in determining the fre-

uency; and (2) the total overlap of FR tasks: the previous approaches

6,18] always strive to minimize the overlap between tasks and their

ackup copies. However, in some cases, increasing the overlap on the

pare processor may have the primary processor scaled down its fre-

uency further which as a result saves energy consumption of the whole

ystem. Let us see from the following example.

xample 1. Suppose that we have a task with 𝐶 = 25 s (obtained at max-

mum frequency) and 𝑇 = 50 s . It is not difficult to see that the main

ob on the primary processor and the spare job on the spare processor

hould not have any overlap if they execute at the maximum frequency

nder EDF and EDL scheduling algorithms, respectively, but any lower

requencies will generate overlap. Therefore, according to the conven-

ional rule of the SS framework, the frequency of the primary processor

hen should be fixed at the maximum frequency. In this case, consid-

ring the power parameters shown in Table 4 , the energy consumption

n this scenario is 34.0 mJ, here we only compute the dyanmic power

onsumption because the static power consumption will be the same for

oth cases. However, if the operational frequency of the primary proces-

or is scaled down from 2000 MhZ to 1600 Mhz. The overlap is now 6s,

ut the energy consumption is 31.6 mJ which is less than the minimal

verlap case. Details about this example is given in Table 6 .

M. Zhao, D. Liu and X. Jiang et al. Journal of Systems Architecture 100 (2019) 101661

Fig. 1. Motivational example.

Table 5

Energy comparison between two ap-

proaches.

Primary Spare Total

SS 124.3 mJ 42.7 mJ 167 mJ

CASS 91.2 mJ 15.5 mJ 106.7 mJ

Table 6

The example shows that the minimal overlap does not lead to the least en-

ergy consumption in some cases.

Scenario f of Primary Overlap E p E s Total

Minimal overlap 2000 MhZ 0 34.0 mJ 0 34.0 mJ

Not minimal 1600 MhZ 6 23.6 mJ 8 mJ 31.6 mJ

l

e

t

m

i

w

t

5

E

a

r

f

p

a

j

c

g

t

t

c

0

s

a

t

c

L

o

d

𝐹

w

s

P ⌊ ∑

H

e

t

t

t

p

i

c

c

t

J

fi

b

5

h

p

c

t

a

s

f

o

L

a

a

𝑅

w

s

P

c
From Example 1 , it is seen that minimizing the overlap does not

ead to the minimal energy consumption. To determine the most energy-

fficient frequency based on the overlap, we need to precisely compute

he overlap of each task such that the desired frequency can be deter-

ined. In addition, in contrast to the previous approaches, our approach

s an offline approach which can avoid the frequency scaling overhead

hile guaranteing the hard real-time constraints.

To compute the overlap, we need to know the finish time and start

ime of a task on the primary and the spare processor, respectively.

.1. Finish time on the primary processor

The primary processor uses EDF scheduling to schedule tasks and

DF scheduling is a dynamic-priority and work-conserving scheduling

lgorithm. The work-conserving property of a real-time scheduling algo-

ithm means that the processor cannot be idle if there is a task pending

or execution. When we have a closed system, i.e., all tasks are known in

rior to the system design, then the schedule table of all tasks under EDF

lgorithm can be constructed [29] and as results the finish time of each

ob in this schedule can be known. However, there is no existing way to

ompute the finish time, so in this section we present an approach.

To compute the finish time of a job under EDF scheduling, except the

iven parameters of all tasks, we also need to know the idle interval in

he schedule. In [24] , Chetto and Chetto proposed an iterative approach

o compute idle intervals within a hyper-period. Their approach first

omputes an arrival time vector  = { 𝑒 0 , 𝑒 1 , … , 𝑒 ℎ𝑝 } with 𝑒 𝑥 < 𝑒 𝑥 +1 , 𝑒 0 =
 and 𝑒 ℎ𝑝 = ℎ𝑝, where 𝑒 𝑥 ∈  denotes a distinct arrival time from task

et 𝛾. The approach to compute the idle interval is not presented here,

nd interesting readers are refered to [24] . We use Ω(e x) to denote the

otal length of idle intervals before e x . With the computed idle time, we

an compute the finish time of a job under EDF scheduling

emma 1. Using EDF scheduling, given a task set 𝛾, one task 𝜏 i ∈ 𝛾 and

ne absolute deadline 𝑒 ∈  , the finish time of the job of 𝜏 scheduled with
𝑥 i
eadline at e x is computed by the following:

 𝑖 (𝑒 𝑥) =

𝑛 ∑
𝑗=1

⌊ 𝑒 𝑥
𝑇 𝑗

⌋
𝐶 𝑗 −

(∑
∀𝜏𝑚 ∈�̂�(𝑒 𝑥)

𝐶 𝑚

)

+ Ω(𝑒 𝑥 − 𝑇 𝑖) (5)

here �̂�(𝑒 𝑖) denotes all tasks which have an absolute deadline at e x but a

maller period or a larger task id when they have the same period as task 𝜏 i .

roof. Let J i denote the job of task 𝜏 i with deadline at e x . First,

e x / T j ⌋ computes how many jobs task 𝜏 j has completed before e x . Thus,
𝑛

𝑗=1 ⌊𝑒 𝑥 ∕ 𝑇 𝑗 ⌋𝐶 𝑗 denotes the total workload with deadline before or at e x .

owever, it may happen that multiple tasks have the same deadline at

 x . Then with the tiebreaker policy explained in Section 3.2 , tasks per-

aining to �̂�(𝑒 𝑖) must be scheduled after the job of task 𝜏 j , so we need

o remove these workload, i.e.,
∑

∀𝑚 ∈�̂�(𝑒 𝑥) 𝐶 𝑚 . Moreover, idle times affect

he finish time of job J i as well. Due to the work-conserving property, the

rocessor cannot be idle if there is a task pending. If a job is released,

t must proceed to its completion without idle. Thus, we just need to

onsider the idle time happened before the release of job J i . Since we

onsider the implicit deadline task model, 𝑒 𝑥 − 𝑇 𝑖 denotes the release

ime of job J i and Ω(𝑒 𝑥 − 𝑇 𝑖) denotes the idle time occurs before e x .

Taking into account all these, by using Eq. (5) , the finish time of job

 i of task 𝜏 i with deadline at e x can be obtained. □

If the idle times and the arrival times of a task set is known, all

nish times of all tasks within a hyper-period under EDF scheduling can

e computed by using Lemma 1 .

.2. Start time on the spare processor

Lemma 1 helps us determine the finish times of all tasks within a

yper-period on the primary processor under EDF scheduling. To com-

ute the overlap of a task, we also need to know the start time of the

orresponding task on the spare processor. In this section, we present

he way to compute the start time of a task under EDL algorithm.

In EDL scheduling, all jobs are dispatched as late as possible. Thus,

s indicated in [24] , different from EDF scheduling, idle times in EDL

cheduling immediately follow arrival times. Taking into account this

act and the feature of EDL scheduling, we can compute the start time

f jobs under EDL scheduling by the following lemma:

emma 2. Using EDL scheduling, given a task set 𝛾, a task 𝜏 i ∈ 𝛾 and one

bsolute deadline 𝑒 𝑥 ∈  , the latest start time of the job of 𝜏 i with deadline

t e x is computed by the following:

 𝑖 (𝑒 𝑥) = Ω(𝑒 𝑥) +

𝑛 ∑
𝑗=1

⌊ 𝑒 𝑥
𝑇 𝑗

⌋
𝐶 𝑗 −

∑
∀𝜏𝑚 ∈�̂�(𝑒 𝑥)

𝐶 𝑚 (6)

here �̂�(𝑒 𝑥) denotes all tasks which have an absolute deadline at e x but a

maller period or a larger task id when they have the same period as task 𝜏 i .

roof. The proof is similar to the one of Lemma 1 . The main difference

omes from idle times Ω(e). In EDL scheduling, idle times immediately
x

M. Zhao, D. Liu and X. Jiang et al. Journal of Systems Architecture 100 (2019) 101661

f

d

t

c

5

o

o

T

t

b

𝑂

w

𝑂

P

5

t

f

b

m

s

c

q

t

i

I

w

l

p

l

t

o

P

f(

w

m

P

𝐸

H

s

h

𝐸

w

q

⇔

⇔

⇔

⇔

q

b

e

fi

b

s

f

o

P

q

o

b

𝑂

P

a

a

n

d

i

t

o

o

ollow arrival times. Therefore, to compute the start time of 𝜏 i with

eadline e x , all idle times before e x should be taken into account. □

If the idle times and the arrival times of a task set is known, all start

imes of all tasks within a hyper-period under EDL scheduling can be

omputed by using Lemma 2 .

.3. Overlap

With Lemmas 1 and 2 , we can compute the overlap between any job

f a task on the primary processor and its corresponding backup copy

n the spare processor.

heorem 1. Given a task set 𝛾 and a job of task 𝜏 i with deadline at e x ,

he overlap between the job on the primary processor and its corresponding

ackup copy on the spare processor can be computed as follows:

 𝑖 (𝑒 𝑥) = 𝐹 𝑖 (𝑒 𝑥) − 𝑅 𝑖 (𝑒 𝑥) (7)

here

 𝑖 (𝑒 𝑥) =

{

≤ 0 no overlap

> 0 there is overlap

roof. It is evident from Lemmas 1 and 2 . □

.4. Energy-efficient frequency

By using Theorem 1 , we could analytically compute the overlap for

he CASS systems. In previous literature, the main objective of the SS

ramework is to minimize the overlap between the main job and its

ackup. However, as we showed in Example 1 , it is seen that actually

inimizing overlap does not always lead to the minimal energy con-

umption. In some cases, overlaps can be traded off for lower energy

onsumption. Then, a naive approach to find the energy efficient fre-

uency could try the all possible frequencies, and everytime compute

he new overlap. However, this approach is computationally expensive

f the hyperperiod is large and there are many tasks in a taskset [30] .

n this section, based on Theorem 1 , we present a simple way to check

hether scaling down the frequency of the primary processor leads to

ower energy consumption for the whole system. For compactness of

resentation, let � 𝐼 � 0 = max (0 , 𝐼) . � 𝐼 � 0 is used to determine the over-

ap length for computing energy consumption. When I ≤ 0 and � 𝐼� 0 = 0 ,
here is no overlap. On the other hand, if I > 0 and � 𝐼 � 0 = 𝐼 , there is an

verlap consuming energy.

roposition 1. Given a task set 𝛾, f n leads to more energy-efficiency if the

ollowing holds

𝑓 𝑛

𝑓 𝑚𝑎𝑥

) 𝑎 −1
< 1 +

� 𝑂 𝑚𝑎𝑥 � 0 − � 𝑂 𝑛 � 0
𝑈 𝛾 × ℎ𝑝

(8)

here 𝑂 max denotes the total overlap when the primary processor executes at

aximum frequency. O n denotes the total overlap obtained at frequency f n

roof. If the primary processor executes at maximum frequency, it has:

 𝑚𝑎𝑥 = 𝑎 ⋅ 𝑓 𝑏
𝑚𝑎𝑥

⋅ 𝑈 ⋅ ℎ𝑝 + 𝑎 ⋅ 𝑓 𝑏
𝑚𝑎𝑥

⋅ � 𝑂 𝑚𝑎𝑥 � 0

ere, we omit the static power consumption, because they remain the

ame even if we change the frequency.

If the primary processor scales down its frequency to f n (< 𝑓 max), it

as:

 𝑛 = 𝑎 ⋅ 𝑓 𝑏
𝑛
⋅

𝑈 ⋅ ℎ𝑝
𝑓 𝑛 ∕ 𝑓 𝑚𝑎𝑥

+ 𝑎 ⋅ 𝑓 𝑏
𝑚𝑎𝑥

⋅ � 𝑂 𝑛 � 0

here O n (≥ 𝑂 max) denotes the new overlap. Then, if 𝐸 𝑛 < 𝐸 max , fre-

uency f n is more energy efficient.

𝑎 ⋅ 𝑓 𝑏
𝑛
⋅

𝑈 𝛾 ⋅ ℎ𝑝

𝑓 𝑛 ∕ 𝑓 𝑚𝑎𝑥

+ 𝑎 ⋅ 𝑓 𝑏
𝑚𝑎𝑥

⋅ � 𝑂 𝑛 � 0

< 𝑎 ⋅ 𝑓 𝑏
𝑚𝑎𝑥

⋅ 𝑈 𝛾 ⋅ ℎ𝑝 + 𝑎 ⋅ 𝑓 𝑏
𝑚𝑎𝑥

⋅ � 𝑂 𝑚𝑎𝑥 � 0
(By removing 𝑎)

𝑓 𝑏
𝑛

𝑈 𝛾 ⋅ ℎ𝑝

𝑓 𝑛 ∕ 𝑓 𝑚𝑎𝑥

+ 𝑓 𝑏
𝑚𝑎𝑥

� 𝑂 𝑛 � 0

< 𝑓 𝑏
𝑚𝑎𝑥

⋅ 𝑈 𝛾 ⋅ ℎ𝑝 + 𝑓 𝑏
𝑚𝑎𝑥

� 𝑂 𝑚𝑎𝑥 � 0

(By dividing 𝑓 max at both sides)

𝑓 𝑏 −1
𝑛

𝑈 𝛾 ⋅ ℎ𝑝 + 𝑓 𝑏 −1
𝑚𝑎𝑥

� 𝑂 𝑛 � 0

< 𝑓 𝑏 −1
𝑚𝑎𝑥

⋅ 𝑈 𝛾 ⋅ ℎ𝑝 + 𝑓 𝑏 −1
𝑚𝑎𝑥

� 𝑂 𝑚𝑎𝑥 � 0

𝑓 𝑏 −1
𝑛

𝑈 𝛾 ⋅ ℎ𝑝 < 𝑓 𝑏 −1
𝑚𝑎𝑥

(𝑈 𝛾 ⋅ ℎ𝑝 + � 𝑂 𝑚𝑎𝑥 � 0 − � 𝑂 𝑛 � 0)

(Since 𝑈 𝛾 ⋅ ℎ𝑝 and 𝑓 𝑏 −1 max are positive)

(
𝑓 𝑛

𝑓 𝑚𝑎𝑥

) 𝑏 −1 < 1 +

� 𝑂 𝑚𝑎𝑥 � 0 − � 𝑂 𝑛 � 0
𝑈 𝛾 × ℎ𝑝

□

Proposition 1 provides a simple way to determine whether a fre-

uency is energy-efficient when comparing to the maximum frequency,

ut we still need to compute the new overlap at the new frequency ev-

rytime. On the SS platform, the frequency of the spare processor is

xed at the maximum frequency, and this means that the start times of

ackup copies are fixed. The frequency variation of the primary proces-

or only affect the finish times of the tasks. Therefore, we can use the

ollowing proposition to compute the new overlap based on the overlap

btained at the maximum frequency.

roposition 2. Given the total overlap 𝑂 max obtained at maximum fre-

uency, if the primary processor could be scaled down to frequency f n with-

ut violating deadline constraints, the total overlap O n at frequency f n can

e computed as follows:

 𝑛 = 𝑈 ⋅ ℎ𝑝
(

𝑓 𝑚𝑎𝑥

𝑓 𝑛
− 1

)

+ 𝑂 𝑚𝑎𝑥 (9)

roof. Since the backup jobs on the spare processor are always executed

t the maximum frequency, their starting time under EDL scheduling

lgorithm is fixed. On the primary processor, frequency scaling does

ot change tasks’ scheduling order due to the unchanged deadline, but it

oes delay the finish time of each task. 𝑈 ⋅ ℎ𝑝 (𝑓 max
𝑓 𝑛

− 1) denotes the total

ncreased workload by scaling down the operational frequency to f n on

he primary processor. The scaling-down frequency leads to a longer

verlap which are caused by the increased workload. Thus, the new

verlap under frequency f n can be computed by Eq. (9) . □

With Proposition 2 , we analyze the different cases in Proposition 1 .

• 𝑂 max < 0 and O n ≤ 0: This case denotes that even scaling down the

frequency to f n does not generate overlap, then in this case we scale

down frequency as low as possible once the frequency can guarantee

the deadline constraints.

• 𝑂 max < 0 and O n > 0: This case denotes that scaling down frequency

to f n generates some overlap, then in this case we have (

𝑓 𝑛

𝑓 𝑚𝑎𝑥

) 𝑏 −1
< 1 +

� 𝑂 𝑚𝑎𝑥 � 0 − � 𝑂 𝑛 � 0
𝑈 𝛾 × ℎ𝑝

⇔

(

𝑓 𝑛

𝑓 𝑚𝑎𝑥

) 𝑏 −1
< 1 −

𝑂 𝑛

𝑈 𝛾 × ℎ𝑝

⇔

(

𝑓 𝑛

𝑓 𝑚𝑎𝑥

) 𝑏 −1
< 1 −

𝑈 ⋅ ℎ𝑝 (𝑓 𝑚𝑎𝑥

𝑓 𝑛
− 1) + 𝑂 𝑚𝑎𝑥

𝑈 𝛾 × ℎ𝑝

⇔

(

𝑓 𝑛

𝑓 𝑚𝑎𝑥

) 𝑏 −1
< 2 −

𝑓 𝑚𝑎𝑥

𝑓 𝑛
−

𝑂 𝑚𝑎𝑥

𝑈 𝛾 × ℎ𝑝
(10)

M. Zhao, D. Liu and X. Jiang et al. Journal of Systems Architecture 100 (2019) 101661

t

5

g

n

u

q

c

s

s

c

p

t

p

A

5

m

s

c

c

t

p

f

n

m

f

t

f

t

o

c

s

T

t

c

i

p

c

f

a

m

o

s

o

s

h

c

g

e

s

e

i

p

t

i

6

C

t

c
• 𝑂 max ≥ 0 and O n > 0: This case denotes that before scaling down,

there already exists overlap, then we have (

𝑓 𝑛

𝑓 𝑚𝑎𝑥

) 𝑏 −1
< 1 +

� 𝑂 𝑚𝑎𝑥 � 0 − � 𝑂 𝑛 � 0
𝑈 𝛾 × ℎ𝑝

⇔

(

𝑓 𝑛

𝑓 𝑚𝑎𝑥

) 𝑏 −1
< 1 +

𝑂 𝑚𝑎𝑥 − 𝑂 𝑛

𝑈 𝛾 × ℎ𝑝

⇔

(

𝑓 𝑛

𝑓 𝑚𝑎𝑥

) 𝑏 −1
< 1 +

𝑂 𝑚𝑎𝑥 − 𝑈 ⋅ ℎ𝑝 (𝑓 𝑚𝑎𝑥

𝑓 𝑛
− 1) − 𝑂 𝑚𝑎𝑥

𝑈 𝛾 × ℎ𝑝

⇔

(

𝑓 𝑛

𝑓 𝑚𝑎𝑥

) 𝑏 −1
< 2 −

𝑓 𝑚𝑎𝑥

𝑓 𝑛
(11)

From the above analysis, if we know 𝑂 max , it is easy to check whether

he frequency satisifies the metric according to different cases.

.5. Proposed algorithm

With the analysis given in the previous section, we present an al-

orithm to determine the proper frequency for the primary processor,

amely Criticality-Aware Standby-Sparing (CASS).

The pseudo code of CASS is presented in Algorithm 1 . CASS simply

Algorithm 1: CASS: Determine the operational frequency for the

primary processor.

input : task set 𝛾 and frequency set in decreasing order

output : the operational frequency 𝑓 𝑜 of the primary processor

1 𝑓 𝑜 ← 𝑓 𝑚
2 Compute 𝑂 max using Theorem 1

3 𝐹 = Find all frequencies which are higher than critical frequency

𝑓 𝑐𝑟𝑖𝑡 and satisify Proposition 1.

4 𝑓 𝑜 = frequency which have the biggest difference between the

left-hand sideand the right-hand side of Proposition 1.

5 return 𝑓 𝑜

ses the analysis results obtained from Proposition 1 and takes the fre-

uency as the operational frequency which satisifies Proposition 1 and

auses the biggest difference between two sides of inequality (8) . We

elect the frequency which can have the biggest difference at the two

ides, because it leads to the most energy saving.

Complexity analysis: The complexity of CASS is determined by the

omplexity of computing 𝑂 max or the frequency levels a processor sup-

orts. Computing the 𝑂 max is dependent on the number of tasks and

he length of hyperperiod. When it comes to the hyper-period, the com-

utational complexity in the worst-case is pseudo-polynomial [31] , so

lgorithm 1 has a pseduo-polynomial complexity in the worst-case.

.6. CASS on cluster systems

Nowadays, the increasingly number of hardware systems are imple-

ented as a cluster/island system, i.e., several processors are on the

ame voltage/frequency cluster/island to reduce the hardware overhead

aused by the per-core power/frequency regulator [14,15] , and the pro-

essors on the same cluster/island operates at the same frequency. The

raditional SS technique always assumes that the platform supports the

er-core DVFS and the spare processor always executes at the maximum

requency, but as we show in Example 1 the minimum overlap does not

ecessarily lead to the minimum energy consumption. This observation

ay be also applicable in the cluster system, and thus scaling down the

requency of the spare processor may still have an energy-efficient sys-

em. In this section, we investigate how to determine an enery-efficient

requency for the CASS where both primary and spare processors are on

he same cluster.
On the per-core DVFS systems, we can have the primary processor

perate at a proper frequency for energy efficiency and the spare pro-

essor always at the maximum frequency. Thus, as soon as the tasks

cheduled on the spare processor is known, their start times are fixed.

hen, scaling down the frequency of the primary processor just causes

he delayed finish times of tasks on the primary processor, so we can

ompute the new overlap according to the overlap obtained at the max-

mum frequency and the new frequency (Proposition 2).

However, for the cluster systems, the start times of tasks on the spare

rocessor are changed along with the scaling-down of the primary pro-

essor, so both start times and finish times need to be recalculate. There-

ore, Proposition 1 is not applicable any more. In this case We present

 new algorithm, namely CASS+, for the CASS on the cluster system.

The pseudo code of CASS+ is presented in Algorithm 2 . The funda-

Algorithm 2: CASS+: Determine the operational frequency for the

cluster system.

input : task set 𝛾 and frequency set in decreasing order

output : the operational frequency 𝑓 𝑜 of the cluster system

1 𝑓 𝑜 ← 𝑓 𝑚
2 𝐸 𝑐𝑢𝑟 = 0
3 for 𝑓 𝑘 ∈ [𝑓 𝑚 , 𝑓 𝑚 −1 , … , 𝑓 𝑐𝑟𝑖𝑡] do

4 if 𝑈 > 𝑓 𝑘 ∕ 𝑓 𝑚 then

5 break

6 𝐸 𝑝 (𝑓 𝑘) ← Using Eq. (3) to compute energy consumption of the

primary processor at frequency 𝑓 𝑘
7 for ∀𝜏𝑗 ∈ 𝛾𝐹𝑅 do

8 Compute the start times of task 𝜏𝑖 within a hyper-period

9 for ∀𝑒 𝑥 ∈  𝑗 do

10 𝑂 𝑘 + = � 𝑂(𝑒 𝑥 , 𝑓 𝑘) � 0 (using Eq. (7) to compute 𝑂 𝑗 (𝑒 𝑥)
while the operational frequency is 𝑓 𝑘)

11 Compute 𝐸 𝑝 (𝑓 𝑘) and 𝐸 𝑠 (𝑓 𝑘)
12 if 𝐸 𝑐𝑢𝑟 == 0 || 𝐸 𝑐𝑢𝑟 > 𝐸 𝑝 + 𝐸 𝑠 then

13 𝐸 𝑐𝑢𝑟 = 𝐸 𝑝 + 𝐸 𝑠

14 𝑓 𝑜 ← 𝑓 𝑘

15 else

16 Break

17 return 𝑓 𝑜

ental concept behind this algorithm is to check whether the increased

verlap will lead to lower energy consumption of the whole system. It

tarts with the maximum frequency, computes the energy consumption

f the system, and gradually scales down the operational frequency to

ee whether energy consumption reduces. Then, it returns the frequency

aving the least energy consumption as the operational frequency of the

luster system. Note that we only consider the frequency level which is

reater than critical frequency f crit . If it finds a frequency leads to higher

nergy consumption, it will skip all frequencies lower than this one.

Complexity analysis: Usually, for a processor, the frequency levels it

upports are very limited, and let m denote the number of frequency lev-

ls greater than f crit . For the second for-loop, the maximum size of 𝛾FR

s equal to the size of task set 𝛾. However, for the third for-loop, it de-

ends on the hyper-period, as shown in previous work [31] , the compu-

ational complexity in the worst-case is pseudo-polynomial. Therefore,

n the worst-case, Algorithm 2 has pseudo-polynomial complexity.

. Evaluation

In this section, we evaluate our proposed approaches CASS and

ASS+ in terms of energy-efficiency. This evaluation is mainly to show

he potential of the CASS framework in terms of energy efficiency. It

an be considered as an effort toward more energy efficiency in the SS

M. Zhao, D. Liu and X. Jiang et al. Journal of Systems Architecture 100 (2019) 101661

Table 7

Parameters of FMS application.

𝜏 𝜏1 𝜏2 𝜏3 𝜏4 𝜏5 𝜏6

T 5000 200 1000 1600 100 1000

C 20 20 20 20 20 20

FR True True True True True True

𝜏 𝜏7 𝜏8 𝜏9 𝜏10 𝜏11

T 1000 1000 1000 1000 1000

C 20 100 100 100 100

FR True False False False False

f

i

u

M

s

t

e

a

S

o

fl

b

a

m

b

𝑆

6

d

s

c

g

[

r

T

t

[

f

f

c

e

t

[

d

T

p

a

a

s

v

t

w

t

o

Table 8

Experimental results of FMS.

Different Reference approaches Energy Saving

CCSPT 30.3%

S0_O 30.3%

S10_O 22.6%

S20_O 12.9%

S30_O 0.5%

t

r

t

d

n

m

C

c

p

s

t

h

w

o

t

o

(

W

a

d

t

a

t

6

t

g

g

n

t

a

T

m

a

g

W

a

ramework by trading off the fault tolerant capability of some low crit-

cal tasks.

This evaluation includes three parts, a case study, synthetic task eval-

ation and real-platform evaluation. In the case study, we use a Flight

anagement System (FMS) application which has been used in the re-

earch of mixed-criticality systems [32] . Then, we extensively evaluate

he effectiveness of our approach by using synthetic task sets. For these

valuations, we use the power parameters given in Table 4 of Section 4 ,

nd additionally we take an existing online approach [5] , namely CC-

PT for comparison. This comparison is to demonstrate the potential

f the CASS framework in terms of energy efficiency. Some existing of-

ine approach can be combined with our proposed approach to achieve

etter energy efficiency. We compare our approach with the reference

pproach with different parameter settings, detailed in Section 6.2 . The

etric used is the energy saving from our approach, which is computed

y the following equation,

𝑎𝑣𝑖𝑛𝑔 =

𝐸 𝑟𝑒𝑓 − 𝐸 𝑜𝑢𝑟

𝐸 𝑟𝑒𝑓

× 100%

.1. Case study

FMS application is an avionic use-case, which conforms to the stan-

ard of DO-178B in avionic industry and is a typical example of the

ystem with different critical applications [10] . This case study only

onsists of a subset of original tasks in FMS, and all task parameters are

iven in Table 7 . FMS has two types of tasks, high or low criticality. In

10] , only high-criticality tasks have the fault-recovery mechanism, (i.e.,

e-execution), whereas low-criticality tasks do not recover from fault.

his is similar to the scenario we consider, so we map high-criticality

asks to FR tasks and low-criticality tasks to normal tasks. Note that in

32] , they only gave a range of WCET for each task. In this evaluation,

or FR tasks, we select the upper bound of the range as their WCET, and

or normal tasks we select a mean value from the range as their WCETs.

We compare our approach with CCSPT in terms of energy effi-

iency. CCSPT uses a per-task frequency scaling and decides the op-

rational frequency based on the slack which the system has upon the

ask arrival. However, frequency scaling occurs considerable overhead

20] , as we measured on ODROID XU3 board, the scaling-up and scaling-

own of Cortex A15 core costs at most 40 ms and 60 ms 1 , respectively.

his may significantly affect the applicability of CCSPT , so, in this com-

arison, we consider one reference approach without any overhead and

nother reference approach with overhead of 40 ms. In order to guar-

ntee the schedulability of tasks, we slightly modify CCSPT for the

econd reference approach to ensure the real-time guarantee will not be

iolated when scaling frequency with overhead.

Moreover, since CCSPT also utilizes the dynamic slack generated by

asks which finish earlier than their WCETs. To evaluate this scenario,

e assign a fixed slack ratio to all tasks, assuming that the real execution
1 Note that this overhead is measured based on the cluster architec-

ure,because ODROID XU-3 only supports cluster frequency scaling. In addition,

ur timestamp measurement also occurs some overhead.

imes of each task are equal to 𝐶 𝑖 × (1 − slack ratio) . Then based on the

eal execution time, CCSPT computes the frequency for each task. Note

hat we consider the slack scenario with frequency scaling overhead.

The experimental results are summarized in Table 8 , where CCSPT

enotes the original CCSPT approach without overhead and SX_O de-

otes a setting with slack ratio X % and scaling overhead. In this experi-

ent, we consider four slack ratios {0, 10%, 20%, 30%}. Comparing to

CSPT , the advantage of our approach is that we have fewer backup

opies on the spare processor, thus leading to a lower frequency of the

rimary processor with lower energy consumption. When there is no

lack, our approach can save energy consumption by 30% regardless of

he presence of scaling overhead (CCSPT and S0_O). The rational be-

ind is that the task set has relatively high utilization of 0.78, so CCSPT

ill not scale its frequency quite often with the objective of minimizing

verlap. Therefore, we see that even taking into account the overhead,

he energy saving is almost the same. Then, in our approach, because

f fewer backup copies on the spare processor and a better objective

not minimizing overlap), our approach achieves a great energy saving.

e see that with the increased slack ratio, the energy saving from our

pproach reduces as well, because for CCSPT they find more space to

o scaling for each job. This trend is very intuitive, but it is worth noting

hat our approach always takes the worst case into account. Our approach

lso can deploy some on-line slack reclamation technique, but we leave it for

he future consideration.

.2. Synthetic task sets

To extensively evaluate the effectiveness of our approach, we vary

he task parameters to generate diverse synthetic task sets. The task

enerator is based on the widely-used UUnifast [33] which is used to

enerate unbiased task utilization. It takes as inputs the number of tasks

 and the total utilization U and generates individual utilization u i for n

asks. The generation procedure is summarized as follows:

• For each task, utilization u i is generated using UUnifast ;

• Period T i is uniformly generated from range [100 ms, 1000 ms];

• C i is computed as 𝐶 𝑖 = 𝑢 𝑖 ⋅ 𝑇 𝑖 ; and

• Let pc ∈ (0, 1) denote the possibility whether the generated task is a

FR task.

In this experiment, we vary the total utilization U , the task number

nd the pc value to generate task sets with different parameter settings.

his task generation configuration is widely used in the evaluation of

ixed-criticality scheduling algorithms [9] . One experimental results

re summarized in Figs. 2 –4 .

In each figure, we vary U from 0.5 to 0.95 with a step of 0.05 and

enerate 1000 task sets for each given U . The task number and pc vary.

e consider four reference approaches similar to those in the case study,

nd the slack ratio is selected from {0, 10%, 20%}. From Fig. 2 , we see:

• the line of CCSPT overlaps the one of S0_O , because the objective

of CCSPT is to minimize the overlap between the main task and its

backup, so when there is no slack it significantly limits the possibility

to scale down the frequency. Since the frequency does not change

frequently, no scaling overhead affect results;

• when U increases to 0.8, the saving from CCSPT and S0_O do not

decrease too much after that. This is because that when utilization

M. Zhao, D. Liu and X. Jiang et al. Journal of Systems Architecture 100 (2019) 101661

Table 9

Selected PARSEC benchmarks and their measured execution times.

Benchmark blackscholes bodytrack facesim ferret

Measured execution time 3s 10s 27s 12s

Benchmark freqmine streamcluster vips x264

Measured execution time 5s 14s 8s 20s

Fig. 2. Task number 7 and 𝑝𝑐 = 0 . 5 .

Fig. 3. Task number 5 and 𝑝𝑐 = 0 . 5 .

w

e

i

w

a

m

w

Fig. 4. Task number 7 and 𝑝𝑐 = 0 . 7 .

6

o

w

f

m

e

P

o

c

t

T

i

e

p

t

t

i

w

l

t

I

[

U is large, our approach also cannot scale down frequency further.

Therefore, the energy saving remains.

• when the utilization is greater than 0.8, we see that S20_O actually

consumes less energy than our approach. Because our approach can-

not scale down frequency on primary processor in this case, whereas

a 20% slack creates more space for S20_O to scale down frequency

(Fig. 3).

All experimental results show the similar trend as Fig. 2 . However,

e find that the increased number of tasks in a task set reduces the

nergy saving from our approach shown in Fig. 4 . The rational behind

s that when the number of tasks increases, it is less likely to have tasks

ith large utilization. Our approach may benefit from normal tasks with

 large utilization. On the other hand, when increasing pc , we may have

ore FR tasks in a task set. It is not difficult to think that more FR tasks

ill mitigate the effectiveness of the CASS technique.
.3. Real-platform

The case study and the synthetic task sets evaluate the effectiveness

f the CASS framework in terms of energy efficiency. In this section,

e evaluate CASS+ on a real platform with real benchmarks. The plat-

orm we used is a desktop with Intel i7-8700 CPU of 6 cores and 16GB

emory and the maximum frequency of each core is 3.2GhZ and the op-

rating system is Ubuntu 16.04 with kernel version 4.15.0. We schedule

ARSEC benchmark suite [16] on the experimental platform, but we

nly select several representative benchmarks (they have different exe-

ution time). All benchmarks are compiled with ’gcc-serial’ , i.e., a single

hread executable is generated and are fed with ’simlarge’ input data.

he selected benchmarks and their measured execution times are given

n Table 9 . Likwid-powermeter tool [27] is used to measure the en-

rgy consumption from the experimental desktop. CPU1 is used as the

rimary processor and CPU2 is used as the spare processor. In addition,

o prevent the interference on the primary or spare processors, we fix

he cpu affinity of likwid-powermeter to CPU3.

We setup this experimental as follows:

• We randomly select two benchmarks from the selected set; and as-

sign a period to two benchmarks such that the total utilization of the

two benchmarks is equal to an expected utilization;

• We always select the benchmark with smaller utilization as the

highly critical task;

• We measure energy consumption of the whole systems within one

hyper-period using likwid-powermeter ;

• We repeat the experiment for 10 times and compute the average

energy consumption for the selected task set.

We consider both criticality aware (CASS) and non-criticality scenar-

os (SS). We use ‘ondemand governor’ in Linux as the online approach

hich dynamically changes CPU frequency in accordance to CPU uti-

ization. The following are the approaches evaluated for comparison in

his experiment. Note that in this evaluation we take into account the

ntel turbo boost [34] which is very similar to a race-to-idle approach

35] :

M. Zhao, D. Liu and X. Jiang et al. Journal of Systems Architecture 100 (2019) 101661

Table 10

Experimental results on the real platform.

Utilization 0.6 0.7 0.8 0.9

Benchmarks blackscholes freqmine bodytrack streamcluster

& vips & facesim & blackscholes & x264

Approach SS CASS SS CASS SS CASS SS CASS

ondemand w tb 995.6J 993.5J 2817.2J 2481.8J 2715.2J 2665.5J 6958.2J 6675.3J

ondemand wo tb 781.9J 777.3J 2420.2J 2391.6J 2133.8J 2058.0J 5162.0J 4763.4J

fixed max freq 802.1J 777.3J 2398.4J 2033.3J 2242.4J 1957.1J 5293.5J 4803.9J

CASS + 695.368 1782.7J 1738.2J 4392.3J

g

t

f

b

7

C

S

e

I

a

p

f

f

S

f

s

a

a

S

b

c

t

t

s

p

t

D

A

R

[

[

[

[

[

[

[

[

[

[

[
• ondemand without turbo boost : CPU frequency changes accord-

ing to the CPU workload [28] , and in this setting, turbo boost feature

is off;

• ondemand with turbo boost : also use ‘ondemand’ policy but

turbo boost feature is on;

• fixed max frequency : in this setting, we fix the operational fre-

quency to the maximum frequency;

• CASS+ frequency : we use CASS+ algorithm to find a fixed fre-

quency for the system.

All the experimental results are summarized in Table 10 , where four

roups of benchmarks are formed, representing four different utiliza-

ions., 0.6, 0.7, 0.8, 0.9. From the experimental results, we observe the

ollowing:

• As reported in [34] , Turbo boost is not an energy-efficient policy. For

the SS technique, it shows the same trend. This may indicate that the

race-to-idle approach is not a good way to achieve energy efficiency

in SS framework. It is seen that in the worst case of streamcluster &

x264 with turboboost feature consumes more energy consumption

by 28%;

• The online approach does not lead to energy efficiency even in com-

parison with ‘fixed max frequency’. In freqmine & facesim and

bodytrack & blackscholes , the online approach even consumes

more enegy than the maximum frequency. This can serve as an evi-

dence that in some cases the dynamic approach may be not a good

choice for periodic real-time systems to achieve energy efficiency;

• CASS+ finds an energy-efficient frequency for all cases. In the best

case of bodytrack & blackscholes , CASS+ can save energy con-

sumption by 15%.

From the real platform results, we find that the cluster system can

e used to provide an energy-efficient platform for the SS techniqe.

. Conclusions

In this paper, inspired by mixed-criticality systems, we present the

ASS framework which integrates the concept of criticalities into the

S framework. The novel CASS framework can achieve more energy

fficiency by trading off the fault tolerance of some lower critical tasks.

n addition, in contrast to the existing SS techniques which use an online

pproach to determine the energy-efficient frequency for the primary

rocessor, we propose an offline approach to determine the operational

requency. This offline approach can mitigate the overhead due to the

requent scaling. In addition, we consider the cluster systems for the

S framework and present an algorithm to determine the operational

requency for the cluster systems. We use a case study, synthetic task

ets and real benchmarks on a real-platform to evaluate our proposed

pproaches.

Reliability management of real-time systems has attracted increasing

ttention, and in this paper we introduce the criticality concept to the

S framework. This work is the first attempt to investigate the trade-off

etween the fault tolerance ability of low critical tasks and energy effi-

iency the whole system. The future work can be done in the combina-

ion of our proposed offline approach and the existing online approach
o achieve the ultimate energy efficiency. Moreover, the heterogeneous

ystems are gradually replacing homogeneous systems as the major com-

uting systems, so it would be an interesting problem to investigate how

o implement the CASS on the heterogeneous systems, like [36] .

eclaration of Competing Interest

None

cknowledgment

This work is partially supported by NSFC 61902341 and 61801418 .

eferences

[1] R.C. Baumann , Radiation-induced soft errors in advanced semiconductor technolo-

gies, IEEE Trans. Device Mater. Reliab. 5 (3) (2005) 305–316 .

[2] A. Burns, R. Davis, S. Punnekkat, Feasibility analysis of fault-tolerant real-time task

sets, in: Proceedings of the Eighth Euromicro Workshop on Real-Time Systems, 1996,

pp. 29–33, doi: 10.1109/EMWRTS.1996.557785 .

[3] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft, R. Zainlinger,

Distributed fault-tolerant real-time systems: the mars approach, IEEE Micro 9 (1)

(1989) 25–40, doi: 10.1109/40.16792 .

[4] D. Zhu , H. Aydin , Energy management for real-time embedded systems with relia-

bility requirements, in: Proceedings of the ICCAD, 2006, pp. 528–534 .

[5] M.A. Haque , H. Aydin , D. Zhu , Energy-aware standby-sparing technique for periodic

real-time applications, in: Proceedings of the ICCD, 2011, pp. 190–197 .

[6] A. Ejlali , B.M. Al-Hashimi , P. Eles , Low-energy standby-sparing for hard real-time

systems, IEEE TCAD 31 (3) (2012) 329–342 .

[7] J.W. Liu , W.-K. Shih , K.-J. Lin , R. Bettati , J.-Y. Chung , Imprecise computations, Proc.

IEEE 82 (1) (1994) .

[8] G.C. Buttazzo , G. Lipari , M. Caccamo , L. Abeni , Elastic scheduling for flexible work-

load management, IEEE Trans. Comput. 51 (3) (2002) .

[9] A. Burns , R. Davis , Mixed Criticality Systems-A Review, University of York (2015) .

10] P. Huang , H. Yang , L. Thiele , On the scheduling of fault-tolerant mixed-criticality

systems, in: Proceedings of the DAC, 2014, pp. 1–6 .

11] S. Vestal , Preemptive scheduling of multi-criticality systems with varying degrees of

execution time assurance, in: Proceedings of the 28th IEEE International Real-Time

Systems Symposium (RTSS), 2007 .

12] S. Baruah , V. Bonifaci , G. D’Angelo , H. Li , A. Marchetti-Spaccamela , S.V. der Ster ,

L. Stougie , The preemptive uniprocessor scheduling of mixed-criticality implic-

it-deadline sporadic task systems, in: Proceedings of the 24th Euromicro Conference

on Real-Time Systems, 2012 .

13] G. v. d. Bruggen, K. Chen, W. Huang, J. Chen, Systems with dynamic real-

time guarantees in uncertain and faulty execution environments, in: Proceed-

ings of the IEEE Real-Time Systems Symposium (RTSS), 2016, pp. 303–314,

doi: 10.1109/RTSS.2016.037 .

14] S. Herbert, D. Marculescu, Analysis of dynamic voltage/frequency scaling in chip-

multiprocessors, in: Proceedings of the International Symposium on Low Power Elec-

tronics and Design (ISLPED ’07), 2007, pp. 38–43, doi: 10.1145/1283780.1283790 .

15] S. Pagani , et al. , Energy efficiency for clustered heterogeneous multicores, IEEE TPDS

28 (5) (2017) 1315–1330 .

16] C. Bienia, S. Kumar, J.P. Singh, K. Li, The parsec benchmark suite: Characterization

and architectural implications, in: Proceedings of the 17th International Conference

on Parallel Architectures and Compilation Techniques, in: PACT ’08, ACM, New

York, NY, USA, 2008, pp. 72–81, doi: 10.1145/1454115.1454128 .

17] K. Jeffay, D.F. Stanat, C.U. Martel, On non-preemptive scheduling of period and

sporadic tasks, in: Proceedings of the Twelfth Real-Time Systems Symposium, 1991,

pp. 129–139, doi: 10.1109/REAL.1991.160366 .

18] M.A. Haque , H. Aydin , D. Zhu , Energy management of standby-sparing systems for

fixed-priority real-time workloads, in: Proceedings of the IGCC, 2013, pp. 1–10 .

19] C.L. Liu , J.W. Layland , Scheduling algorithms for multiprogramming in a hard-re-

al-time environment, J. ACM (JACM) (1973) .

20] A. Mazouz , et al. , Evaluation of cpu frequency transition latency, Comput. Sci. Res.

Devel. 29 (3) (2014) 187–195 .

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0001
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0001
https://doi.org/10.1109/EMWRTS.1996.557785
https://doi.org/10.1109/40.16792
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0004
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0004
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0004
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0005
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0005
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0005
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0005
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0006
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0006
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0006
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0006
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0007
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0007
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0007
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0007
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0007
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0007
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0008
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0008
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0008
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0008
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0008
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0009
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0009
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0009
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0010
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0010
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0010
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0010
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0011
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0011
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0012
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0012
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0012
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0012
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0012
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0012
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0012
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0012
https://doi.org/10.1109/RTSS.2016.037
https://doi.org/10.1145/1283780.1283790
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0015
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0015
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0015
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1109/REAL.1991.160366
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0018
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0018
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0018
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0018
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0019
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0019
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0019
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0020
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0020
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0020

M. Zhao, D. Liu and X. Jiang et al. Journal of Systems Architecture 100 (2019) 101661

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

21] Q. Zhao, Z. Gu, H. Zeng, N. Zheng, Schedulability analysis and stack size minimiza-

tion with preemption thresholds and mixed-criticality scheduling, J. Syst. Arch. Em-

bedded Syst. Des. 83 (2018) 57–74, doi: 10.1016/j.sysarc.2017.03.007 .

22] M. Bambagini, et al., Energy-aware scheduling for real-time systems: a survey, ACM

TECS 15 (1) (2016) 7:1–7:34, doi: 10.1145/2808231 .

23] R. Melhem, D. Mosse, E. Elnozahy, The interplay of power management and

fault recovery in real-time systems, IEEE Trans. Comput. 53 (2) (2004) 217–231,

doi: 10.1109/TC.2004.1261830 .

24] H. Chetto , M. Chetto , Some results of the earliest deadline scheduling algorithm,

IEEE TSE 15 (10) (1989) 1261–1269 .

25] J. Goossens , R. Devillers , Feasibility intervals for the deadline driven scheduler with

arbitrary deadlines, in: Proceedings of the RTCSA, 1999, pp. 54–61 .

26] D. Liu , et al. , Energy-efficient scheduling of real-time tasks on heterogeneous multi-

cores using task splitting, in: Proceedings of the RTCSA, 2016, pp. 149–158 .

27] J. Treibig, G. Hager, G. Wellein, Likwid: A lightweight performance-oriented

tool suite for x86 multicore environments, in: Proceedings of the 39th In-

ternational Conference on Parallel Processing Workshops, 2010, pp. 207–216,

doi: 10.1109/ICPPW.2010.38 .

28] V. Pallipadi , A. Starikovskiy , The ondemand governor, in: Proceedings of the Linux

Symposium, 2, 2006 .

29] P. Pillai, K.G. Shin, Real-time dynamic voltage scaling for low-power em-

bedded operating systems, SIGOPS Oper. Syst. Rev. 35 (5) (2001) 89–102,

doi: 10.1145/502059.502044 .

30] A. Burns, F. Zhang, Schedulability analysis for real-time systems with EDF schedul-

ing, IEEE Trans. Comput. 58 (2009) 1250–1258, doi: 10.1109/TC.2009.58 .

31] S.K. Baruah , A.K. Mok , L.E. Rosier , Preemptively scheduling hard-real-time sporadic

tasks on one processor, in: Proceedings of the RTSS, 1990, pp. 182–190 .

32] P. Huang , et al. , Service adaptions for mixed-criticality systems, in: Proceedings of

the ASP-DAC, 2014, pp. 125–130 .

33] E. Bini , G.C. Buttazzo , Measuring the performance of schedulability tests, Real-Time

Syst. 30 (1–2) (2005) 129–154 .

34] J. Charles, P. Jassi, N.S. Ananth, A. Sadat, A. Fedorova, Evaluation of

the intel core i7 turbo boost feature, in: Proceedings of the IEEE Interna-

tional Symposium on Workload Characterization (IISWC), 2009, pp. 188–197,

doi: 10.1109/IISWC.2009.5306782 .

35] H. Hoffmann, Racing and pacing to idle: An evaluation of heuristics for energy-aware

resource allocation, in: Proceedings of the Workshop on Power-Aware Computing

and Systems, in: HotPower ’13, ACM, New York, NY, USA, 2013, pp. 13:1–13:5,

doi: 10.1145/2525526.2525854 .

36] A. Roy, H. Aydin, D. Zhu, Energy-aware standby-sparing on heterogeneous multicore

systems, in: Proceedings of the 54th ACM/EDAC/IEEE Design Automation Confer-

ence (DAC), 2017, pp. 1–6, doi: 10.1145/3061639.3062238 .

Mingxiong Zhao received the B.S. degree and the Ph.D. de-

gree from South China University of Technology (SCUT),

Guangzhou, China, in 2011 and 2016, respectively. Since

2016, he has been an Assistant Professor at the School of

Software, Yunnan University, Kunming, China. His current re-

search interests are embedded systems, physical layer security,

cooperative relay communication, and social aware communi-

cation systems.

Di Liu received the B.Eng. and M.Eng. degrees from North-

western Polytechnical University, China, in 2007 and 2011,

respectively, and the Ph.D. degree from Leiden University, The

Netherlands, in 2017. He is currently an Assistant Professor

with the School of Software, Yunnan University, China. His re-

search interests include the fields of real-time systems, energy-

efficient multicore/many core systems, and cyber-physical

systems.

Xu Jiang received the B.S. degree from Northwestern Poly-

technical University, Xi’an, China, in 2009, the M.S. degree

from the Graduate School of the Second Research Institute,

China Aerospace Science and Industry Corporation, Beijing,

China, in 2012, and the Ph.D. degree from Beihang University,

China, in 2018. Currently, he is an Assistant Professor with

the School of Computer Science and Engineering, University

of Electronical Science and Technology of China, China. His

current research interests include real-time systems, parallel

and distributed systems, and embedded systems.
Weichen Liu received the B.Eng. and M.Eng. degrees from

the Harbin Institute of Technology, Harbin, China, and the

Ph.D. degree from the Hong Kong University of Science and

Technology, Hong Kong. He is an Assistant Professor with the

School of Computer Science and Engineering, Nanyang Tech-

nological University, Singapore. His current research interests

include embedded and real-time systems, multiprocessor sys-

tems, and fault-tolerant systems.

Gang Xue received the B.S. degree from Wuhan Technical

University of Surveying and Mapping in 2000 and the M.Sc.

degree and the Ph.D. degree from Yunnan University in 2006

and 2009, respectively. He is currently an Associate Professor

with the School of Software, Yunnan University, China. His in-

terests are embedded systems, time-sensitive computing, ser-

vice computing.

Cheng Xie received the B.S. degree in software engineering

from the Minzu University of China, Beijing, China, in 2009,

and the M.S. and Ph.D. degrees in software engineering from

Shanghai Jiao Tong University, Shanghai, China, in 2012 and

2017, respectively. He is currently an Assistant Professor with

the School of Software, Yunnan University, Kunming, China.

His research interests include semantic web, linked open data,

knowledge graph, and ontology.

Yun Yang received the B.Sc. degree (Hons.) in information

technology and telecommunication from Lancaster University,

Lancaster, U.K., in 2004, the M.Sc. degree in advanced com-

puting from Bristol University, Bristol, U.K., in 2005, and the

M.Phil. degree and the Ph.D. degree from The University of

Manchester in 2006 and 2011, respectively. He is currently

a Full Professor with the School of Software, Yunnan Univer-

sity, Kunming, China. His current research interests include

machine learning, data mining, pattern recognition, and tem-

poral data process and analysis.

Zhishan Guo received the B.E. degree from Tsinghua Univer-

sity, Beijing, China, in 2009, the M.Phil. degree from the Chi-

nese University of Hong Kong, Hong Kong, in 2011, and the

Ph.D. degree from the University of North Carolina at Chapel

Hill, Chapel Hill, NC, USA, in 2016. He is an Assistant Pro-

fessor with the Department of Electrical and Computer Engi-

neering, University of Central Florida, Orlando, FL, USA. His

current research interests include real-time scheduling, cyber-

physical systems, and neural networks and their applications.

https://doi.org/10.1016/j.sysarc.2017.03.007
https://doi.org/10.1145/2808231
https://doi.org/10.1109/TC.2004.1261830
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0024
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0024
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0024
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0025
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0025
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0025
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0026
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0026
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0026
https://doi.org/10.1109/ICPPW.2010.38
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0028
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0028
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0028
https://doi.org/10.1145/502059.502044
https://doi.org/10.1109/TC.2009.58
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0031
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0031
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0031
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0031
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0032
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0032
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0032
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0033
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0033
http://refhub.elsevier.com/S1383-7621(19)30468-0/sbref0033
https://doi.org/10.1109/IISWC.2009.5306782
https://doi.org/10.1145/2525526.2525854
https://doi.org/10.1145/3061639.3062238

	CASS: Criticality-Aware Standby-Sparing for real-time systems
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Real-time task model
	3.2 Standby-sparing technique
	3.3 System model

	4 Motivational example
	4.1 Real-life benchmarks
	4.2 Illustrative example

	5 The proposed approach
	5.1 Finish time on the primary processor
	5.2 Start time on the spare processor
	5.3 Overlap
	5.4 Energy-efficient frequency
	5.5 Proposed algorithm
	5.6 CASS on cluster systems

	6 Evaluation
	6.1 Case study
	6.2 Synthetic task sets
	6.3 Real-platform

	7 Conclusions
	Declaration of Competing Interest
	Acknowledgment
	References

