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Abstract—In this paper, we extend the classic MaxOut strategy,
originally designed for Multiple Layer Preceptors (MLPs), into
COnvolutional MaxOut (COMO) — a new strategy making
deep convolutional neural networks wider with parameter
efficiency. Compared to the existing solutions, such as ResNeXt
for ResNet or Inception for VGG-alikes, COMO works well on
both linear architectures and the ones with skipped connections
and residual blocks. More specifically, COMO adopts a novel
split-transform-merge paradigm that extends the layers with
spatial resolution reduction into multiple parallel splits. For the
layer with COMO, each split passes the input feature maps
through a 4D convolution operator with independent batch
normalization operators for transformation, then merge into the
aggregated output of the original sizes through max-pooling.
Such a strategy is expected to tackle the potential classification
accuracy degradation due to the spatial resolution reduction, by
incorporating the multiple splits and max-pooling-based feature
selection. Our experiment using a wide range of deep architectures
shows that COMO can significantly improve the classification
accuracy of ResNet/VGG-alike networks based on a large number
of benchmark datasets. COMO further outperforms the existing
solutions, e.g., Inceptions, ResNeXts, SE-ResNet, and Xception,
that make networks wider, and it dominates in the comparison of
accuracy versus parameter sizes.
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I. INTRODUCTION

D EEP convolutional neural networks (Deep CNNs) [1] have
been widely examined as the major workhorses for image

classification and pattern recognition. From the simple hand-
written digits recognition task [2] to the ILSVRC challenges [3],
the architectures of convolutional neural networks have evolved
to adapt the increasing complexity of the datasets. While ar-
chitectures, such as LeNet [2], AlexNet [4], ResNet [5], and
DenseNet [6], with novel components have been invented, re-
searchers also made significant efforts to design new strategies
to extend the existing architectures for higher capacity. In this
work, we intend to study a practical paradigm to widen the CNNs
for higher accuracy.

As early as 2013, the maxout strategy has been proposed
by [7] as a potential replacement for the rectified linear units
(ReLUs) used in common Multi-Layer Preceptors (MLPs), un-
der the dropout settings, so as to enhance the capacity of MLPs.
More specifically, within an MLP, maxout splits the activation
(of a) layer into multiple independent paths, where each path is
with a weight matrix for multiplication. Then maxout merges the
results received from multiple paths through max-pooling and
forwards to the next layer. In this work, we term the above prac-
tice as a “split-transform-merge” strategy. Such strategy defacto
widens the affected layers of MLP, while preserving the rest of
the architecture.

While such a strategy improves the capacities of deep MLPs
through widening some bottlenecked layers, Maxout does not
work on convolutional neural networks straightforwardly, as the
weight matrix multiplication might not be a suitable operator
for CNNs. To widen the deep CNNs with the “split-transform-
merge” alike paradigms, for example, Inception [8] has been
proposed to enhance the common linear architectures, such as
VGG-alikes [9]. More specifically, Inception splits the vanilla
convolutional layer used by the linear convolutional architec-
tures into multiple paths with independent convolutional opera-
tors, then merges the results from these paths via concatenation,
and forwards the merged result to the next layer. On the other
hand, ResNeXt [10] has been proposed to improve ResNet [5]
through aggregating multiple convolutional paths in a similar
way. While these extensions significantly improved the accu-
racy of deep CNN over some benchmark datasets [8], [10] and
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have inspired new architectures and algorithms [11], [12], the
empirical design patterns behind such improvement have not
yet been deeply studied or exactly analyzed. In our research, we
intend to study novel “split-transform-merge” strategies from
the following aspects:
� Architectures: While Inception and ResNeXt have been

considered as the extension of some specific architec-
tures such as common linear architectures (e.g., VGG) and
ResNet, we are wondering whether there exists any method
that works well both on linear architectures and residual
learning-based ones.

� Layers: Instead of widening some key layers in the neu-
ral networks, Inception and ResNeXt almost extend ev-
ery meaningful layer in the architectures (excepting the
layer for pre-processing and FC layer for classification).
Such practice frequently makes the models extremely over-
parameterized. Our research is wondering: (a) whether we
can improve the performance by enhancing some of the
layers; and (b) how to identify the layers for modification.

� Interpretability: Any good practice deserves good inter-
pretability. Apparently, there needs to be some direct ev-
idence to demonstrate the reasons why the network with
split-transform-merge would outperform the original one.
We plan to compare the feature maps and activation of
the original networks to the enhanced one. We expect to
see what exactly our proposed split-transform-merge could
improve and how it can finally lead to better classification
accuracy.

Our Contribution: In this work, we propose COnvolutional
MaxOut (COMO) to boost the classification accuracy for deep
CNNs through widening some key layers. The key contributions
are made as follows.
� Generic Architectures and Specific Layers: COMO works

well on both VGG and ResNet-alikes, where it only ex-
tends the layers with spatial resolution reduction: the size
of each feature map has been reduced from inputs through
the outputs. Compared to Inception and ResNeXt, COMO
widens and improves the capacity of CNNs while incorpo-
rating fewer parameters. Our latter ablation study shows,
with COMO, widening only the spatial resolution reduc-
tion layers performs significantly better than a model that
extends all the layers.

� Simple yet Effective Transform and Merge Operators:
To enable the classic maxout strategy onto the deep
CNNs, COMO incorporates a new set of operators. COMO
first branches a convolutional layer (convolution opera-
tors+activation) into N independent paths (N ≥ 2) and
assigns each path a convolutional operator. Furthermore,
COMO continues each path with batch normalization op-
erators and merges the results received from paths into the
feature maps of original sizes through a max-pooling op-
erator. Please refer to Table I for the comparison in details
from operators’ perspectives.

� Advantage and Interpretability: With COMO, one can
easily extend deep CNNs of VGG and ResNet-alikes with
significant classification accuracy boosting. VGG and
ResNet with COMO can even outperform the existing
extent models such as Inception and ResNeXt. Fig. 1(b)

TABLE I
OPERATORS USED BY SPLIT-TRANSFORM-MERGE STRATEGIES: MAXOUT VS.
INCEPTION VS. RESNEXT VS. COMO: PATH BN (BATCH NORMALIZATION)

THAT INDICATES WHETHER A BATCH NORMALIZATION OPERATOR IS

ASSIGNED TO EACH PATH; Mat_M REFERS TO THE WEIGHT MATRIX

MULTIPLICATION OPERATOR; Conv REFERS TO THE CONVOLUTIONAL

OPERATORS OF VARIOUS SIZES; MP REFERS TO THE MAX-POOLING OPERATOR;
Concate REFERS TO CONCATENATION

Fig. 1. Design of COMO with Two Splits and Performance Comparison on
CIFAR-100 Datasets: VGG13-COMO-2 is read as the VGG13 network, en-
hanced using COMO with 2 independent paths; ResNet18-COMO-2 is read
as the ResNet18 network extended using COMO with 2 independent paths;
WRN-28-10 is read as Wide ResNet with 28 layers and width 10; all blue
points stand for the results based on the existing models such as VGG, ResNet,
Wide ResNet, Inception, ResNeXt and etc.; all models are trained with 200
epochs from scratch without using data augmentation or other tricks.

clearly illustrates the comparison of testing accuracy over
parameter sizes for a wide range of well-trained models
based on CIFAR-100 datasets, where COMO networks
dominate in the comparison. In addition to an advantage
in classification accuracy, COMO also generates good
interpretability [13]. Through dissecting COMO with
activation maps drawn from the networks, one can find
that COMO networks can detect significantly more “visual
concepts” than the vanilla VGG and ResNet. Please refer
to the experiment section for details.
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To summarize, our contributions include not only the design
of COMO, but also the examined accuracy enhancement due
to the use of COMO and the improvement it provides in inter-
pretability. Note that the comparison to automated deep learning
solutions [12], [14] are out of scope, as this work focuses on the
empirical design and practical paradigms to enhance the capac-
ities of CNNs under “split-transform-merge” settings.

II. PRELIMINARIES AND RELATED WORK

In this section, we review the recent studies that are relevant
to our work, where we intend to summarize the architectural
efforts made to improve the capacity of existing networks.

As was mentioned, maxout [7], Inception [8], and
ResNeXt [10] are the split-transform-merge strategies that
widen the architectures of MLP, common linear convolutional
architectures (e.g., VGG [9]), and the ResNet [5] respectively.
Though all these strategies follow the “split-transform-merge”
patterns, the operators used are, indeed, quite different. Table I
lists the operators used. Compared to Inception and ResNet
which were designed for deep CNNs, maxout targets at approxi-
mation the arbitrary activation for MLPs. Thus, the vector-matrix
multiplication is used as the transform, while maxout simply
merges the results from multiplication through max-pooling. It
has been observed that making deep neural networks wide can
enhance the capacity of the networks to fit the training data [15]
while incorporating redundant parameters and often poor gen-
eralization.

For deep CNNs, Inception and ResNeXt are two basic mod-
els that extend linear convolutional architectures and ResNets.
After splitting the input from the previous layer into multiple
parallel paths, Inception and ResNeXt both use depthwise sepa-
rable convolution operators to transform the input. Furthermore,
Inception also incorporates an additional max-pooling opera-
tor before the convolution operators in one of the paths [8].
To balance these paths, Inception and ResNeXt also adopt a
path-wise batch normalization to normalize the results of each
path. Later both Inception and ResNeXt use concatenation to
merge the paths, while ResNeXt specifically adopts an addi-
tional 1× 1 convolutional operator to reshape the output for-
warded to the next layer (without architectural changes) [10]. In
terms of methodologies, [16], [17] also proposed to use max-
out with MLPs to improve CNNs for capacity enhancement or
multi-modal fusion purposes respectively, while COMO incor-
porates a convolutional analog of maxout with convolution fil-
ters and pixel-wise max-pooling operators. Authors in [18] also
proposed to use maxout strategies on the fully-connected layers
to improve a hybrid architecture of CNNs and Long-Short Term
Memory (LSTM) networks for lip reading. We found that the
design of [16], [17] is incompatible with the model CNN archi-
tectures due to the use of weight matrix multiplication operators,
which are parameter-inefficient compared to convolutional ones.

In addition to above two, InceptionResNet [19], Xcep-
tion [11], and SENets [20] also follow the split-transform-merge
patterns to enhance the capacity through multi-pathing the deep
CNNs. Note that Wide ResNets (WRNs) [21] and Efficient-
Net [12] are not discussed here, as these two techniques widen
the networks by incorporating more channels, rather than by

Fig. 2. A Spatial Reduction Layer: for the nth layer, wn−1, hn−1, and Cn−1

refer to the width, height, and the number of channels of the input tensor (X),
while wn, hn, Cn are for the output tensor (Z).

splitting them into multiple paths. Furthermore, our work fo-
cuses on the empirical design patterns and practical paradigms to
widen the CNNs, such as the extension of Xception and ResNeXt
to linear CNN and ResNet design. Thus, the automated deep
learning tools such as EfficientNet [12] and GPipe [14] (which
usually perform better than empirical designs) are not included
in the comparison here.

Compared to our work, the most relevant studies are in-
deed Inception and ResNeXt [8], [10]. As was discussed in
Table I, the operators used by COMO are indeed simpler than
these two. More specifically, in each splitting path, COMO only
uses one convolution operator, while Inception and ResNeXt
adopt the depth-wise separable ones which usually incorporate
a down-sampling and up-sampling procedure and might cause
potential accuracy loss. Furthermore, COMO uses max-pooling
as the merge operator, while the other two need to use concate-
nation or even concatenation with 1 convolution to reshape the
outputs. To the end, as was illustrated in Fig. 1(b), COMO en-
joys higher classification accuracy improvement with parameter
efficiency.

III. COMO: DESIGN AND MECHANISM

In this section, we first introduce the definition of spatial res-
olution reduction layers with examples in VGG and ResNets.
Then, we present the design of COMO operators, and how
COMO would be incorporated with existing VGG and ResNet
networks.

A. Spatial Resolution Reduction Layer

We identify whether a layer is using Spatial Resolution Re-
duction on its input and output tensors. As shown in Fig. 2, given
a layer with spatial resolution reduction (e.g., the nth layer), the
spatial resolution of the input tensor wn−1 × hn−1 has been re-
duced to the low resolution wn × hn in the output. On the other
hand, the number of channels would increase from the input
Cn−1 to the output Cn.

Fig. 3 demonstrates the examples of spatial resolution reduc-
tion layers in two deep CNNs, where we can see the spatial reso-
lution reduction layers highlighted in dash boxes. Both VGG13
and ResNet18 consist of three spatial resolution reduction lay-
ers. While VGG13 incorporates spatial resolution reduction in
the 3rd, the 5th and the 7th layers respectively, ResNet18 re-
duces its spatial resolution in the layers associated to the 3rd,
the 5th and the 7th skipped connections.
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Fig. 3. Example of Spatial Resolution Reduction Layers (in the dash boxes).

Fig. 4. Example of VGG and ResNet with COMO.

Please note that, by definition, spatial resolution reduction
layers are NOT necessary to be pooling layers, and vice-versa.
For ResNet, COMO only refactors the spatial-resolution layers
in the spiked connections which originally use convolutional
filters with stride = 2 to reduce the spatial resolution. VGG
networks also use a max-pooling operator with stride = 2 to
reduce the size of feature maps. In both examples above, the
spatial resolution reduction layers are not the pooling layers.

B. COMO Transform and Merge Operators

As was mentioned, COMO incorporates a set of simple yet
effective operators for split-transform-merge paradigms. More
specific, Fig. 1(a) illustrates an example of a layer extended by
COMO using two independent splits. Each split first transforms
the input tensor using a 3× 3 convolution operator of 4D tensor,
then normalizes the results through a batch normalization oper-
ator. The two splits are finally merged into the results through
an element-wise max-pooling operator.

Fig. 4 illustrates the example of VGG13-COMO-2 and
ResNet18-COMO-2 respectively. It has been shown that the spa-
tial resolution reduction layers are all replaced by the COMO op-
erators. With additional splits and operators, VGG13-COMO-2
uses 2 M more parameters while ResNet18-COMO-2 uses 3 M
more parameters. Similar extension could be made on VGG,
ResNet and other architectures to boost the capacity of networks
with certain parameter efficiency.

Please note that, though COMO uses high-resolution feature
maps and more learnable parameters, it only incorporates a very
small number of additional FLOPs for computation. Indeed,

TABLE II
STATISTICS ON SOURCE/TARGET DATASETS

COMO improves the spatial-resolution layers through preserv-
ing the resolution of feature maps, and it uses the pixel-level
max-pooling over feature maps to finally merge the split paths.
Compared to other split-transform-merge design, COMO uses
max-pooling rather than concatenation to reduce the size of
immediate results, and to lower the computational complexity
relatively.

IV. EXPERIMENTS

In this section, we present the experiment and comparison
results. We first present the experiment settings with baseline
algorithms and datasets introduced, then demonstrate the overall
accuracy of COMO with parameter sizes compared, finally we
conduct ablation studies to show the functionalities of each key
component.

A. Experiment Setups

In this study, we compared COMO networks with the base-
line algorithms as follow: VGG networks including VGG11,
VGG13, VGG16, and VGG19; ResNet networks including
ResNet18, ResNet34, ResNet50, ResNet101 and ResNet152; In-
ception, including InceptionV3, and InceptionV4; ResNeXt, in-
cluding ResNeXt50, ResNeXt101, and ResNeXt152; Xception;
as well as SE-ResNet, including SE-ResNet34, SE-ResNet50,
and SE-ResNet152.

To evaluate the performance improvement made by COMO,
we extend part of the above VGG and ResNet networks
with the COMO extensions using two independent splits,
i.e., VGG11-COMO-2, VGG13-COMO-2, VGG16-COMO-2,
VGG19-COMO-2, ResNet18-COMO-2, ResNet34-COMO-2,
ResNet50-COMO-2, and ResNet101-COMO-2 networks. All
networks are implemented in the way aforementioned. We
did not include the experiments based on DenseNet [6] here,
as DenseNet is already over-parameterized with redundant
paths/splits.

All the above networks are evaluated and compared using the
following datasets:
� CIFAR-100: The CIFAR-100 dataset consists of 60,000 32
×32 color images in 100 classes, with 600 images per class.
There are 500 training images and 100 testing images per
class [22].

� Caltech-256: Caltech 256 is a dataset with 256 object cate-
gories containing a total of 30,607 images. Different num-
bers of training examples are used by researchers to vali-
date the generalization of proposed algorithms. In this pa-
per, we create two configurations for Caltech 256, which
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TABLE III
TESTING ACCURACY (%) ON CIFAR-100

have 30 and 60 random sampled training examples respec-
tively for each category, following the procedure used in
[23].

� Stanford Dogs-120: The Stanford Dogs dataset contains
images of 120 breeds of dogs from around the world. There
are exactly 100 examples per category for training [24].

� MIT Indoors-67: MIT Indoors 67 is a scene classification
task containing 67 indoor scene categories, each of which
consists of 80 images for training and 20 for testing [25].

� Caltech-UCSD-Birds-200-2011: CUB-200-2011 contains
11,788 images of 200 bird species. Each species is asso-
ciated with a Wikipedia article and organized by scientific
classification [26]. Each image is annotated with a bound-
ing box, part location, and attribute labels. We use only
classification labels during training.

� Food-101: Food-101 is a large scale data set of 101 food
categories, with 101,000 images, 750 training images and
250 test images are provided for each class [27].

All networks are trained using fine-tuned hyper-parameters. A
portion of the experimental results is cross-verified with github.1

All networks have been trained using 200 epochs under the same
settings with both PaddlePaddle and Pytorch implementations.
Learning rate decay has been triggered twice at the 80th and the
160th epoch respectively.

B. Overall Comparisons

Table III presents the testing accuracy of the above algorithms
on CIFAR-100 datasets. We conclude the testing accuracy com-
parison as follow.
� COMO vs Vanilla Networks: Using COMO with 2

splits, VGG11, VGG13, VGG16, VGG19, ResNet18,
ResNet34, ResNet50, and ResNet101 all have been

1https://github.com/weiaicunzai/pytorch-cifar100

Fig. 5. The Comparison between Training and Testing Accuracy Curves on
CIFAR-100.

improved with 0.3% to 3% higher testing accuracy. It
has also shown that ResNet50-COMO-2 outperforms
all other networks, with the best testing accuracy in the
comparison, though ResNet50-COMO-2 needs slightly
more parameters than other networks. For example,
ResNet50-COMO-2 achieves around 1.42% higher ac-
curacy than SE-ResNet152 and 3.03% higher accuracy
than ResNet152, while consuming 4 M and 12 M more
parameters respectively.

� Parameter Efficiency: The COMO networks outperform
the networks with similar or even larger parameter sizes.
For example, ResNet18-COMO-2 with 14 M parame-
ters achieves 78.40% testing accuracy, and it outperforms
ResNeXt50 (15 M, 77.77%) and VGG16 (15 M, 73.04%).
ResNet34-COMO-2 with 24 M parameters achieves 79.5%
testing accuracy and performs better than all baselines.

� Computational Efficiency: The COMO networks only in-
corporate a very small number of additonal FLOPs to en-
hance the original networks, while in terms of testing ac-
curacy they all outperform the networks with similar or
even larger FLOPs. Note that the FLOPs here are measured
using a mock input of size 32× 32× 3 and estimated ac-
cordingly [28]. The overall comparison might suggest that
COMO networks perform better than the handcrafted net-
works under limited FLOPS budgets.

We further compare COMO with baseline networks using
other datasets. Table IV lists the testing accuracy comparison
between VGG/ResNet and COMO networks. Similar observa-
tions have been also obtained with consistent conclusions.

C. Case Studies

To understand the performance of COMO, we conduct the
following case studies.

1) Fitting Capacity vs. Generalization Performance: Fig. 5
demonstrates the comparison of training and testing accuracy
curves between VGG13, ResNet34, and their COMO exten-
sions. It can be clearly observed that COMO provides deep
CNNs both (1) enhanced capacity to fit training data as well
as (2) the generalizability to adapt testing samples.

More specifically, before the 160th epoch (i.e., the second
learning rate decay), VGG13-COMO-2 incorporates a higher
training accuracy than vanilla VGG13. Similar observations can
be also made in the comparison between ResNet34-COMO-2
and ResNet34. It indicates that COMO networks fit the training
datasets with a closer gap. Furthermore, after the 160th epoch,
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TABLE IV
TESTING ACCURACY (%) ON OTHER DATASETS

Fig. 6. Examples of Activation Maps. For the comparison of activation maps, we used the standard implementation of Network Dissection [13] provided at
http://netdissect.csail.mit.edu/. For every architecture in the experiments, the Network Dissection tool outputted a ranking list of images categorized by the tested
visual concepts, while the rank is based on the Intersection over Union (IoU) of the images’ activation maps using the architecture. Only top-ranked images are
visualized. For the overall detection capacity of the visual concepts, please refer to Fig. 7 for the comparison.

the generalization accuracy of COMO networks is significantly
higher than the vanilla VGG/ResNet. It thus indicates better
generalization performance.

2) Network Dissection and Concept Detection: To further
understand the performance of COMO and how it works, we
use network dissection tools [13] to analyze the feature maps
drawn from COMO networks.

We first run the inference procedure of VGG11, ResNet18
networks and their COMO extensions using a set of object de-
tection images provided in [13], where these networks have
been well-trained using the aforementioned datasets. Then, we
collect the activation maps from the last convolutional layer
right before the fully connected layers. According to [13], these

activation maps have been considered as the criterion for the
decision-making of classification. Following the settings of [13],
we threshold the activation in the activation maps and trace back
the visual pixels that are “selected” for classification. In this way,
we can visualize “to where” the networks pay attention, toward
the classification of every image. Then, we could follow-up the
objects of different types that have been covered by these pixels,
then identify the visual concepts, such as material, color, etc.,
that have been learned by the networks.

Fig. 6 demonstrates the example of activation maps, where
the pixels to which the networks pay attention have been
highlighted. These examples are randomly selected from the
massive testing images and categorized by the content objects.
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Fig. 7. Visual concepts detected.

Compared COMO networks with the vanilla ones, COMO en-
larges the area of activation and covers a great portion of vi-
sual objects (especially for comparison between VGG11 and
VGG11-COMO-2). Based on the activation maps, we intend to
specify the visual concepts detected by the networks using the
activation maps. Fig. 7 illustrates the number of different visual
concepts that have been detected through the trained networks.
It has been observed that in general the COMO networks de-
tect more visual concepts than the vanilla one, for all training
datasets. We believe that with more visual concepts being de-
tected, the COMO networks are capable of classifying images
with higher accuracy.

Remark: Until now, we have analyzed the performance ad-
vantages of COMO networks from both learning and inference
perspectives, where we can see the generalization and fitting
capacity advantage of COMO, as well as its ability to detect
visual concepts, on top of wide training datasets.

D. Ablation Studies

To understand some open issues of COMO, we conduct ab-
lation studies as follow.

1) Affected Layers: COMO targets at improving the spatial
resolution reduction layers, while leaving the rest of the archi-
tecture unmodified. We assume the spatial resolution reduction
might cause potential accuracy loss, while the use of COMO
would enhance the capacity of the network in such layers. Our
ablation study evaluates the performance of using COMO to
extend all layers in VGG11, VGG13, VGG16, and VGG19,
then compares them with the standard COMO using two splits.
Fig. 8(a) shows that extending spatial resolution reduction layers
with COMO (denoted as COMO-2) outperforms the ones that
extend every layer with COMO (denoted as COMO-All-Layers).
Such observation further validates our intuition and approach.

Fig. 8. Ablation studies.

TABLE V
TESTING ACCURACY (%) ON CIFAR-100 FOR COMO WITH AND

WITHOUT BATCH NORMALIZATION (BN)

2) Number of Splits: In the above examples, we present the
networks using COMO with two independent splits. COMO can
further scale-up with more splits while enjoying better capac-
ity enhancement. Our ablation study evaluates COMO networks
with 2, 3 and 4 independent splits. The comparison result shown
in Fig. 8(b) demonstrates that COMO networks with 3 splits
usually perform worse than the ones with 2 splits, while COMO
networks with 4 splits would perform significantly better the
other two. In general, we could expect higher testing accuracy
when using more splits in COMO networks. However, the num-
ber of parameters would be linearly increased with the number
of splits. In practice, we don’t recommend adopting COMO with
a large number of splits unless the parameter size is not an issue.

3) Batch Normalization and Mixup: In our study, we also
evaluate COMO with batch normalization disabled. The testing
accuracy significantly decreases in such settings (shown in Ta-
ble V), since the max-pooling operator would fail to pick up
informative features for classification without the batch nor-
malized split. As many deep architectures, our studies show
that a common mixup strategy could help to augment the
training datasets for COMO networks and further improve the
testing accuracy. Furthermore, as shown in Table VI, COMO
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TABLE VI
TESTING ACCURACY (%) ON CIFAR-100 WITH MIXUP

still outperforms the vanilla networks in the testing accu-
racy comparison from both accuracy and parameter efficiency
perspectives.

V. DISCUSSION AND CONCLUSION

In this paper, we propose a novel maxout strategy, namely
COMO (COvolutional MaxOut), which enhances the capacity
of deep CNNs with parameter efficiency improved. As the opera-
tors of vanilla COMO are usually incompatible with deep CNNs,
COMO introduces a simple yet effective set of split-transform-
merge operators, widening the layers with spatial resolution re-
duction. Extended with COMO, the spatial resolution reduction
layers are converted into multiple independent splits. Each split
first feed-forwards the input feature map to a 4D convolution op-
erator, then transforms the result through a batch normalization
operator, and finally merges into the aggregated output through
max-pooling.

The design goal is to tackle the possible degradation of the
classification accuracy caused by the spatial resolution reduc-
tion, as it enhances the capacity of feature learning with the mul-
tiple splits. Moreover, the superiority is shown compared with
the existing ResNeXt for ResNet or Inception for VGG-alikes,
where COMO is suitable for both linear architectures and the
architectures with residual connections. To demonstrate the real
effect of COMO in a variety of deep CNNs, we conduct a se-
ries of intensive experiments on the commonly used bench-
mark datasets. The result shows that COMO can remarkably
increase the classification accuracy of ResNet/VGG-alike net-
works, and that our model also dominate in comparison with
the well-known solutions (ResNeXts and Inceptions). The ad-
ditional ablation study offers tremendous insights into why and
how COMO works. All empirical results and observations back
up our intuition and design principles. Note that this work fo-
cuses on studying empirical design and practical paradigms fol-
lowed by split-transform-merge patterns to widen the CNNs for
capacity enhancements, and we further test the proposed COMO
design on the image classification benchmark datasets of mod-
erate sizes. In our future work, we hope to utilize COMO with
automated machine learning algorithms, such as Efficient-
Net [12] and GPipe [14], on larger datasets [4], [29].
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