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A One-Layer Recurrent Neural Network for
Pseudoconvex Optimization Subject to Linear

Equality Constraints
Zhishan Guo, Student Member, IEEE, Qingshan Liu, Member, IEEE, and Jun Wang, Fellow, IEEE

Abstract— In this paper, a one-layer recurrent neural network
is presented for solving pseudoconvex optimization problems
subject to linear equality constraints. The global convergence of
the neural network can be guaranteed even though the objective
function is pseudoconvex. The finite-time state convergence to the
feasible region defined by the equality constraints is also proved.
In addition, global exponential convergence is proved when the
objective function is strongly pseudoconvex on the feasible region.
Simulation results on illustrative examples and application on
chemical process data reconciliation are provided to demonstrate
the effectiveness and characteristics of the neural network.

Index Terms— Global convergence, linear equality constraints,
pseudoconvex optimization, recurrent neural networks.

I. INTRODUCTION

CONSIDER the following constrained nonlinear optimiza-
tion problem:

minimize f (x)

s.t. Ax = b (1)

where x ∈ R
n is the vector of decision variables, A ∈ R

m×n

is of a coefficient matrix with full row-rank (i.e., rank(A) =
m ≤ n), and the objective function f (x) : R

n → R is dif-
ferentiable, bounded below, locally Lipschitz continuous [1],
[2] and pseudoconvex on the feasible region {x |Ax − b = 0}.
In this paper, we assume that problem (1) has at least one
finite solution. Constrained optimization with pseudoconvex
objective functions has widespread applications, such as frac-
tional programming [3], [4], frictionless contact analysis [5],
applications in economics [6], and computer vision [7].

Since Tank and Hopfield’s pioneering work on a neural
network approach to linear programming [8], the design, and
applications of recurrent neural networks for optimization
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have been widely investigated. For example, the Lagrangian
network for solving nonlinear programming problems with
equality constraints [9], the deterministic annealing network
for convex programming [10], the Lagrangian network for
solving nonlinear programming problems with equality con-
straints [9], [11], the projection-type neural network for convex
programming [12], and a generalized neural network for non-
smooth nonlinear programming problems [13] were developed.
Recently, several recurrent neural networks with discontin-
uous activation functions were proposed for solving opti-
mization problems [10], [14]–[23]. Specifically, a nonfeasible
gradient projection recurrent neural network was proposed
[20] and thoroughly analyzed for convex optimization prob-
lems and extended to nonconvex optimization with nonlinear
constraints [24]. In particular, a one-layer recurrent neural
network for non-smooth convex optimization subject to linear
equality constraints was presented [18]. In a recent work, the
neural network was applied for constrained sparsity maximiza-
tion in compressive sensing [25].

In addition to convex optimization, it was shown [26] that
pseudomonotone variational inequality and pseudoconvex
optimization problems with bound constraints can be solved
by using the projection neural network [27], [28]. In this
paper, a one-layer recurrent neural network is presented for
solving pseudoconvex optimization problems subject to linear
equality constraints. The scope of neurodynamic optimization
can be expanded from convex optimization problems to
pseudoconvex ones.

The remainder of this paper is organized as follows. The
related preliminaries and model descriptions are presented in
Section II. In Section III, we discuss the stability of the one-
layer recurrent neural network. The global convergence, global
asymptotic stability, and global exponential stability of the
neurodynamic system are delineated under different condi-
tions. Two numerical examples are presented in Section IV. In
Section V, an application for chemical process data reconcilia-
tion is discussed based on pseudoconvex performance criterion
and the present recurrent neural network. Finally, Section VI
concludes this paper.

II. PRELIMINARIES

In [18], a one-layer recurrent neural network was proposed
for non-smooth convex optimization

ε
dx

dt
∈ −Px − (I − P)∂ f (x) + q, x0 = x(t0) (2)
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where x is the state vector, ε is a positive scaling constant, I is
an identity matrix, P = AT (AAT )−1 A, q = AT (AAT )−1b,
and ∂ f (x) is the sub-differential of f (x).

In particular, when f in (1) is differentiable, ∇ f (x) is used
instead of ∂ f (x) as the gradient of f (x)

ε
dx

dt
= −Px − (I − P)∇ f (x) + q, x0 = x(t0).

However, its global convergence results are established for
convex optimization problems only, and theoretically its state
reaches the feasible region only when time approaches to
infinity. To achieve the finite-time convergence to the feasible
region and global convergence to optimal solutions for pseudo-
convex optimization problems, the model is modified to

ε
dx

dt
= −(I − P)∇ f (x) − AT g(Ax − b), x0 = x(t0) (3)

where g = (g(x1), g(x2), . . . , g(xm))T and its component is
defined as

g(xi) =

⎧
⎪⎨

⎪⎩

1, if xi > 0,

0, if xi = 0, (i = 1, 2, . . . , m)

−1, if xi < 0.

(4)

For the convenience of later discussions, several definitions
and theorems on pseudoconvex optimization are introduced
below.

Definition 1: A differentiable function f : R
n → R is said

to be pseudoconvex on a set � if ∀x, y ∈ �, x �= y

∇ f (x)T (y − x) ≥ 0 ⇒ f (y) ≥ f (x).

The function f is said to be strictly pseudoconvex on � if
∀x �= y ∈ �

∇ f (x)T (y − x) ≥ 0 ⇒ f (y) > f (x)

and strongly pseudoconvex on � if there exist a constant β > 0
such that ∀x �= y ∈ �

∇ f (x)T (y − x) ≥ 0 ⇒ f (y) > f (x) + β‖x − y‖2
2

where ‖ · ‖2 is the L2-norm, which will be written as ‖ · ‖
hereafter.

Definition 2: A function F : R
n → R

n is said to be
pseudomonotone on a set � if ∀x, x ′ ∈ �, x �= x ′

F(x)T (x ′ − x) ≥ 0 ⇒ F(x ′)T (x ′ − x) ≥ 0. (5)

A very important result on pseudoconvex optimization is
given by the following lemma, and its proof follows directly
from Theorem 4.3.8 in the reference.

Lemma 1 [29]: For (1), if the Karush–Kuhn–Tucker
(KKT) conditions hold at a feasible solution x̄ , i.e.,
∃y ∈ R

m,∇ f (x̄) − AT y = 0, then x̄ is a global optimal
solution to (1).

III. GLOBAL CONVERGENCE

In this section, we analyze the global convergence of
the recurrent neural network (3). The dynamical system is
described by an ordinary differential equation with a discon-
tinuous right-hand side, and Filippov solution is considered

in this paper. First of all, the definition of global conver-
gence is given. Afterward, Theorem 1 discusses the finite-
time convergence of the states to the feasible region of (1).
In Theorems 2 and 3, the Lyapunov stability of the proposed
neural network is proved, based on which the globally conver-
gence to the optimal solution of (1) is then shown. Theorem
4 reveals the exponential convergence of the neural network
when the gradient of the optimal function ∇ f (x) is strongly
pseudomonotone.

The state vector of the neural network (3) is said to be
globally convergent to an optimal solution of (1) if for any
x(t) of the neural network with initial point x0 ∈ R

n ,
such that limt→+∞ x(t) = x∗, where x∗ is an optimal
solution. The existence of the solution can be derived from the
locally Lipschitz continuity of the objective function f (·) and
Proposition 3 in [30]. The solution for discontinuous system
may not be unique [31], and the LaSalle invariant set theorem
does not require the uniqueness of the solution.

Denote the feasible region as S = {x |Ax = b}.
Theorem 1: The state vector of the recurrent neural network

(3) is globally convergent to the feasible region S in finite time
by tS = ε‖Ax0 − b‖1/λmin(AAT ) and stays there thereafter,
where x0 is the initial value, and λmin is the minimum
eigenvalue of the matrix.

Proof: Note that B(x) = ‖Ax −b‖1, which is convex and
regular, by using the chain rule [32], [13], we have

d

dt
B(x) = ζ T dx(t)

dt
∀ζ ∈ ∂B(x(t)) = AT K [g(Ax − b)]

where K (·) denotes the closure of the convex hull, i.e., the
Filippov set-valued map [30], and ẋ(t) is given by (3).

From the definition of P , we know that A(I − P) = A −
AAT (AAT )−1 A = 0. Thus for any x0 ∈ R

n , when x(t) ∈
R

n\S, we have

∃η ∈ K [g(Ax − b)] such that
d

dt
B(x) = −1

ε
‖AT η‖2.

For any x ∈ R
n\S, Ax − b �= 0. So at least one of the

components of η is 1 or −1. On one hand, since A has full
row-rank, AAT is invertible. It follows that:

‖(AAT )−1 AAT η‖ = ‖η‖ ≥ 1.

Since AAT is positive definite, we have

‖AT η‖2 = ηT AAT η ≥ λmin

(
AAT

)
‖η‖2 ≥ λmin

(
AAT

)
.

Thus
dB(x(t))

dt
≤ −1

ε
λmin

(
AAT

)
< 0. (6)

Integrating the both sides of (6) from t0 = 0 to t , we have

‖Ax(t) − b‖1 ≤ ‖Ax0 − b‖1 − 1

ε
λmin

(
AAT

)
t .

Thus, Ax(t)−b = 0 as t = ε‖A(x0)−b‖1/λmin(AAT ). That
is, the state vector of neural network (3) reaches S in finite
time and an upper bound of the hit time is tS = ε‖A(x0) −
b‖1/λmin(AAT ).

Next, we prove that, when t ≥ tS , the state vector of neural
network (3) remains inside S thereafter. If not so, assume that
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the trajectory leaves S at time t1 and stays outside of S for
almost all t ∈ (t1, t2), where t1 < t2. Then, ‖A(x(t1))−b‖1 =
0, and from above analysis, ‖A(x(t))−b‖1 < 0 for almost all
t ∈ (t1, t2) which is a contradiction. That is, the state vector
of neural neural (3) reaches the equality feasible region S by
tS at the latest and stays there thereafter. �

Theorem 2: Let f (x) be pseudoconvex on S. The state
vector of the neural network (3) is stable in the sense of
Lyapunov and globally convergent to the equilibrium point
set for any x0 ∈ R

n . In particular, assume that f (x) is strictly
pseudoconvex on S, then the neural network (3) is globally
asymptotically stable.

Proof: Denote x̄ as an equilibrium point of (3), i.e., 0 ∈
AT K [g(Ax̄ − b)] + (I − P)∇ f (x̄). Since by Theorem 1, any
trajectory x(t) will convergent to the feasible region S in finite
time tS = ε‖A(x0) − b‖1/λmin(AAT ), and will remain in S
forever, i.e., ∀t ≥ tS , x(t) ∈ S. As a result, it suffices to show
the stability of the system with x(t) ∈ S.

Consider the following Lyapunov function:
V1(x) = f (x) − f (x̄) + 1

2
‖x − x̄‖2. (7)

Clearly, ∀x ∈ S and x �= x̄ , V1(x) > 0, 0 = η ∈ K [g(Ax −
b)], and Ax − b = 0. So A(x̄ − x) = 0, and (x − x̄)T P =
(x − x̄)T AT (AAT )−1 A = [A(x − x̄)]T (AAT )−1 A = 0, as
well as PT (x − x̄) = 0. Since x = PT x + (I − P)T x and
(I − P)∇ f (x̄) = 0, as a result

∇ f (x̄)T (x − x̄) = ∇ f (x̄)T
[

PT (x − x̄) + (I − P)T (x − x̄)
]

= [(I − P)∇ f (x̄)]T (x − x̄) = 0. (8)

By the pseudoconvexity of f (x) on S, we know that ∇ f (x)
is a pseudomonotone mapping on S [33]. Thus from (8), we
know that for any x ∈ S and x �= x̄ , ∇ f (x)T (x − x̄) ≥ 0

dV1(x)

dt
= ∇V1(x)T · dx

dt

= −(∇ f (x) + x − x̄)T
(
(I − P)∇ f (x) + AT η

)

= −∇ f (x)T (I − P)∇ f (x) − (x − x̄)T ∇ f (x)

+(x − x̄)T P∇ f (x)

≤ −‖(I − P)∇ f (x)‖2 ≤ 0. (9)

Furthermore, d(V1(x))/dt = 0 if and only if (I −
P)∇ f (x) = 0, since f (·) is locally Lipschitz continuous,
from LaSalle invariant set theorem [30], [34], [35] x(t) →
�̄ = {x |d(V1(x))/dt = 0}.

Now we show that {x |dV1(x)/dt = 0} is the same set as
{x |dx/dt = 0}. From (9), it is obvious that d(V1(x))/dt =
0 ⇒ (I − P)∇ f (x) = 0. Since the assumption that x(t) ∈
S has been made at the beginning of the proof, we have 0 ∈
K [g(Ax − b)]. Thus d(V1(x))/dt = 0 ⇒ (I − P)∇ f (x) =
0 ⇒ dx/dt = 0. For any x that satisfies dx/dt = 0, it is clear
that d(V1(x))/dt = d(V1(x))/dx · dx/dt = 0. As a result,
x(t) → �̄ = {x |d(V1(x))/dt = 0} = {x |dx/dt = 0}, thus the
neural network is stable in the sense of Lyapunov and globally
convergent to the equilibrium points set.

If f (x) is strictly pseudoconvex on S, ∇ f (x) is a strictly
pseudomonotone mapping on S [33]. From, we know that thus

from (8), then ∀x ∈ S and x �= x̄ , (x − x̄)T ∇ f (x) > 0. From
(9), we know that ∀x ∈ S and x �= x̄ , dV1(x)/dt < 0, and
dV1(x)/dt = 0 if and only if x = x̄ . Also f (x) > f (x̄) can
be derived from ∇ f (x)T (x − x̄) = 0 for any x ∈ S since f (x)
is strictly pseudoconvex. As a result, x̄ is a unique equilibrium
point. Thus if f (x) is strictly pseudoconvex on S, the neural
network (3) is globally asymptotically stable. �

Theorem 3: Let f (x) be pseudoconvex on S. The state
vector of the neural network (3) is globally convergent to
optimal solution set of (1) for any x0 ∈ R

n . In addition,
when f (x) is strictly pseudoconvex on S, the neural network
(3) is globally convergent to the unique optimal solution
x∗ of (1).

Proof: From Theorem 2, we know that the (3) is stable in
the sense of Lyapunov, an globally convergent to equilibrium
point set �̄ = {x |dx/dt = 0}. As 0 ∈ −(I − P)∇ f (x̄) −
AT K [g(Ax̄ − b)] holds for any x̄ and P = AT (AAT )−1 A,
we have

0 ∈ ∇ f (x̄) − AT
(

AAT
)−1

A∇ f (x̄) + AT K [g(Ax̄ − b)].
Let y ∈ (AAT )−1 A∇ f (x̄)− K [g(Ax̄ − b)]. Then ∇ f (x̄)−

AT y = 0, which means x̄ satisfies KKT condition of (1).
Considering Lemma 1, we can conclude that any equilibrium
point x̄ of (3) is an optimal solution x∗ of (1). Thus the neural
network (3) is globally convergent to the optimal solution set
of (1).

For strictly pseudoconvex optimization, since the solution
x∗ is unique, it is obvious that the neural network (3) is
convergent to the optimal solution of (1). �

Theorem 4: Let ∇ f (x) be strongly pseudomonotone on S.
For any initial point x0 ∈ R

n , the state vector of the neural
network (3) is exponentially convergent to the optimal solution
x∗ of (1) after t ≥ tS .

Proof: By the strongly pseudomonotone of ∇ f (x) on S,
since in (8) we have ∇ f (x̄)T (x − x̄) = 0, ∃γ > 0, such that
∀t > tS

∇ f (x)T (x − x̄) ≥ γ ‖x − x̄‖2

where x̄ is an equilibrium point that satisfies 0 ∈ −
AT K [g(Ax̄ − b)] − (I − P)∇ f (x̄).

Consider the following Lyapunov function:
V2(x) = 1

2
‖x − x̄‖2. (10)

We have
dV2(x)

dt
≤ −(x − x̄)T ∇ f (x) ≤ −γ ‖x − x̄‖2 = −2γ V2(x).

As a result, ∀t > tS
V2(x(t)) ≤ V2(x(tS)) exp (−2γ (t − tS )) .

From Lemma 1 and the proof in Theorem 3, as ∇ f (x) is
strongly pseudomonotone on S, f (x) is pseudoconvex on S.
Thus we know that x̄ satisfies KKT condition and is the
optimal solution x∗. Because V2(x) = 0 if and only if x = x̄ ,
the neural network (3) is exponentially convergent to the
optimal solution x∗ of (1) after t ≥ tS . �

Note that any strictly convex quadratic function is also
strongly pseudoconvex. Thus the state vector of the neural
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Fig. 1. Isometric of inverted 2-D non-normalized Gausssian function with
σ = [1, 1]T .

network (3) is also exponentially convergent to the optimal
solution for strictly convex quadratic optimization subject to
linear equality constraints.

IV. NUMERICAL EXAMPLES

To demonstrate the performance of the one-layer neural
network in solving pseudoconvex optimization problems with
linear equality constraints, two illustrative examples are given
in this section. Many functions in nature are pseudoconvex,
such as Butterworth filter functions, fractional functions, and
some density functions in probability theory. Among them, the
Gaussian function as shown in Fig. 1 is chosen in Example 1,
and quadratic fractional function is chosen for Example 2. In
the following simulations, the differential equation defined by
(3) is solved using MATLAB r2008a ode45 algorithm on a 2.4
GHZ Intel CoreTM2 Qrad PC running Windows Vista with 2.0
GB main memory.

Example 1: Consider the following pseudoconvex optimiza-
tion problem with linear equality constraints:

minimize − exp

(

−
2∑

i=1

x2
i

σ 2
i

)

s.t. Ax = b (11)

where x ∈ R
2, σ = (1, 1)T , the elements of A =

[0.787, 0.586] and b = 0.823 randomly drawn from the
uniform distribution over (0, 1). Obviously, the objective func-
tion is locally Lipschitz continuous and strictly pseudoconvex
on R

2.
Since the conditions in Theorems 1−3 hold, the one-layer

recurrent neural network (3) is globally asymptotically stable
and capable of solving this optimization problem. Fig. 2 is
the state phase plot of the neural network (3) from 20 random
initial points converge to the feasible set S = {x |Ax − b = 0}
in finite time, and then converge to x∗. It is also obvious that
the state variables stay in the feasible region S once into it.
Fig. 3 shows the transient states of the neural network (3) with
ε = 10−6 in Example 1, where 20 random initial points are
generated from the uniform distribution over (−1, 1).
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Fig. 2. Transient behaviors of the neural network (3) with 20 random initial
points in Example 1.

0 1 2
×10−4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

st
at

es

x
1

x
2

Fig. 3. Transient states of the neural network (3) in Example 1.

The projection neural network [27] and the two-layer
recurrent neural network [21] are also used for solving the
same problem (11). As there is no bound constraints, the
projection neural network will degeneration to the Lagrangian
network [9], [36] which is given by the following equations
where x is the output state vector and y is the hidden
state vector:

dx

dt
= −∇ f (x) + AT y

dy

dt
= −Ax + b. (12)

The global convergence of the Lagrangian network for
convex optimization was studied in [11]. However, global
convergence is not guaranteed for pseudoconvex problems.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on April 28,2023 at 17:30:43 UTC from IEEE Xplore.  Restrictions apply. 



1896 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 12, DECEMBER 2011

0 1

time

2

×10−4

−3

−2

−1

0st
at

es

1

2

3

4

Fig. 4. Transient states of both the Lagrangian network (in dashed line) and
the two-layer recurrent neural network (in continues line) in Example 1.
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Fig. 5. Transient states of the one-layer recurrent neural network (3) from
5 random initial points (n = 5) in Example 1.

Fig. 4 shows the transient states of both the Lagrangian
network (in dashed line) and the two-layer recurrent neural
network (in continues line) in Example 1, where two random
initial points are generated from the uniform distribution over
(−2, 2) for models. It is obvious that the state vectors of
both the Lagrangian network and the two layer recurrent
neural network oscillate and do not converge to x∗ for this
example.

Furthermore, consider (11) in a higher-dimension case with
n = 5, where σ = [1, 1/2, 1/4, 1/2, 1]T , A ∈ R

3×5

and b ∈ R
3 are drawn from the uniform distribution over

(0, 1)5. Fig. 5 depicts the transient states of the one-layer
recurrent neural network (3) with ε = 10−6, where five
random initial points are generated from the uniform dis-
tribution over (−1, 1)5. It also shows the global conver-
gence of the states to the unique optimal solution of the
problem.
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Fig. 6. Transient behaviors of the one-layer recurrent neural network (3)
with ten random initial points in Example 2.

Example 2: One of the important classes of pseudoconvex
optimization problems is the quadratic fractional programming
problem

minimize
x T Qx + aT x + a0

cT x + c0
s.t. Ax = b (13)

where Q is an n × n positive semidefinite matrix, a, c ∈ R
n ,

and a0, c0 ∈ R. It is known that the objective function is
pseudoconvex on the half space {x |cT x + c0 > 0}.

Let n = 4

Q =

⎛

⎜
⎜
⎝

5 −1 2 0
−1 5 −1 3
2 −1 3 0
0 3 0 5

⎞

⎟
⎟
⎠ , a =

⎛

⎜
⎜
⎝

1
−2
−2
1

⎞

⎟
⎟
⎠ , c =

⎛

⎜
⎜
⎝

2
1

−1
0

⎞

⎟
⎟
⎠,

A =
(

2 1 −1 0
1 0 2 −2

)

, b =
(

4
5

)

, a0 = −2, c0 = 5.

As Q is symmetric and positive definite in R
4, the

objective function is pseudoconvex on the feasible region
{x |Ax = b} [3]. Fig. 6 depicts the transient states of the
one-layer recurrent neural network (3) with ε = 10−6, where
ten random initial points are generated from the uniform
distribution over (0, 5)4. It shows the global convergence to
the unique optimal solution of the problem.

Fig. 7 shows the transient states of both the Lagrangian
network (in dashed line) and the two-layer recurrent neural
network (in continues line) in Example 2, with a random initial
point generated from the uniform distribution over (0, 5).

V. DATA RECONCILIATION

Measured process data usually contain several types of
errors. It is important to understand what is wrong with the
values obtained by the measurement and how they can be
adjusted [37]. Data reconciliation is a means to adjust process
data measurements by minimizing the error and ensuring
constraint satisfaction, which is a way to improve the quality
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Fig. 7. Transient states of both the Lagrangian network (dashed line) and
the two-layer recurrent neural network (continues line) in Example 2.

of distributed control systems. A good estimation is usually
defined as the optimal solution to a constrained maximum
likelihood objective function subject to data flow balance
constraints. Real-time data reconciliation is necessary to
make properly use of the large amount of available process
information.

This section reports the results of the proposed neuro-
dynamic optimization approach to data reconciliation. It is
shown that the problem can be formulated as pseudoconvex
optimization problem with linear equality constraints. Based
on a performance index, simulation results on industrial appli-
cations in the literature are shown.

Consider a series of measured data with errors

yi (k) = zi (k) + ei (k), i = 1, . . . , n, k = 1, 2, . . .

where yi (k) is the kth measured value of element i , zi (k)
is the true value of the element, and ei (k) is the identically
independent distribution error that usually consists of three dif-
ferent types of errors: small random Gaussian errors, Cauchy
distributed systematic biases and drift, and gross errors which
are usually large resulting from instrument malfunction. It
is shown in literature that Cauchy (Lorentzian) function is
the most effective generalized maximum likelihood objective
function with higher data reconciliation performance [38].
Thus data reconciliation can be stated in the following form
for each given k:

maximize �i

{
1

πσi (1+(yi−xi )2/σ 2
i )

}

s.t.
n∑

j=1
ai j x j = bi , i = 1, . . . , n

(14)

where yi is the measurement of variable i , xi , is the reconciled
estimate, σi is a scaler statistical parameter of the error.

Now we will show that the Cauchy function g(x) =
�i 1/[πσi (1 + (yi − xi )

2/σ 2
i )] is strictly pseudoconcave on

R
n . It is shown in [33] that a differentiable function is strictly

pseudoconcave if and only if its negative gradient is a strictly
pseudomonotone mapping where the definition is given below.

From the definition of Cauchy function, we have

∂g

∂xi
= g(x)

2(xi − yi )

σ 2
i [1 + (yi − xi )2/σ 2

i ] .

Since g(x) ≥ 0 holds always, ∀x, x ′ ∈ R
n , from

−∇g(x)T (x ′ − x) ≥ 0, we have

n∑

i=1

2(xi − yi )(x ′
i − xi)

[1 + (yi − xi )2/σ 2
i ] ≥ 0

which simply leads to ∇g(x ′)T (x ′ − x) > 0. Thus g(x) is
strictly pseudoconvex on R

n , and (14) is a pseudoconvex
optimization problem with linear equality constraints. As a
result, the proposed neurodynamic optimization method can be
used for solving the data reconciliation problem in chemical
processes. The benefit for using neural networks for data
reconciliation is that the proposed neural dynamic system can
achieve the optimal solution in very little time, which makes
real-time data reconciliation possible.

Total error reductions (TER) [39] is often used to evaluate
the data validation performance

TER =

max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0,

√
n∑

i=1
((yi − zi )/σi )2 −

√
n∑

i=1
((x∗

i − zi )/σi )2

√
n∑

i=1
((yi − zi )/σi )2

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

(15)

The range of TER is [0, 1] and it reaches its maximum
when the optimal solution x∗ is exactly the same as the true
value z.

In the following experiments, the measurement sets yi are
generated for each variable by adding noise from Cauchy and
normal distributions with equal probability to true value zi .
For the gross errors, outliers are created in ten percent
randomly selected measurements by adding or subtracting
10 −100 percent of the true values. The lower bounds
on the measurement variables are set to 50 percent of
the true values and the upper bounds to twice of the
true values.

Example 3: Consider a chemical reactor with two entering
and two leaving mass flows [40]. The four variables are related
by three linear mass balance equations, where

A =
⎛

⎝
0.1 0.6 −0.2 −0.7
0.8 0.1 −0.2 −0.1
0.1 0.3 −0.6 −0.2

⎞

⎠ , b =
⎛

⎝
0
0
0

⎞

⎠,

σ = diag(0.00289, 0.0025, 0.00576, 0.04),

z = (0.1850, 4.7935, 1.2295, 3.880)T .

Figs. 8 and 9 show, respectively, the transient states of
the neural network (3) and the performance index value TER
with five random initial states and the same errors. It shows
the global convergence of the neurodynamic optimization
approach.
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Fig. 8. Transient states of the neural network (3) for data reconciliation with
five random initial states in Example 3.
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Fig. 9. Transient behaviors of the performance index TER in Example 3.

Example 4: Consider a recycle process network, where
seven streams are identified with overall material balance as
four linear equality constraints [41], where

A =

⎛

⎜
⎜
⎝

1 −1 0 1 0 1 0
0 1 −1 0 0 0 0
0 0 1 −1 −1 0 0
0 0 0 0 1 −1 −1

⎞

⎟
⎟
⎠ , b =

⎛

⎜
⎜
⎝

0
0
0
0

⎞

⎟
⎟
⎠

σ = diag(1.5625, 4.5156, 4.5156, 0.0625,

3.5156, 0.3906, 0.3906)

z = (49.5, 81.5, 85.3, 10.1, 72.9, 25.7, 50.7)T .

Fig. 10 shows the transient states of the neural network.
Example 5: Consider a steam metering system with 28

measured variables and twelve linear equality constraints [42]
(detailed information for this example is not listed here since
space is limited). Fig. 11 shows transient states of the neural
network.

Fig. 12 depicts the performance index TER during the
convergent processes in Examples 4 and 5. It shows that there
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Fig. 10. Transient states of the neural network (3) for data reconciliation in
Example 4.
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Fig. 11. Transient states of the neural network (3) for data reconciliation in
Example 5.

TABLE I

PERFORMANCE OF MONTE CARLO TESTS IN TERMS OF TER IN

EXAMPLES 3–5

Example
Gaussian Cauchy

average average max min

3 0.751 [38] 0.757 0.992 0.424

4 0.764 [43] 0.789 0.898 0.260

5 0.466 [38] 0.526 0.558 0.205

are mainly two parts in this transient behaviors: at first, the
state vector x converges to a feasible point (that satisfies linear
constraints) in a very short time, during which the TER value
may even decrease, and then converges to the optimal solution
of the problem, where the TER value increases and reaches
its maximum value.

Table I summarizes the results of Monte Carlo tests with
random errors of 100 runs. The average, maximum (max),
and minimum (min) values of TER with Cauchy errors and
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Fig. 12. Transient behaviors of the performance index TER in Examples 4
and 5.

also average TER of Gaussian ones are compared. Obviously,
the results with Cauchy errors are better than those with
Gaussian ones.

VI. CONCLUSION

In this paper, a single-layer recurrent neural network
for solving pseudoconvex optimization problems with lin-
ear equality constraints was proposed based on an exist-
ing model for convex optimization. The reconstructed recur-
rent neural network was proven to be globally stable in
the sense of Lyapunov, globally asymptotically stable, and
global exponentially stable when the objective function is
pseudoconvex, strictly pseudoconvex, and strongly pseudo-
convex in the feasible region, respectively. Simulation results
on numerical examples and an applications for chemical
process data reconciliation were elaborated upon to substanti-
ate the effectiveness and performance of the recurrent neural
network.
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